feat: cuda implementation for ggml_conv_transpose_1d
(ggml/854)
* conv transpose 1d passing test for 1d input and kernel * working for different input and output channel counts, added test for variable stride * initial draft appears to work with stride other than 1 * working with all old and new conv1d tests * added a test for large tensors * removed use cuda hardcoding * restored test-conv-transpose.c * removed unused arugments, and fixed bug where test failure would cause subsequent tests to fail * fixed accumulator bug * added test to test-backend-ops * fixed mistake * addressed review * fixed includes * removed blank lines * style and warning fixes * return failure when test fails * fix supports_op --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
470939d483
commit
fde13b3bb9
4 changed files with 146 additions and 1 deletions
|
@ -1266,6 +1266,36 @@ struct test_pool2d : public test_case {
|
|||
}
|
||||
};
|
||||
|
||||
// GGML_OP_CONV_TRANSPOSE_1D
|
||||
struct test_conv_transpose_1d : public test_case {
|
||||
|
||||
const std::array<int64_t, 4> ne_input;
|
||||
const std::array<int64_t, 4> ne_kernel;
|
||||
|
||||
// stride
|
||||
const int s0;
|
||||
// padding
|
||||
const int p0;
|
||||
// dilation
|
||||
const int d0;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
|
||||
}
|
||||
|
||||
test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
|
||||
std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
|
||||
int s0 = 1, int p0 = 0, int d0 = 1)
|
||||
: ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
|
||||
ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
|
||||
ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_IM2COL
|
||||
struct test_im2col : public test_case {
|
||||
const ggml_type type_input;
|
||||
|
@ -1279,7 +1309,7 @@ struct test_im2col : public test_case {
|
|||
// padding
|
||||
const int p0;
|
||||
const int p1;
|
||||
// dilatation
|
||||
// dilation
|
||||
const int d0;
|
||||
const int d1;
|
||||
// mode
|
||||
|
@ -2098,6 +2128,16 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
|
||||
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
|
||||
|
||||
test_cases.emplace_back(new test_conv_transpose_1d());
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
|
||||
test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
|
||||
|
||||
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue