server : code style

This commit is contained in:
Georgi Gerganov 2024-03-05 15:36:14 +02:00
parent ad1d746caa
commit fef64c587d
No known key found for this signature in database
GPG key ID: BF970631944C16B7
3 changed files with 737 additions and 940 deletions

View file

@ -12,9 +12,8 @@ using json = nlohmann::json;
inline static json oaicompat_completion_params_parse( inline static json oaicompat_completion_params_parse(
const struct llama_model * model, const struct llama_model * model,
const json &body, /* openai api json semantics */ const json & body, /* openai api json semantics */
const std::string &chat_template) const std::string & chat_template) {
{
json llama_params; json llama_params;
llama_params["__oaicompat"] = true; llama_params["__oaicompat"] = true;
@ -27,26 +26,26 @@ inline static json oaicompat_completion_params_parse(
// //
// https://platform.openai.com/docs/api-reference/chat/create // https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams; llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("unknown")); llama_params["model"] = json_value(body, "model", std::string("unknown"));
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]); llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false); llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.0); llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k); llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0); llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1); llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object()); llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0); llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0); llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED); llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false); llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat); llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau); llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta); llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl); llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p); llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n); llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false); llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z); llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (body.count("grammar") != 0) { if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object()); llama_params["grammar"] = json_value(body, "grammar", json::object());
@ -65,8 +64,7 @@ inline static json oaicompat_completion_params_parse(
return llama_params; return llama_params;
} }
inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false) inline static json format_final_response_oaicompat(const json & request, const task_result & response, bool streaming = false) {
{
json result = response.result_json; json result = response.result_json;
bool stopped_word = result.count("stopped_word") != 0; bool stopped_word = result.count("stopped_word") != 0;
@ -91,17 +89,19 @@ inline static json format_final_response_oaicompat(const json &request, const ta
std::time_t t = std::time(0); std::time_t t = std::time(0);
json res = json res = json {
json{{"choices", choices}, {"choices", choices},
{"created", t}, {"created", t},
{"model", {"model",
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", streaming ? "chat.completion.chunk" : "chat.completion"}, {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
{"usage", {"usage", json {
json{{"completion_tokens", num_tokens_predicted}, {"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens}, {"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}}, {"total_tokens", num_tokens_predicted + num_prompt_tokens}
{"id", gen_chatcmplid()}}; }},
{"id", gen_chatcmplid()}
};
if (server_verbose) { if (server_verbose) {
res["__verbose"] = result; res["__verbose"] = result;
@ -125,10 +125,10 @@ inline static std::vector<json> format_partial_response_oaicompat(const task_res
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0; bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL)); std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false); bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false); bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false); bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string("")); std::string content = json_value(result, "content", std::string(""));
std::string finish_reason; std::string finish_reason;
if (stopped_word || stopped_eos) { if (stopped_word || stopped_eos) {
@ -196,26 +196,28 @@ inline static std::vector<json> format_partial_response_oaicompat(const task_res
} }
} }
json ret = json{{"choices", choices}, json ret = json {
{"created", t}, {"choices", choices},
{"id", gen_chatcmplid()}, {"created", t},
{"model", modelname}, {"id", gen_chatcmplid()},
{"object", "chat.completion.chunk"}}; {"model", modelname},
{"object", "chat.completion.chunk"}
};
return std::vector<json>({ret}); return std::vector<json>({ret});
} }
inline static json format_embeddings_response_oaicompat(const json &request, const json &embeddings) inline static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
{ json res = json {
json res = {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
json{ {"object", "list"},
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"usage", json {
{"object", "list"}, {"prompt_tokens", 0},
{"usage", {"total_tokens", 0}
json{{"prompt_tokens", 0}, }},
{"total_tokens", 0}}}, {"data", embeddings}
{"data", embeddings} };
};
return res; return res;
} }

File diff suppressed because it is too large Load diff

View file

@ -58,8 +58,8 @@ struct task_server {
task_type type; task_type type;
json data; json data;
bool infill_mode = false; bool infill = false;
bool embedding_mode = false; bool embedding = false;
}; };
struct task_result { struct task_result {
@ -187,7 +187,8 @@ inline std::string format_chat(const struct llama_model * model, const std::stri
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size()); res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
} }
std::string formatted_chat(buf.data(), res); const std::string formatted_chat(buf.data(), res);
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}}); LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
return formatted_chat; return formatted_chat;
@ -201,17 +202,18 @@ struct llama_server_queue {
int id = 0; int id = 0;
bool running; bool running;
std::mutex mutex_tasks;
// queues // queues
std::vector<task_server> queue_tasks; std::vector<task_server> queue_tasks;
std::vector<task_server> queue_tasks_deferred; std::vector<task_server> queue_tasks_deferred;
std::vector<task_multi> queue_multitasks; std::vector<task_multi> queue_multitasks;
std::mutex mutex_tasks;
std::condition_variable condition_tasks; std::condition_variable condition_tasks;
// callback functions // callback functions
std::function<void(task_server&)> callback_new_task; std::function<void(task_server &)> callback_new_task;
std::function<void(task_multi&)> callback_finish_multitask; std::function<void(task_multi &)> callback_finish_multitask;
std::function<void(void)> callback_run_slots; std::function<void(void)> callback_run_slots;
// Add a new task to the end of the queue // Add a new task to the end of the queue
int post(task_server task) { int post(task_server task) {
@ -265,10 +267,9 @@ struct llama_server_queue {
} }
// end the start_loop routine // end the start_loop routine
void terminate() { { void terminate() {
std::unique_lock<std::mutex> lock(mutex_tasks); std::unique_lock<std::mutex> lock(mutex_tasks);
running = false; running = false;
}
condition_tasks.notify_all(); condition_tasks.notify_all();
} }
@ -350,14 +351,11 @@ struct llama_server_queue {
} }
// updatethe remaining subtasks, while appending results to multitask // updatethe remaining subtasks, while appending results to multitask
void update_multitask(int id_multi, int subtask_id, task_result& result) void update_multitask(int id_multi, int id_sub, task_result& result) {
{
std::lock_guard<std::mutex> lock(mutex_tasks); std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks) for (auto & multitask : queue_multitasks) {
{ if (multitask.id == id_multi) {
if (multitask.id == id_multi) multitask.subtasks_remaining.erase(id_sub);
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result); multitask.results.push_back(result);
} }
} }
@ -468,13 +466,10 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
std::vector<uint8_t> ret; std::vector<uint8_t> ret;
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
{
char_array_4[i++] = encoded_string[in_]; in_++; char_array_4[i++] = encoded_string[in_]; in_++;
if (i == 4) if (i == 4) {
{ for (i = 0; i < 4; i++) {
for (i = 0; i <4; i++)
{
char_array_4[i] = base64_chars.find(char_array_4[i]); char_array_4[i] = base64_chars.find(char_array_4[i]);
} }
@ -482,23 +477,20 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++) for (i = 0; (i < 3); i++) {
{
ret.push_back(char_array_3[i]); ret.push_back(char_array_3[i]);
} }
i = 0; i = 0;
} }
} }
if (i) if (i) {
{ for (j = i; j < 4; j++) {
for (j = i; j <4; j++)
{
char_array_4[j] = 0; char_array_4[j] = 0;
} }
for (j = 0; j <4; j++) for (j = 0; j < 4; j++) {
{
char_array_4[j] = base64_chars.find(char_array_4[j]); char_array_4[j] = base64_chars.find(char_array_4[j]);
} }
@ -506,8 +498,7 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++) for (j = 0; j < i - 1; j++) {
{
ret.push_back(char_array_3[j]); ret.push_back(char_array_3[j]);
} }
} }
@ -586,6 +577,7 @@ static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
// format incomplete utf-8 multibyte character for output // format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token); std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character // if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token) // (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80) { if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
@ -601,6 +593,7 @@ static std::string tokens_to_output_formatted_string(const llama_context * ctx,
// convert a vector of completion_token_output to json // convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> & probs) { static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> & probs) {
json out = json::array(); json out = json::array();
for (const auto & prob : probs) { for (const auto & prob : probs) {
json probs_for_token = json::array(); json probs_for_token = json::array();