sync : ggml (new ops, tests, backend, etc.) (#4359)
* sync : ggml (part 1)
* sync : ggml (part 2, CUDA)
* sync : ggml (part 3, Metal)
* ggml : build fixes
ggml-ci
* cuda : restore lost changes
* cuda : restore lost changes (StableLM rope)
* cmake : enable separable compilation for CUDA
ggml-ci
* ggml-cuda : remove device side dequantize
* Revert "cmake : enable separable compilation for CUDA"
This reverts commit 09e35d04b1
.
* cuda : remove assert for rope
* tests : add test-backend-ops
* ggml : fix bug in ggml_concat
* ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()`
* ci : try to fix macOS
* ggml-backend : remove backend self-registration
* ci : disable Metal for macOS cmake build
ggml-ci
* metal : fix "supports family" call
* metal : fix assert
* metal : print resource path
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
bcc0eb4591
commit
fe680e3d10
20 changed files with 4637 additions and 1031 deletions
414
ggml.c
414
ggml.c
|
@ -233,24 +233,6 @@ inline static void * ggml_aligned_malloc(size_t size) {
|
|||
#define UNUSED GGML_UNUSED
|
||||
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
|
||||
|
||||
//
|
||||
// tensor access macros
|
||||
//
|
||||
|
||||
#define GGML_TENSOR_UNARY_OP_LOCALS \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||||
|
||||
#define GGML_TENSOR_BINARY_OP_LOCALS \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
|
||||
|
@ -1613,6 +1595,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|||
"GROUP_NORM",
|
||||
|
||||
"MUL_MAT",
|
||||
"MUL_MAT_ID",
|
||||
"OUT_PROD",
|
||||
|
||||
"SCALE",
|
||||
|
@ -1640,6 +1623,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|||
"POOL_1D",
|
||||
"POOL_2D",
|
||||
"UPSCALE",
|
||||
"ARGSORT",
|
||||
|
||||
"FLASH_ATTN",
|
||||
"FLASH_FF",
|
||||
|
@ -1666,7 +1650,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|||
"CROSS_ENTROPY_LOSS_BACK",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
|
||||
static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
|
@ -1695,6 +1679,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||
"group_norm(x)",
|
||||
|
||||
"X*Y",
|
||||
"X[i]*Y",
|
||||
"X*Y",
|
||||
|
||||
"x*v",
|
||||
|
@ -1722,6 +1707,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||
"pool_1d(x)",
|
||||
"pool_2d(x)",
|
||||
"upscale(x)",
|
||||
"argsort(x)",
|
||||
|
||||
"flash_attn(x)",
|
||||
"flash_ff(x)",
|
||||
|
@ -1748,10 +1734,28 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||
"cross_entropy_loss_back(x,y)",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
|
||||
static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
|
||||
static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
|
||||
"ABS",
|
||||
"SGN",
|
||||
"NEG",
|
||||
"STEP",
|
||||
"TANH",
|
||||
"ELU",
|
||||
"RELU",
|
||||
"GELU",
|
||||
"GELU_QUICK",
|
||||
"SILU",
|
||||
"LEAKY",
|
||||
};
|
||||
|
||||
static_assert(GGML_UNARY_OP_COUNT == 11, "GGML_UNARY_OP_COUNT != 11");
|
||||
|
||||
|
||||
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
|
||||
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
|
||||
|
||||
|
@ -1771,6 +1775,7 @@ static void ggml_setup_op_has_task_pass(void) {
|
|||
|
||||
p[GGML_OP_ACC ] = true;
|
||||
p[GGML_OP_MUL_MAT ] = true;
|
||||
p[GGML_OP_MUL_MAT_ID ] = true;
|
||||
p[GGML_OP_OUT_PROD ] = true;
|
||||
p[GGML_OP_SET ] = true;
|
||||
p[GGML_OP_GET_ROWS_BACK ] = true;
|
||||
|
@ -2023,6 +2028,20 @@ const char * ggml_op_symbol(enum ggml_op op) {
|
|||
return GGML_OP_SYMBOL[op];
|
||||
}
|
||||
|
||||
const char * ggml_unary_op_name(enum ggml_unary_op op) {
|
||||
return GGML_UNARY_OP_NAME[op];
|
||||
}
|
||||
|
||||
const char * ggml_op_desc(const struct ggml_tensor * t) {
|
||||
if (t->op == GGML_OP_UNARY) {
|
||||
enum ggml_unary_op uop = ggml_get_unary_op(t);
|
||||
return ggml_unary_op_name(uop);
|
||||
}
|
||||
else {
|
||||
return ggml_op_name(t->op);
|
||||
}
|
||||
}
|
||||
|
||||
size_t ggml_element_size(const struct ggml_tensor * tensor) {
|
||||
return ggml_type_size(tensor->type);
|
||||
}
|
||||
|
@ -3154,9 +3173,7 @@ static struct ggml_tensor * ggml_add_impl(
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
bool inplace) {
|
||||
// TODO: support less-strict constraint
|
||||
// GGML_ASSERT(ggml_can_repeat(b, a));
|
||||
GGML_ASSERT(ggml_can_repeat_rows(b, a));
|
||||
GGML_ASSERT(ggml_can_repeat(b, a));
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
|
@ -3371,9 +3388,7 @@ static struct ggml_tensor * ggml_mul_impl(
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
bool inplace) {
|
||||
// TODO: support less-strict constraint
|
||||
// GGML_ASSERT(ggml_can_repeat(b, a));
|
||||
GGML_ASSERT(ggml_can_repeat_rows(b, a));
|
||||
GGML_ASSERT(ggml_can_repeat(b, a));
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
|
@ -3418,7 +3433,7 @@ static struct ggml_tensor * ggml_div_impl(
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
bool inplace) {
|
||||
GGML_ASSERT(ggml_are_same_shape(a, b));
|
||||
GGML_ASSERT(ggml_can_repeat(b, a));
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
|
@ -4056,6 +4071,49 @@ struct ggml_tensor * ggml_mul_mat(
|
|||
return result;
|
||||
}
|
||||
|
||||
// ggml_mul_mat_id
|
||||
|
||||
struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * as[],
|
||||
struct ggml_tensor * ids,
|
||||
int id,
|
||||
struct ggml_tensor * b) {
|
||||
|
||||
int64_t n_as = ids->ne[0];
|
||||
|
||||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_vector(ids));
|
||||
GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
|
||||
GGML_ASSERT(id >= 0 && id < n_as);
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
if (as[0]->grad || b->grad) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(as[0]->n_dims, b->n_dims), ne);
|
||||
|
||||
ggml_set_op_params_i32(result, 0, id);
|
||||
|
||||
result->op = GGML_OP_MUL_MAT_ID;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = ids;
|
||||
result->src[1] = b;
|
||||
|
||||
for (int64_t i = 0; i < n_as; i++) {
|
||||
struct ggml_tensor * a = as[i];
|
||||
GGML_ASSERT(ggml_are_same_shape(as[0], a));
|
||||
GGML_ASSERT(ggml_can_mul_mat(a, b));
|
||||
GGML_ASSERT(!ggml_is_transposed(a));
|
||||
result->src[i + 2] = a;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_out_prod
|
||||
|
||||
struct ggml_tensor * ggml_out_prod(
|
||||
|
@ -4209,7 +4267,7 @@ struct ggml_tensor * ggml_set_2d_inplace(
|
|||
struct ggml_tensor * b,
|
||||
size_t nb1,
|
||||
size_t offset) {
|
||||
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
|
||||
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
|
||||
}
|
||||
|
||||
// ggml_cpy
|
||||
|
@ -5468,6 +5526,43 @@ struct ggml_tensor * ggml_upscale(
|
|||
return ggml_upscale_impl(ctx, a, scale_factor);
|
||||
}
|
||||
|
||||
// ggml_argsort
|
||||
|
||||
struct ggml_tensor * ggml_argsort(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_sort_order order) {
|
||||
bool is_node = false;
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, a->ne);
|
||||
|
||||
ggml_set_op_params_i32(result, 0, (int32_t) order);
|
||||
|
||||
result->op = GGML_OP_ARGSORT;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_top_k
|
||||
|
||||
struct ggml_tensor * ggml_top_k(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int k) {
|
||||
GGML_ASSERT(a->ne[0] >= k);
|
||||
|
||||
struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
|
||||
|
||||
result = ggml_view_4d(ctx, result,
|
||||
k, result->ne[1], result->ne[2], result->ne[3],
|
||||
result->nb[1], result->nb[2], result->nb[3],
|
||||
0);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_flash_attn
|
||||
|
||||
struct ggml_tensor * ggml_flash_attn(
|
||||
|
@ -6827,7 +6922,7 @@ static void ggml_compute_forward_add_f32(
|
|||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
|
@ -6860,16 +6955,19 @@ static void ggml_compute_forward_add_f32(
|
|||
const int64_t i13 = i03 % ne13;
|
||||
const int64_t i12 = i02 % ne12;
|
||||
const int64_t i11 = i01 % ne11;
|
||||
const int64_t nr0 = ne00 / ne10;
|
||||
|
||||
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||||
|
||||
for (int64_t r = 0; r < nr0; ++r) {
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
|
||||
vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
|
||||
#else
|
||||
ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
|
||||
ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// src1 is not contiguous
|
||||
|
@ -6886,8 +6984,9 @@ static void ggml_compute_forward_add_f32(
|
|||
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
|
||||
for (int i0 = 0; i0 < ne0; i0++) {
|
||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
|
||||
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||
const int64_t i10 = i0 % ne10;
|
||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
|
||||
|
||||
dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
|
||||
}
|
||||
|
@ -7607,7 +7706,7 @@ static void ggml_compute_forward_mul_f32(
|
|||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
|
@ -7630,7 +7729,6 @@ static void ggml_compute_forward_mul_f32(
|
|||
|
||||
GGML_ASSERT( nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
GGML_ASSERT(ne00 == ne10);
|
||||
|
||||
if (nb10 == sizeof(float)) {
|
||||
for (int64_t ir = ith; ir < nr; ir += nth) {
|
||||
|
@ -7642,20 +7740,21 @@ static void ggml_compute_forward_mul_f32(
|
|||
const int64_t i13 = i03 % ne13;
|
||||
const int64_t i12 = i02 % ne12;
|
||||
const int64_t i11 = i01 % ne11;
|
||||
const int64_t nr0 = ne00 / ne10;
|
||||
|
||||
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||||
|
||||
for (int64_t r = 0 ; r < nr0; ++r) {
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
UNUSED(ggml_vec_mul_f32);
|
||||
UNUSED(ggml_vec_mul_f32);
|
||||
|
||||
vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
|
||||
vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
|
||||
#else
|
||||
ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
|
||||
ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||||
#endif
|
||||
// }
|
||||
// }
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// src1 is not contiguous
|
||||
|
@ -7673,8 +7772,9 @@ static void ggml_compute_forward_mul_f32(
|
|||
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
|
||||
for (int64_t i0 = 0; i0 < ne00; i0++) {
|
||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
|
||||
for (int64_t i0 = 0; i0 < ne00; ++i0) {
|
||||
const int64_t i10 = i0 % ne10;
|
||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
|
||||
|
||||
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
|
||||
}
|
||||
|
@ -7708,14 +7808,16 @@ static void ggml_compute_forward_div_f32(
|
|||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
assert(params->ith == 0);
|
||||
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int nr = ggml_nrows(src0);
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
|
@ -7723,41 +7825,50 @@ static void ggml_compute_forward_div_f32(
|
|||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
|
||||
if (nb10 == sizeof(float)) {
|
||||
for (int ir = 0; ir < nr; ++ir) {
|
||||
// src0, src1 and dst are same shape => same indices
|
||||
const int i3 = ir/(ne2*ne1);
|
||||
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||||
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||||
for (int64_t ir = ith; ir < nr; ir += nth) {
|
||||
// src0 and dst are same shape => same indices
|
||||
const int64_t i03 = ir/(ne02*ne01);
|
||||
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||
|
||||
const int64_t i13 = i03 % ne13;
|
||||
const int64_t i12 = i02 % ne12;
|
||||
const int64_t i11 = i01 % ne11;
|
||||
const int64_t nr0 = ne00 / ne10;
|
||||
|
||||
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||||
|
||||
for (int64_t r = 0; r < nr0; ++r) {
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
UNUSED(ggml_vec_div_f32);
|
||||
UNUSED(ggml_vec_div_f32);
|
||||
|
||||
vDSP_vdiv(
|
||||
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
|
||||
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
|
||||
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
|
||||
ne0);
|
||||
vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
|
||||
#else
|
||||
ggml_vec_div_f32(ne0,
|
||||
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
|
||||
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
|
||||
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
||||
ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||||
#endif
|
||||
// }
|
||||
// }
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// src1 is not contiguous
|
||||
for (int ir = 0; ir < nr; ++ir) {
|
||||
// src0, src1 and dst are same shape => same indices
|
||||
const int i3 = ir/(ne2*ne1);
|
||||
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||||
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||||
for (int64_t ir = ith; ir < nr; ir += nth) {
|
||||
// src0 and dst are same shape => same indices
|
||||
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
||||
const int64_t i03 = ir/(ne02*ne01);
|
||||
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||
|
||||
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
||||
float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||||
for (int i0 = 0; i0 < ne0; i0++) {
|
||||
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
|
||||
const int64_t i13 = i03 % ne13;
|
||||
const int64_t i12 = i02 % ne12;
|
||||
const int64_t i11 = i01 % ne11;
|
||||
|
||||
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
|
||||
for (int64_t i0 = 0; i0 < ne00; ++i0) {
|
||||
const int64_t i10 = i0 % ne10;
|
||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
|
||||
|
||||
dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
|
||||
}
|
||||
|
@ -8203,7 +8314,7 @@ static void ggml_compute_forward_repeat_f16(
|
|||
return;
|
||||
}
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
// guaranteed to be an integer due to the check in ggml_can_repeat
|
||||
const int nr0 = (int)(ne0/ne00);
|
||||
|
@ -8348,6 +8459,7 @@ static void ggml_compute_forward_concat_f32(
|
|||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
|
@ -8357,7 +8469,7 @@ static void ggml_compute_forward_concat_f32(
|
|||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
for (int i3 = 0; i3 < ne3; i3++) {
|
||||
for (int i2 = ith; i2 < ne2; i2++) {
|
||||
for (int i2 = ith; i2 < ne2; i2 += nth) {
|
||||
if (i2 < ne02) { // src0
|
||||
for (int i1 = 0; i1 < ne1; i1++) {
|
||||
for (int i0 = 0; i0 < ne0; i0++) {
|
||||
|
@ -9517,6 +9629,8 @@ static void ggml_compute_forward_mul_mat(
|
|||
char * wdata = params->wdata;
|
||||
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
||||
|
||||
assert(params->wsize >= ne11*ne12*ne13*row_size);
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
|
@ -9618,6 +9732,26 @@ static void ggml_compute_forward_mul_mat(
|
|||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_mul_mat_id
|
||||
|
||||
static void ggml_compute_forward_mul_mat_id(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * ids = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
const int id = ggml_get_op_params_i32(dst, 0);
|
||||
|
||||
const int a_id = ((int32_t *)ids->data)[id];
|
||||
|
||||
GGML_ASSERT(a_id >= 0 && a_id < ids->ne[0]);
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[a_id + 2];
|
||||
|
||||
ggml_compute_forward_mul_mat(params, src0, src1, dst);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_out_prod
|
||||
|
||||
static void ggml_compute_forward_out_prod_f32(
|
||||
|
@ -12021,6 +12155,67 @@ static void ggml_compute_forward_upscale(
|
|||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_argsort
|
||||
|
||||
static void ggml_compute_forward_argsort_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
||||
enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
|
||||
|
||||
for (int64_t i = ith; i < nr; i += nth) {
|
||||
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
|
||||
const float * src_data = (float *)((char *) src0->data + i*nb01);
|
||||
|
||||
for (int64_t j = 0; j < ne0; j++) {
|
||||
dst_data[j] = j;
|
||||
}
|
||||
|
||||
// C doesn't have a functional sort, so we do a bubble sort instead
|
||||
for (int64_t j = 0; j < ne0; j++) {
|
||||
for (int64_t k = j + 1; k < ne0; k++) {
|
||||
if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
|
||||
(order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
|
||||
int32_t tmp = dst_data[j];
|
||||
dst_data[j] = dst_data[k];
|
||||
dst_data[k] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_argsort(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_argsort_f32(params, src0, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_flash_attn
|
||||
|
||||
static void ggml_compute_forward_flash_attn_f32(
|
||||
|
@ -13844,6 +14039,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||
{
|
||||
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
ggml_compute_forward_mul_mat_id(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
|
||||
|
@ -13948,6 +14147,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||
{
|
||||
ggml_compute_forward_upscale(params, tensor->src[0], tensor);
|
||||
} break;
|
||||
case GGML_OP_ARGSORT:
|
||||
{
|
||||
ggml_compute_forward_argsort(params, tensor->src[0], tensor);
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN:
|
||||
{
|
||||
const int32_t t = ggml_get_op_params_i32(tensor, 0);
|
||||
|
@ -14598,6 +14801,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
zero_table);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
GGML_ASSERT(false); // TODO: not implemented
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
GGML_ASSERT(false); // TODO: not implemented
|
||||
|
@ -14936,6 +15143,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
{
|
||||
GGML_ASSERT(false); // TODO: not implemented
|
||||
} break;
|
||||
case GGML_OP_ARGSORT:
|
||||
{
|
||||
GGML_ASSERT(false); // TODO: not implemented
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN:
|
||||
{
|
||||
struct ggml_tensor * flash_grad = NULL;
|
||||
|
@ -15296,12 +15507,8 @@ struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
|
|||
return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
|
||||
}
|
||||
|
||||
struct ggml_cgraph * ggml_graph_view(struct ggml_context * ctx, struct ggml_cgraph * cgraph0, int i0, int i1) {
|
||||
const size_t obj_size = sizeof(struct ggml_cgraph);
|
||||
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
|
||||
struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
|
||||
|
||||
*cgraph = (struct ggml_cgraph) {
|
||||
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
|
||||
struct ggml_cgraph cgraph = {
|
||||
/*.size =*/ 0,
|
||||
/*.n_nodes =*/ i1 - i0,
|
||||
/*.n_leafs =*/ 0,
|
||||
|
@ -15536,7 +15743,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_LOG:
|
||||
|
@ -15569,10 +15775,13 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||
{
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_SILU_BACK:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_RMS_NORM_BACK:
|
||||
|
@ -15610,6 +15819,11 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||
}
|
||||
#endif
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
// FIXME: blas
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
@ -15669,6 +15883,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||
{
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_ARGSORT:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
|
@ -15731,6 +15949,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||
{
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_COUNT:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
fprintf(stderr, "%s: op not implemented: ", __func__);
|
||||
|
@ -15927,6 +16149,23 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
const struct ggml_tensor * a = node->src[2];
|
||||
const struct ggml_tensor * b = node->src[1];
|
||||
const enum ggml_type vec_dot_type = type_traits[a->type].vec_dot_type;
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(a, b, node)) {
|
||||
if (a->type != GGML_TYPE_F32) {
|
||||
// here we need memory just for single 2D matrix from src0
|
||||
cur = ggml_type_size(GGML_TYPE_F32)*(a->ne[0]*a->ne[1]);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
if (b->type != vec_dot_type) {
|
||||
cur = ggml_type_size(vec_dot_type)*ggml_nelements(b)/ggml_blck_size(vec_dot_type);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
if (ggml_is_quantized(node->src[0]->type)) {
|
||||
|
@ -15962,9 +16201,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
GGML_ASSERT(false);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_IM2COL:
|
||||
{
|
||||
} break;
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
{
|
||||
const int64_t ne00 = node->src[0]->ne[0]; // W
|
||||
|
@ -17803,8 +18039,8 @@ size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t *
|
|||
memcpy(&qh, &y[i].qh, sizeof(qh));
|
||||
|
||||
for (int j = 0; j < QK5_0; j += 2) {
|
||||
const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
|
||||
const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
|
||||
|
||||
// cast to 16 bins
|
||||
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
|
||||
|
@ -17833,8 +18069,8 @@ size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t *
|
|||
memcpy(&qh, &y[i].qh, sizeof(qh));
|
||||
|
||||
for (int j = 0; j < QK5_1; j += 2) {
|
||||
const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
|
||||
const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
|
||||
|
||||
// cast to 16 bins
|
||||
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
|
||||
|
@ -18024,6 +18260,7 @@ struct gguf_kv {
|
|||
|
||||
struct gguf_header {
|
||||
char magic[4];
|
||||
|
||||
uint32_t version;
|
||||
uint64_t n_tensors; // GGUFv2
|
||||
uint64_t n_kv; // GGUFv2
|
||||
|
@ -18113,7 +18350,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||
|
||||
for (uint32_t i = 0; i < sizeof(magic); i++) {
|
||||
if (magic[i] != GGUF_MAGIC[i]) {
|
||||
fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
|
||||
fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
|
@ -18128,7 +18365,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||
{
|
||||
strncpy(ctx->header.magic, magic, 4);
|
||||
|
||||
|
||||
ctx->kv = NULL;
|
||||
ctx->infos = NULL;
|
||||
ctx->data = NULL;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue