Merge branch 'ggerganov:master' into maybe-no-middle-token
This commit is contained in:
commit
ff0fc6892a
133 changed files with 8016 additions and 9681 deletions
|
@ -2,6 +2,14 @@ ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
|
|||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||
|
||||
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
|
||||
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
|
||||
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
|
||||
rm /etc/apt/sources.list.d/intel-graphics.list && \
|
||||
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
|
||||
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
|
||||
chmod 644 /usr/share/keyrings/intel-graphics.gpg
|
||||
|
||||
ARG LLAMA_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
apt-get install -y git
|
||||
|
|
|
@ -2,6 +2,14 @@ ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
|
|||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||
|
||||
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
|
||||
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
|
||||
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
|
||||
rm /etc/apt/sources.list.d/intel-graphics.list && \
|
||||
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
|
||||
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
|
||||
chmod 644 /usr/share/keyrings/intel-graphics.gpg
|
||||
|
||||
ARG LLAMA_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
apt-get install -y git libcurl4-openssl-dev
|
||||
|
@ -19,6 +27,14 @@ RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
|
|||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
||||
|
||||
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
|
||||
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
|
||||
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
|
||||
rm /etc/apt/sources.list.d/intel-graphics.list && \
|
||||
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
|
||||
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
|
||||
chmod 644 /usr/share/keyrings/intel-graphics.gpg
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ arg1="$1"
|
|||
shift
|
||||
|
||||
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
|
||||
python3 ./convert.py "$@"
|
||||
python3 ./convert-hf-to-gguf.py "$@"
|
||||
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
|
||||
./quantize "$@"
|
||||
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
|
||||
|
|
50
.github/ISSUE_TEMPLATE/01-bug-low.yml
vendored
Normal file
50
.github/ISSUE_TEMPLATE/01-bug-low.yml
vendored
Normal file
|
@ -0,0 +1,50 @@
|
|||
name: Low Severity Bugs
|
||||
description: Used to report low severity bugs in llama.cpp (e.g. cosmetic issues, non critical UI glitches)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "low severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./main --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
50
.github/ISSUE_TEMPLATE/02-bug-medium.yml
vendored
Normal file
50
.github/ISSUE_TEMPLATE/02-bug-medium.yml
vendored
Normal file
|
@ -0,0 +1,50 @@
|
|||
name: Medium Severity Bug
|
||||
description: Used to report medium severity bugs in llama.cpp (e.g. Malfunctioning Features but generally still useable)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "medium severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./main --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
50
.github/ISSUE_TEMPLATE/03-bug-high.yml
vendored
Normal file
50
.github/ISSUE_TEMPLATE/03-bug-high.yml
vendored
Normal file
|
@ -0,0 +1,50 @@
|
|||
name: High Severity Bug
|
||||
description: Used to report high severity bugs in llama.cpp (e.g. Malfunctioning features hindering important common workflow)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "high severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./main --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
50
.github/ISSUE_TEMPLATE/04-bug-critical.yml
vendored
Normal file
50
.github/ISSUE_TEMPLATE/04-bug-critical.yml
vendored
Normal file
|
@ -0,0 +1,50 @@
|
|||
name: Critical Severity Bug
|
||||
description: Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "critical severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./main --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
51
.github/ISSUE_TEMPLATE/05-enhancement.yml
vendored
Normal file
51
.github/ISSUE_TEMPLATE/05-enhancement.yml
vendored
Normal file
|
@ -0,0 +1,51 @@
|
|||
name: Enhancement
|
||||
description: Used to request enhancements for llama.cpp
|
||||
title: "Feature Request: "
|
||||
labels: ["enhancement"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggerganov/llama.cpp/discussions/categories/ideas)
|
||||
|
||||
- type: checkboxes
|
||||
id: prerequisites
|
||||
attributes:
|
||||
label: Prerequisites
|
||||
description: Please confirm the following before submitting your enhancement request.
|
||||
options:
|
||||
- label: I am running the latest code. Mention the version if possible as well.
|
||||
required: true
|
||||
- label: I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
|
||||
required: true
|
||||
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
|
||||
required: true
|
||||
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new and useful enhancement to share.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: feature-description
|
||||
attributes:
|
||||
label: Feature Description
|
||||
description: Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an enhancement.
|
||||
placeholder: Detailed description of the enhancement
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: motivation
|
||||
attributes:
|
||||
label: Motivation
|
||||
description: Please provide a detailed written description of reasons why this feature is necessary and how it is useful to `llama.cpp` users.
|
||||
placeholder: Explanation of why this feature is needed and its benefits
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: possible-implementation
|
||||
attributes:
|
||||
label: Possible Implementation
|
||||
description: If you have an idea as to how it can be implemented, please write a detailed description. Feel free to give links to external sources or share visuals that might be helpful to understand the details better.
|
||||
placeholder: Detailed description of potential implementation
|
||||
validations:
|
||||
required: false
|
52
.github/ISSUE_TEMPLATE/06-research.yml
vendored
Normal file
52
.github/ISSUE_TEMPLATE/06-research.yml
vendored
Normal file
|
@ -0,0 +1,52 @@
|
|||
name: Research
|
||||
description: Track new technical research area
|
||||
title: "Research: "
|
||||
labels: ["research 🔬"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
|
||||
|
||||
- type: checkboxes
|
||||
id: research-stage
|
||||
attributes:
|
||||
label: Research Stage
|
||||
description: Track general state of this research ticket
|
||||
options:
|
||||
- label: Background Research (Let's try to avoid reinventing the wheel)
|
||||
- label: Hypothesis Formed (How do you think this will work and it's effect?)
|
||||
- label: Strategy / Implementation Forming
|
||||
- label: Analysis of results
|
||||
- label: Debrief / Documentation (So people in the future can learn from us)
|
||||
|
||||
- type: textarea
|
||||
id: background
|
||||
attributes:
|
||||
label: Previous existing literature and research
|
||||
description: Whats the current state of the art and whats the motivation for this research?
|
||||
|
||||
- type: textarea
|
||||
id: hypothesis
|
||||
attributes:
|
||||
label: Hypothesis
|
||||
description: How do you think this will work and it's effect?
|
||||
|
||||
- type: textarea
|
||||
id: implementation
|
||||
attributes:
|
||||
label: Implementation
|
||||
description: Got an approach? e.g. a PR ready to go?
|
||||
|
||||
- type: textarea
|
||||
id: analysis
|
||||
attributes:
|
||||
label: Analysis
|
||||
description: How does the proposed implementation behave?
|
||||
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
28
.github/ISSUE_TEMPLATE/07-refactor.yml
vendored
Normal file
28
.github/ISSUE_TEMPLATE/07-refactor.yml
vendored
Normal file
|
@ -0,0 +1,28 @@
|
|||
name: Refactor (Maintainers)
|
||||
description: Used to track refactoring opportunities
|
||||
title: "Refactor: "
|
||||
labels: ["refactor"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Don't forget to [check for existing refactor issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
|
||||
Also you may want to check [Pull request refactor label as well](https://github.com/ggerganov/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
|
||||
|
||||
- type: textarea
|
||||
id: background-description
|
||||
attributes:
|
||||
label: Background Description
|
||||
description: Please provide a detailed written description of the pain points you are trying to solve.
|
||||
placeholder: Detailed description behind your motivation to request refactor
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: possible-approaches
|
||||
attributes:
|
||||
label: Possible Refactor Approaches
|
||||
description: If you have some idea of possible approaches to solve this problem. You may want to make it a todo list.
|
||||
placeholder: Your idea of possible refactoring opportunity/approaches
|
||||
validations:
|
||||
required: false
|
11
.github/ISSUE_TEMPLATE/bug.md
vendored
11
.github/ISSUE_TEMPLATE/bug.md
vendored
|
@ -1,11 +0,0 @@
|
|||
---
|
||||
name: Bug template
|
||||
about: Used to report bugs in llama.cpp
|
||||
labels: ["bug-unconfirmed"]
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug.
|
||||
|
||||
If the bug concerns the server, please try to reproduce it first using the [server test scenario framework](https://github.com/ggerganov/llama.cpp/tree/master/examples/server/tests).
|
13
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
13
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
|
@ -0,0 +1,13 @@
|
|||
blank_issues_enabled: true
|
||||
contact_links:
|
||||
- name: Got an idea?
|
||||
url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas
|
||||
about: Pop it there. It may then become an enhancement ticket.
|
||||
- name: Got a question?
|
||||
url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a
|
||||
about: Ask a question there!
|
||||
- name: Want to contribute?
|
||||
url: https://github.com/ggerganov/llama.cpp/wiki/contribute
|
||||
about: Head to the contribution guide page of the wiki for areas you can help with
|
||||
|
||||
|
28
.github/ISSUE_TEMPLATE/enhancement.md
vendored
28
.github/ISSUE_TEMPLATE/enhancement.md
vendored
|
@ -1,28 +0,0 @@
|
|||
---
|
||||
name: Enhancement template
|
||||
about: Used to request enhancements for llama.cpp
|
||||
labels: ["enhancement"]
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
# Prerequisites
|
||||
|
||||
Please answer the following questions for yourself before submitting an issue.
|
||||
|
||||
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
|
||||
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
|
||||
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
|
||||
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
|
||||
|
||||
# Feature Description
|
||||
|
||||
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an enhancement.
|
||||
|
||||
# Motivation
|
||||
|
||||
Please provide a detailed written description of reasons why this feature is necessary and how it is useful to `llama.cpp` users.
|
||||
|
||||
# Possible Implementation
|
||||
|
||||
If you have an idea as to how it can be implemented, please write a detailed description. Feel free to give links to external sources or share visuals that might be helpful to understand the details better.
|
19
.github/labeler.yml
vendored
19
.github/labeler.yml
vendored
|
@ -1,5 +1,16 @@
|
|||
# https://github.com/actions/labeler
|
||||
|
||||
Kompute:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml-kompute.h
|
||||
- ggml-kompute.cpp
|
||||
- README-kompute.md
|
||||
Apple Metal:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml-metal.h
|
||||
- ggml-metal.cpp
|
||||
- README-metal.md
|
||||
SYCL:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
@ -9,6 +20,7 @@ SYCL:
|
|||
Nvidia GPU:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml-cuda.h
|
||||
- ggml-cuda/**
|
||||
Vulkan:
|
||||
- changed-files:
|
||||
|
@ -62,6 +74,8 @@ server:
|
|||
ggml:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml.c
|
||||
- ggml.h
|
||||
- ggml-*.c
|
||||
- ggml-*.h
|
||||
- ggml-cuda/**
|
||||
|
@ -71,3 +85,6 @@ nix:
|
|||
- "**/*.nix"
|
||||
- .github/workflows/nix-*.yml
|
||||
- .devops/nix/nixpkgs-instances.nix
|
||||
embedding:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/embedding/
|
||||
|
|
29
.github/workflows/zig-build.yml
vendored
29
.github/workflows/zig-build.yml
vendored
|
@ -1,29 +0,0 @@
|
|||
name: Zig CI
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
runs-on: [ubuntu-latest, macos-latest, windows-latest]
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
fetch-depth: 0
|
||||
- uses: goto-bus-stop/setup-zig@v2
|
||||
with:
|
||||
version: 0.11.0
|
||||
- name: Build Summary
|
||||
run: zig build --summary all -freference-trace
|
|
@ -72,6 +72,7 @@ else()
|
|||
set(INS_ENB ON)
|
||||
endif()
|
||||
|
||||
option(LLAMA_SVE "llama: enable SVE" OFF)
|
||||
option(LLAMA_AVX "llama: enable AVX" ${INS_ENB})
|
||||
option(LLAMA_AVX2 "llama: enable AVX2" ${INS_ENB})
|
||||
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
|
||||
|
@ -124,7 +125,6 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
|
|||
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
|
||||
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
||||
option(LLAMA_RPC "llama: use RPC" OFF)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
option(LLAMA_SYCL "llama: use SYCL" OFF)
|
||||
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
|
||||
set(LLAMA_SYCL_TARGET "INTEL" CACHE STRING "llama: sycl target device")
|
||||
|
@ -384,10 +384,6 @@ if (LLAMA_LLAMAFILE)
|
|||
set(GGML_SOURCES_LLAMAFILE sgemm.cpp)
|
||||
endif()
|
||||
|
||||
if (LLAMA_QKK_64)
|
||||
add_compile_definitions(GGML_QKK_64)
|
||||
endif()
|
||||
|
||||
if (LLAMA_CUBLAS)
|
||||
message(WARNING "LLAMA_CUBLAS is deprecated and will be removed in the future.\nUse LLAMA_CUDA instead")
|
||||
set(LLAMA_CUDA ON)
|
||||
|
@ -505,6 +501,12 @@ if (LLAMA_VULKAN)
|
|||
|
||||
add_compile_definitions(GGML_USE_VULKAN)
|
||||
|
||||
# Workaround to the "can't dereference invalidated vector iterator" bug in clang-cl debug build
|
||||
# Posssibly relevant: https://stackoverflow.com/questions/74748276/visual-studio-no-displays-the-correct-length-of-stdvector
|
||||
if (MSVC AND CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
|
||||
add_compile_definitions(_ITERATOR_DEBUG_LEVEL=0)
|
||||
endif()
|
||||
|
||||
if (LLAMA_VULKAN_CHECK_RESULTS)
|
||||
add_compile_definitions(GGML_VULKAN_CHECK_RESULTS)
|
||||
endif()
|
||||
|
@ -626,6 +628,10 @@ if (LLAMA_SYCL)
|
|||
add_compile_definitions(GGML_SYCL_F16)
|
||||
endif()
|
||||
|
||||
if (LLAMA_CUDA_FORCE_MMQ)
|
||||
add_compile_definitions(GGML_SYCL_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
add_compile_options(-I./) #include DPCT
|
||||
add_compile_options(-I/${SYCL_INCLUDE_DIR})
|
||||
|
||||
|
@ -1039,6 +1045,9 @@ if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STR
|
|||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
list(APPEND ARCH_FLAGS -mno-unaligned-access)
|
||||
endif()
|
||||
if (LLAMA_SVE)
|
||||
list(APPEND ARCH_FLAGS -march=armv8.6-a+sve)
|
||||
endif()
|
||||
endif()
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
|
@ -1305,7 +1314,7 @@ set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}
|
|||
install(TARGETS llama LIBRARY PUBLIC_HEADER)
|
||||
|
||||
install(
|
||||
FILES convert.py
|
||||
FILES convert-hf-to-gguf.py
|
||||
PERMISSIONS
|
||||
OWNER_READ
|
||||
OWNER_WRITE
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
{
|
||||
{
|
||||
"version": 4,
|
||||
"configurePresets": [
|
||||
{
|
||||
|
@ -40,6 +40,10 @@
|
|||
|
||||
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] }
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] },
|
||||
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "release" ] },
|
||||
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "release", "static" ] }
|
||||
]
|
||||
}
|
||||
|
|
7
Makefile
7
Makefile
|
@ -389,10 +389,6 @@ else
|
|||
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
endif
|
||||
|
||||
ifdef LLAMA_QKK_64
|
||||
MK_CPPFLAGS += -DGGML_QKK_64
|
||||
endif
|
||||
|
||||
ifndef LLAMA_NO_ACCELERATE
|
||||
# Mac OS - include Accelerate framework.
|
||||
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
|
||||
|
@ -445,6 +441,9 @@ endif # JETSON_EOL_MODULE_DETECT
|
|||
ifdef LLAMA_DEBUG
|
||||
MK_NVCCFLAGS += -lineinfo
|
||||
endif # LLAMA_DEBUG
|
||||
ifdef LLAMA_CUDA_DEBUG
|
||||
MK_NVCCFLAGS += --device-debug
|
||||
endif # LLAMA_CUDA_DEBUG
|
||||
ifdef LLAMA_CUDA_NVCC
|
||||
NVCC = $(CCACHE) $(LLAMA_CUDA_NVCC)
|
||||
else
|
||||
|
|
|
@ -55,8 +55,8 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
|
|||
## OS
|
||||
|
||||
| OS | Status | Verified |
|
||||
|---------|---------|------------------------------------|
|
||||
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39 |
|
||||
|---------|---------|------------------------------------------------|
|
||||
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39, Arch Linux |
|
||||
| Windows | Support | Windows 11 |
|
||||
|
||||
|
||||
|
@ -70,7 +70,7 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
|
|||
|-------------------------------|---------|---------------------------------------|
|
||||
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||
| Intel Arc Series | Support | Arc 770, 730M |
|
||||
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
|
||||
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
|
||||
|
||||
|
|
44
README.md
44
README.md
|
@ -2,7 +2,9 @@
|
|||
|
||||

|
||||
|
||||
[](https://opensource.org/licenses/MIT) [](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||
[](https://conan.io/center/llama-cpp)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||
|
||||
|
@ -107,7 +109,6 @@ Typically finetunes of the base models below are supported as well.
|
|||
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
|
||||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
|
||||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||||
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
|
||||
|
@ -128,6 +129,7 @@ Typically finetunes of the base models below are supported as well.
|
|||
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||||
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
||||
- [x] [OLMo](https://allenai.org/olmo)
|
||||
- [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia)
|
||||
|
||||
(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md))
|
||||
|
||||
|
@ -141,6 +143,7 @@ Typically finetunes of the base models below are supported as well.
|
|||
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
|
||||
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
|
||||
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
|
||||
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
|
||||
|
||||
**HTTP server**
|
||||
|
||||
|
@ -202,6 +205,10 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||
|
||||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||||
|
||||
**Tools:**
|
||||
|
||||
- [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML
|
||||
|
||||
---
|
||||
|
||||
Here is a typical run using LLaMA v2 13B on M2 Ultra:
|
||||
|
@ -310,8 +317,6 @@ In order to build llama.cpp you have four different options.
|
|||
make
|
||||
```
|
||||
|
||||
**Note**: for `Debug` builds, run `make LLAMA_DEBUG=1`
|
||||
|
||||
- On Windows:
|
||||
|
||||
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||||
|
@ -323,6 +328,11 @@ In order to build llama.cpp you have four different options.
|
|||
make
|
||||
```
|
||||
|
||||
- Notes:
|
||||
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
|
||||
- For faster repeated compilation, install [ccache](https://ccache.dev/).
|
||||
- For debug builds, run `make LLAMA_DEBUG=1`
|
||||
|
||||
- Using `CMake`:
|
||||
|
||||
```bash
|
||||
|
@ -330,16 +340,20 @@ In order to build llama.cpp you have four different options.
|
|||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
**Note**: for `Debug` builds, there are two cases:
|
||||
**Notes**:
|
||||
|
||||
- Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
|
||||
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
|
||||
- For faster repeated compilation, install [ccache](https://ccache.dev/).
|
||||
- For debug builds, there are two cases:
|
||||
|
||||
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
|
||||
|
||||
```bash
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Debug
|
||||
cmake --build build
|
||||
```
|
||||
|
||||
- Multi-config generators (`-G` param set to Visual Studio, XCode...):
|
||||
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
|
||||
|
||||
```bash
|
||||
cmake -B build -G "Xcode"
|
||||
|
@ -374,6 +388,14 @@ In order to build llama.cpp you have four different options.
|
|||
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
|
||||
the instructions for use and activate this options in this document below.
|
||||
|
||||
### Homebrew
|
||||
|
||||
On Mac and Linux, the homebrew package manager can be used via
|
||||
```
|
||||
brew install llama.cpp
|
||||
```
|
||||
The formula is automatically updated with new `llama.cpp` releases.
|
||||
|
||||
### Metal Build
|
||||
|
||||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||
|
@ -473,6 +495,7 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
||||
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
|
||||
| LLAMA_CUDA_FORCE_MMQ | Boolean | false | Force the use of dequantization + matrix multiplication kernels instead of leveraging Math libraries. | |
|
||||
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||||
|
@ -691,7 +714,8 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
|
||||
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
||||
|
||||
Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
||||
Note: `convert.py` has been moved to `examples/convert-legacy-llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derievatives.
|
||||
It does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
||||
|
||||
```bash
|
||||
# obtain the official LLaMA model weights and place them in ./models
|
||||
|
@ -708,10 +732,10 @@ ls ./models
|
|||
python3 -m pip install -r requirements.txt
|
||||
|
||||
# convert the model to ggml FP16 format
|
||||
python3 convert.py models/mymodel/
|
||||
python3 convert-hf-to-gguf.py models/mymodel/
|
||||
|
||||
# [Optional] for models using BPE tokenizers
|
||||
python convert.py models/mymodel/ --vocab-type bpe
|
||||
python convert-hf-to-gguf.py models/mymodel/ --vocab-type bpe
|
||||
|
||||
# quantize the model to 4-bits (using Q4_K_M method)
|
||||
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
|
|
172
build.zig
172
build.zig
|
@ -1,172 +0,0 @@
|
|||
// Compatible with Zig Version 0.11.0
|
||||
const std = @import("std");
|
||||
const ArrayList = std.ArrayList;
|
||||
const Compile = std.Build.Step.Compile;
|
||||
const ConfigHeader = std.Build.Step.ConfigHeader;
|
||||
const Mode = std.builtin.Mode;
|
||||
const CrossTarget = std.zig.CrossTarget;
|
||||
|
||||
const Maker = struct {
|
||||
builder: *std.build.Builder,
|
||||
target: CrossTarget,
|
||||
optimize: Mode,
|
||||
enable_lto: bool,
|
||||
|
||||
include_dirs: ArrayList([]const u8),
|
||||
cflags: ArrayList([]const u8),
|
||||
cxxflags: ArrayList([]const u8),
|
||||
objs: ArrayList(*Compile),
|
||||
|
||||
fn addInclude(m: *Maker, dir: []const u8) !void {
|
||||
try m.include_dirs.append(dir);
|
||||
}
|
||||
fn addProjectInclude(m: *Maker, path: []const []const u8) !void {
|
||||
try m.addInclude(try m.builder.build_root.join(m.builder.allocator, path));
|
||||
}
|
||||
fn addCFlag(m: *Maker, flag: []const u8) !void {
|
||||
try m.cflags.append(flag);
|
||||
}
|
||||
fn addCxxFlag(m: *Maker, flag: []const u8) !void {
|
||||
try m.cxxflags.append(flag);
|
||||
}
|
||||
fn addFlag(m: *Maker, flag: []const u8) !void {
|
||||
try m.addCFlag(flag);
|
||||
try m.addCxxFlag(flag);
|
||||
}
|
||||
|
||||
fn init(builder: *std.build.Builder) !Maker {
|
||||
const target = builder.standardTargetOptions(.{});
|
||||
const zig_version = @import("builtin").zig_version_string;
|
||||
const commit_hash = try std.ChildProcess.exec(
|
||||
.{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } },
|
||||
);
|
||||
try std.fs.cwd().writeFile("common/build-info.cpp", builder.fmt(
|
||||
\\int LLAMA_BUILD_NUMBER = {};
|
||||
\\char const *LLAMA_COMMIT = "{s}";
|
||||
\\char const *LLAMA_COMPILER = "Zig {s}";
|
||||
\\char const *LLAMA_BUILD_TARGET = "{s}";
|
||||
\\
|
||||
, .{ 0, commit_hash.stdout[0 .. commit_hash.stdout.len - 1], zig_version, try target.allocDescription(builder.allocator) }));
|
||||
var m = Maker{
|
||||
.builder = builder,
|
||||
.target = target,
|
||||
.optimize = builder.standardOptimizeOption(.{}),
|
||||
.enable_lto = false,
|
||||
.include_dirs = ArrayList([]const u8).init(builder.allocator),
|
||||
.cflags = ArrayList([]const u8).init(builder.allocator),
|
||||
.cxxflags = ArrayList([]const u8).init(builder.allocator),
|
||||
.objs = ArrayList(*Compile).init(builder.allocator),
|
||||
};
|
||||
|
||||
try m.addCFlag("-std=c11");
|
||||
try m.addCxxFlag("-std=c++11");
|
||||
try m.addProjectInclude(&.{});
|
||||
try m.addProjectInclude(&.{"common"});
|
||||
return m;
|
||||
}
|
||||
|
||||
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
|
||||
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||
if (o.target.getAbi() != .msvc)
|
||||
o.defineCMacro("_GNU_SOURCE", null);
|
||||
|
||||
if (std.mem.endsWith(u8, src, ".c")) {
|
||||
o.addCSourceFiles(&.{src}, m.cflags.items);
|
||||
o.linkLibC();
|
||||
} else {
|
||||
o.addCSourceFiles(&.{src}, m.cxxflags.items);
|
||||
if (o.target.getAbi() == .msvc) {
|
||||
o.linkLibC(); // need winsdk + crt
|
||||
} else {
|
||||
// linkLibCpp already add (libc++ + libunwind + libc)
|
||||
o.linkLibCpp();
|
||||
}
|
||||
}
|
||||
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
|
||||
o.want_lto = m.enable_lto;
|
||||
return o;
|
||||
}
|
||||
|
||||
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
|
||||
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||
e.addCSourceFiles(&.{src}, m.cxxflags.items);
|
||||
for (deps) |d| e.addObject(d);
|
||||
for (m.objs.items) |o| e.addObject(o);
|
||||
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
|
||||
|
||||
// https://github.com/ziglang/zig/issues/15448
|
||||
if (e.target.getAbi() == .msvc) {
|
||||
e.linkLibC(); // need winsdk + crt
|
||||
} else {
|
||||
// linkLibCpp already add (libc++ + libunwind + libc)
|
||||
e.linkLibCpp();
|
||||
}
|
||||
m.builder.installArtifact(e);
|
||||
e.want_lto = m.enable_lto;
|
||||
return e;
|
||||
}
|
||||
};
|
||||
|
||||
pub fn build(b: *std.build.Builder) !void {
|
||||
var make = try Maker.init(b);
|
||||
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
|
||||
|
||||
const ggml = make.obj("ggml", "ggml.c");
|
||||
const sgemm = make.obj("sgemm", "sgemm.cpp");
|
||||
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
||||
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
|
||||
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
|
||||
const unicode = make.obj("unicode", "unicode.cpp");
|
||||
const unicode_data = make.obj("unicode-data", "unicode-data.cpp");
|
||||
const llama = make.obj("llama", "llama.cpp");
|
||||
const buildinfo = make.obj("common", "common/build-info.cpp");
|
||||
const common = make.obj("common", "common/common.cpp");
|
||||
const console = make.obj("console", "common/console.cpp");
|
||||
const sampling = make.obj("sampling", "common/sampling.cpp");
|
||||
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
|
||||
const json_schema_to_grammar = make.obj("json-schema-to-grammar", "common/json-schema-to-grammar.cpp");
|
||||
const train = make.obj("train", "common/train.cpp");
|
||||
const clip = make.obj("clip", "examples/llava/clip.cpp");
|
||||
const llava = make.obj("llava", "examples/llava/llava.cpp");
|
||||
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
|
||||
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, grammar_parser, clip, llava });
|
||||
if (server.target.isWindows()) {
|
||||
server.linkSystemLibrary("ws2_32");
|
||||
}
|
||||
|
||||
const server_assets = [_][]const u8{ "index.html", "index.js", "completion.js", "json-schema-to-grammar.mjs" };
|
||||
for (server_assets) |asset| {
|
||||
const input_path = b.fmt("examples/server/public/{s}", .{asset});
|
||||
const output_path = b.fmt("examples/server/{s}.hpp", .{asset});
|
||||
|
||||
// Portable equivalent of `b.addSystemCommand(&.{ "xxd", "-n", asset, "-i", input_path, output_path }) })`:
|
||||
|
||||
const input = try std.fs.cwd().readFileAlloc(b.allocator, input_path, std.math.maxInt(usize));
|
||||
defer b.allocator.free(input);
|
||||
|
||||
var buf = std.ArrayList(u8).init(b.allocator);
|
||||
defer buf.deinit();
|
||||
|
||||
for (input) |byte| {
|
||||
try std.fmt.format(buf.writer(), "0x{X:0>2}, ", .{byte});
|
||||
}
|
||||
|
||||
var name = try std.mem.replaceOwned(u8, b.allocator, asset, "-", "_");
|
||||
defer b.allocator.free(name);
|
||||
std.mem.replaceScalar(u8, name, '.', '_');
|
||||
|
||||
try std.fs.cwd().writeFile(output_path, b.fmt(
|
||||
"unsigned char {s}[] = {{{s}}};\nunsigned int {s}_len = {d};\n",
|
||||
.{ name, buf.items, name, input.len },
|
||||
));
|
||||
|
||||
std.debug.print("Dumped hex of \"{s}\" ({s}) to {s}\n", .{ input_path, name, output_path });
|
||||
}
|
||||
}
|
423
ci/run.sh
423
ci/run.sh
|
@ -202,12 +202,15 @@ function gg_sum_test_scripts_release {
|
|||
}
|
||||
|
||||
function gg_get_model {
|
||||
local gguf_3b="$MNT/models/open-llama/3B-v2/ggml-model-f16.gguf"
|
||||
local gguf_7b="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
|
||||
if [[ -s $gguf_3b ]]; then
|
||||
echo -n "$gguf_3b"
|
||||
elif [[ -s $gguf_7b ]]; then
|
||||
echo -n "$gguf_7b"
|
||||
local gguf_0="$MNT/models/pythia/1.4B/ggml-model-f16.gguf"
|
||||
local gguf_1="$MNT/models/pythia/2.8B/ggml-model-f16.gguf"
|
||||
local gguf_2="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
|
||||
if [[ -s $gguf_0 ]]; then
|
||||
echo -n "$gguf_0"
|
||||
elif [[ -s $gguf_1 ]]; then
|
||||
echo -n "$gguf_1"
|
||||
elif [[ -s $gguf_2 ]]; then
|
||||
echo -n "$gguf_2"
|
||||
else
|
||||
echo >&2 "No model found. Can't run gg_run_ctest_with_model."
|
||||
exit 1
|
||||
|
@ -256,139 +259,6 @@ function gg_sum_ctest_with_model_release {
|
|||
gg_printf '```\n'
|
||||
}
|
||||
|
||||
# open_llama_3b_v2
|
||||
|
||||
function gg_run_open_llama_3b_v2 {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json
|
||||
|
||||
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
||||
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
|
||||
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
|
||||
|
||||
path_models="../models-mnt/open-llama/3B-v2"
|
||||
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert.py ${path_models}
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
|
||||
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
|
||||
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
|
||||
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
|
||||
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
|
||||
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
|
||||
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
|
||||
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
|
||||
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
|
||||
|
||||
wiki_test_60="${path_wiki}/wiki.test-60.raw"
|
||||
|
||||
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
||||
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
||||
./bin/quantize ${model_f16} ${model_q5_0} q5_0
|
||||
./bin/quantize ${model_f16} ${model_q5_1} q5_1
|
||||
./bin/quantize ${model_f16} ${model_q2_k} q2_k
|
||||
./bin/quantize ${model_f16} ${model_q3_k} q3_k
|
||||
./bin/quantize ${model_f16} ${model_q4_k} q4_k
|
||||
./bin/quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
|
||||
return 0
|
||||
}
|
||||
|
||||
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
|
||||
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_open_llama_3b_v2 {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'OpenLLaMA 3B-v2:\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
|
||||
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
|
||||
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
|
||||
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
|
||||
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
|
||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||
}
|
||||
|
||||
# open_llama_7b_v2
|
||||
# requires: GG_BUILD_CUDA
|
||||
|
||||
|
@ -417,7 +287,7 @@ function gg_run_open_llama_7b_v2 {
|
|||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert.py ${path_models}
|
||||
python3 ../examples/convert-legacy-llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
|
@ -526,6 +396,272 @@ function gg_sum_open_llama_7b_v2 {
|
|||
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||
}
|
||||
|
||||
# pythia_1.4b
|
||||
|
||||
function gg_run_pythia_1_4b {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/config.json
|
||||
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer.json
|
||||
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/resolve/main/pytorch_model.bin
|
||||
|
||||
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
||||
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
|
||||
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
|
||||
|
||||
path_models="../models-mnt/pythia/1.4B"
|
||||
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
|
||||
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
|
||||
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
|
||||
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
|
||||
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
|
||||
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
|
||||
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
|
||||
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
|
||||
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
|
||||
|
||||
wiki_test_60="${path_wiki}/wiki.test-60.raw"
|
||||
|
||||
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
||||
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
||||
./bin/quantize ${model_f16} ${model_q5_0} q5_0
|
||||
./bin/quantize ${model_f16} ${model_q5_1} q5_1
|
||||
./bin/quantize ${model_f16} ${model_q2_k} q2_k
|
||||
./bin/quantize ${model_f16} ${model_q3_k} q3_k
|
||||
./bin/quantize ${model_f16} ${model_q4_k} q4_k
|
||||
./bin/quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
|
||||
return 0
|
||||
}
|
||||
|
||||
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
|
||||
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
|
||||
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_pythia_1_4b {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'Pythia 1.4B:\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
|
||||
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
|
||||
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
|
||||
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
|
||||
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
|
||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||
}
|
||||
|
||||
# pythia_2_8b
|
||||
# requires: GG_BUILD_CUDA
|
||||
|
||||
function gg_run_pythia_2_8b {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/config.json
|
||||
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer.json
|
||||
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/resolve/main/pytorch_model.bin
|
||||
|
||||
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
||||
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
|
||||
|
||||
path_models="../models-mnt/pythia/2.8B"
|
||||
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
|
||||
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
|
||||
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
|
||||
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
|
||||
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
|
||||
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
|
||||
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
|
||||
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
|
||||
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
|
||||
|
||||
wiki_test="${path_wiki}/wiki.test.raw"
|
||||
|
||||
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
||||
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
||||
./bin/quantize ${model_f16} ${model_q5_0} q5_0
|
||||
./bin/quantize ${model_f16} ${model_q5_1} q5_1
|
||||
./bin/quantize ${model_f16} ${model_q2_k} q2_k
|
||||
./bin/quantize ${model_f16} ${model_q3_k} q3_k
|
||||
./bin/quantize ${model_f16} ${model_q4_k} q4_k
|
||||
./bin/quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
|
||||
return 0
|
||||
}
|
||||
|
||||
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
|
||||
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
|
||||
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_pythia_2_8b {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'Pythia 2.8B:\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
|
||||
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
|
||||
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
|
||||
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
|
||||
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
|
||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||
}
|
||||
|
||||
# bge-small
|
||||
|
||||
function gg_run_embd_bge_small {
|
||||
|
@ -552,7 +688,7 @@ function gg_run_embd_bge_small {
|
|||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert-hf-to-gguf.py ${path_models}
|
||||
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
|
@ -606,9 +742,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
|||
|
||||
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
test $ret -eq 0 && gg_run open_llama_3b_v2
|
||||
test $ret -eq 0 && gg_run pythia_1_4b
|
||||
else
|
||||
test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||
test $ret -eq 0 && gg_run pythia_2_8b
|
||||
#test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||
fi
|
||||
test $ret -eq 0 && gg_run ctest_with_model_debug
|
||||
test $ret -eq 0 && gg_run ctest_with_model_release
|
||||
|
|
1330
common/common.cpp
1330
common/common.cpp
File diff suppressed because it is too large
Load diff
|
@ -35,14 +35,18 @@
|
|||
|
||||
// build info
|
||||
extern int LLAMA_BUILD_NUMBER;
|
||||
extern char const *LLAMA_COMMIT;
|
||||
extern char const *LLAMA_COMPILER;
|
||||
extern char const *LLAMA_BUILD_TARGET;
|
||||
extern char const * LLAMA_COMMIT;
|
||||
extern char const * LLAMA_COMPILER;
|
||||
extern char const * LLAMA_BUILD_TARGET;
|
||||
|
||||
struct llama_control_vector_load_info;
|
||||
|
||||
int get_math_cpu_count();
|
||||
int32_t get_num_physical_cores();
|
||||
//
|
||||
// CPU utils
|
||||
//
|
||||
|
||||
int32_t cpu_get_num_physical_cores();
|
||||
int32_t cpu_get_num_math();
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
|
@ -51,7 +55,7 @@ int32_t get_num_physical_cores();
|
|||
struct gpt_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
||||
|
||||
int32_t n_threads = get_math_cpu_count();
|
||||
int32_t n_threads = cpu_get_num_math();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
|
@ -142,6 +146,7 @@ struct gpt_params {
|
|||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool interactive = false; // interactive mode
|
||||
bool interactive_specials = false; // whether to allow special tokens from user, during interactive mode
|
||||
bool special = false; // enable special token output
|
||||
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
|
||||
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
|
||||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||||
|
@ -179,33 +184,34 @@ struct gpt_params {
|
|||
|
||||
void gpt_params_handle_model_default(gpt_params & params);
|
||||
|
||||
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
|
||||
bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
|
||||
bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
||||
void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
|
||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
||||
|
||||
std::string get_system_info(const gpt_params & params);
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
void process_escapes(std::string& input);
|
||||
|
||||
bool validate_file_name(const std::string & filename);
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
|
||||
//
|
||||
// String utils
|
||||
//
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
|
||||
std::vector<std::string> string_split(std::string input, char separator);
|
||||
|
||||
std::string string_strip(const std::string & str);
|
||||
std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
|
||||
std::string string_get_sortable_timestamp();
|
||||
std::string string_random_prompt(std::mt19937 & rng);
|
||||
|
||||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
void string_process_escapes(std::string & input);
|
||||
|
||||
//
|
||||
// Filesystem utils
|
||||
//
|
||||
|
||||
bool fs_validate_filename(const std::string & filename);
|
||||
bool fs_create_directory_with_parents(const std::string & path);
|
||||
|
||||
std::string fs_get_cache_directory();
|
||||
|
||||
//
|
||||
// Model utils
|
||||
|
@ -276,29 +282,15 @@ std::string llama_detokenize_bpe(
|
|||
// defaults to true when model type is SPM, otherwise false.
|
||||
bool llama_should_add_bos_token(const llama_model * model);
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
||||
bool create_directory_with_parents(const std::string & path);
|
||||
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||||
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||||
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||
std::string get_sortable_timestamp();
|
||||
|
||||
void dump_non_result_info_yaml(
|
||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
// Dump the KV cache view with the number of sequences per cell.
|
||||
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
|
||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
|
||||
//
|
||||
// Embedding utils
|
||||
|
@ -332,6 +324,20 @@ llama_control_vector_data llama_control_vector_load(const std::vector<llama_cont
|
|||
//
|
||||
// Split utils
|
||||
//
|
||||
|
||||
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
||||
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
||||
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||||
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||||
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||
|
||||
void yaml_dump_non_result_info(
|
||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||
|
||||
|
|
|
@ -125,7 +125,7 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) {
|
|||
std::string result = "CFG -> Penalties ";
|
||||
if (params.mirostat == 0) {
|
||||
for (auto sampler_type : params.samplers_sequence) {
|
||||
const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
|
||||
const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
|
||||
if (!sampler_type_name.empty()) {
|
||||
result += "-> " + sampler_type_name + " ";
|
||||
}
|
||||
|
@ -137,6 +137,87 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) {
|
|||
return result;
|
||||
}
|
||||
|
||||
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
|
||||
switch (sampler_type) {
|
||||
case llama_sampler_type::TOP_K: return "top_k";
|
||||
case llama_sampler_type::TFS_Z: return "tfs_z";
|
||||
case llama_sampler_type::TYPICAL_P: return "typical_p";
|
||||
case llama_sampler_type::TOP_P: return "top_p";
|
||||
case llama_sampler_type::MIN_P: return "min_p";
|
||||
case llama_sampler_type::TEMPERATURE: return "temperature";
|
||||
default : return "";
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
|
||||
{"top_k", llama_sampler_type::TOP_K},
|
||||
{"top_p", llama_sampler_type::TOP_P},
|
||||
{"typical_p", llama_sampler_type::TYPICAL_P},
|
||||
{"min_p", llama_sampler_type::MIN_P},
|
||||
{"tfs_z", llama_sampler_type::TFS_Z},
|
||||
{"temperature", llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
// since samplers names are written multiple ways
|
||||
// make it ready for both system names and input names
|
||||
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
|
||||
{"top-k", llama_sampler_type::TOP_K},
|
||||
{"top-p", llama_sampler_type::TOP_P},
|
||||
{"nucleus", llama_sampler_type::TOP_P},
|
||||
{"typical-p", llama_sampler_type::TYPICAL_P},
|
||||
{"typical", llama_sampler_type::TYPICAL_P},
|
||||
{"min-p", llama_sampler_type::MIN_P},
|
||||
{"tfs-z", llama_sampler_type::TFS_Z},
|
||||
{"tfs", llama_sampler_type::TFS_Z},
|
||||
{"temp", llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types;
|
||||
sampler_types.reserve(names.size());
|
||||
for (const auto & name : names)
|
||||
{
|
||||
auto sampler_item = sampler_canonical_name_map.find(name);
|
||||
if (sampler_item != sampler_canonical_name_map.end())
|
||||
{
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (allow_alt_names)
|
||||
{
|
||||
sampler_item = sampler_alt_name_map.find(name);
|
||||
if (sampler_item != sampler_alt_name_map.end())
|
||||
{
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return sampler_types;
|
||||
}
|
||||
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
|
||||
std::unordered_map<char, llama_sampler_type> sampler_name_map {
|
||||
{'k', llama_sampler_type::TOP_K},
|
||||
{'p', llama_sampler_type::TOP_P},
|
||||
{'y', llama_sampler_type::TYPICAL_P},
|
||||
{'m', llama_sampler_type::MIN_P},
|
||||
{'f', llama_sampler_type::TFS_Z},
|
||||
{'t', llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types;
|
||||
sampler_types.reserve(names_string.size());
|
||||
for (const auto & c : names_string) {
|
||||
const auto sampler_item = sampler_name_map.find(c);
|
||||
if (sampler_item != sampler_name_map.end()) {
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
}
|
||||
return sampler_types;
|
||||
}
|
||||
|
||||
// no reasons to expose this function in header
|
||||
static void sampler_queue(
|
||||
struct llama_context * ctx_main,
|
||||
|
@ -179,7 +260,7 @@ static llama_token llama_sampling_sample_impl(
|
|||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx,
|
||||
bool is_resampling) { // Add a parameter to indicate if we are resampling
|
||||
bool is_resampling) {
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const float temp = params.temp;
|
||||
|
@ -188,8 +269,8 @@ static llama_token llama_sampling_sample_impl(
|
|||
const float mirostat_eta = params.mirostat_eta;
|
||||
|
||||
std::vector<float> original_logits;
|
||||
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, !is_resampling, &original_logits);
|
||||
if (!is_resampling) {
|
||||
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
|
||||
if (ctx_sampling->grammar != NULL && !is_resampling) {
|
||||
GGML_ASSERT(!original_logits.empty());
|
||||
}
|
||||
llama_token id = 0;
|
||||
|
@ -252,7 +333,7 @@ static llama_token llama_sampling_sample_impl(
|
|||
// Restore logits from the copy
|
||||
std::copy(original_logits.begin(), original_logits.end(), logits);
|
||||
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -285,7 +366,8 @@ static llama_token_data_array llama_sampling_prepare_impl(
|
|||
// Get a pointer to the logits
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
if (apply_grammar && original_logits != NULL) {
|
||||
if (ctx_sampling->grammar != NULL && !apply_grammar) {
|
||||
GGML_ASSERT(original_logits != NULL);
|
||||
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
|
||||
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
|
||||
}
|
||||
|
@ -342,7 +424,7 @@ llama_token llama_sampling_sample(
|
|||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
// Call the implementation function with is_resampling set to false by default
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
|
||||
}
|
||||
|
||||
llama_token_data_array llama_sampling_prepare(
|
||||
|
|
|
@ -116,6 +116,11 @@ std::string llama_sampling_print(const llama_sampling_params & params);
|
|||
// Print sampling order into a string
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params);
|
||||
|
||||
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type);
|
||||
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string);
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||
|
|
|
@ -1052,7 +1052,7 @@ struct train_params_common get_default_train_params_common() {
|
|||
|
||||
params.custom_n_ctx = false;
|
||||
|
||||
params.use_flash = true;
|
||||
params.use_flash = false;
|
||||
params.use_checkpointing = true;
|
||||
|
||||
params.sample_start = "";
|
||||
|
@ -1380,7 +1380,7 @@ bool consume_common_train_arg(
|
|||
|
||||
void finish_processing_train_args(struct train_params_common * params) {
|
||||
if (params->escape) {
|
||||
process_escapes(params->sample_start);
|
||||
string_process_escapes(params->sample_start);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -72,7 +72,7 @@ models = [
|
|||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||||
{"name": "stablelm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
|
||||
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
|
||||
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
|
||||
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
|
||||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
|
||||
|
@ -81,6 +81,7 @@ models = [
|
|||
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
|
||||
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
|
||||
]
|
||||
|
||||
|
||||
|
|
|
@ -14,6 +14,7 @@ from pathlib import Path
|
|||
from hashlib import sha256
|
||||
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
@ -24,8 +25,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
|||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
from convert import LlamaHfVocab
|
||||
|
||||
logger = logging.getLogger("hf-to-gguf")
|
||||
|
||||
|
||||
|
@ -312,11 +311,10 @@ class Model:
|
|||
data = data.astype(np.float32)
|
||||
data_qtype = gguf.GGMLQuantizationType.F32
|
||||
|
||||
block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype]
|
||||
shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
|
||||
|
||||
# reverse shape to make it similar to the internal ggml dimension order
|
||||
shape_str = f"""{{{', '.join(str(n) for n in reversed(
|
||||
(*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
|
||||
)}}}"""
|
||||
shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
|
||||
|
||||
# n_dims is implicit in the shape
|
||||
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
|
||||
|
@ -447,7 +445,7 @@ class Model:
|
|||
# ref: https://huggingface.co/openai-community/gpt2
|
||||
res = "gpt-2"
|
||||
if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
|
||||
# ref: https://huggingface.co/stabilityai/stablelm-2-1_6b
|
||||
# ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
|
||||
res = "stablelm2"
|
||||
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
|
||||
# ref: https://huggingface.co/smallcloudai/Refact-1_6-base
|
||||
|
@ -473,6 +471,9 @@ class Model:
|
|||
if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
|
||||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
|
||||
res = "jina-v2-de"
|
||||
if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
|
||||
# ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
|
||||
res = "smaug-bpe"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
|
@ -631,7 +632,7 @@ class Model:
|
|||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_llama_hf(self):
|
||||
vocab = LlamaHfVocab(self.dir_model)
|
||||
vocab = gguf.LlamaHfVocab(self.dir_model)
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
@ -672,6 +673,44 @@ class GPTNeoXModel(Model):
|
|||
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||||
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
|
||||
# Map bloom-style qkv_linear to gpt-style qkv_linear
|
||||
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
|
||||
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
|
||||
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
|
||||
data_torch = torch.cat(
|
||||
(
|
||||
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
|
||||
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
|
||||
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
|
||||
),
|
||||
dim=0,
|
||||
)
|
||||
logger.info("re-format attention.linear_qkv.weight")
|
||||
elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
|
||||
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
|
||||
data_torch = torch.cat(
|
||||
(
|
||||
qkv_bias[:, 0, :].reshape((n_embed,)),
|
||||
qkv_bias[:, 1, :].reshape((n_embed,)),
|
||||
qkv_bias[:, 2, :].reshape((n_embed,)),
|
||||
),
|
||||
dim=0,
|
||||
)
|
||||
logger.info("re-format attention.linear_qkv.bias")
|
||||
|
||||
tensors.append((self.map_tensor_name(name), data_torch))
|
||||
|
||||
return tensors
|
||||
|
||||
|
||||
@Model.register("BloomForCausalLM")
|
||||
class BloomModel(Model):
|
||||
|
@ -1148,45 +1187,6 @@ class RefactModel(Model):
|
|||
return tensors
|
||||
|
||||
|
||||
@Model.register("PersimmonForCausalLM")
|
||||
class PersimmonModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PERSIMMON
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
head_count_kv = head_count
|
||||
hidden_size = self.hparams["hidden_size"]
|
||||
|
||||
self.gguf_writer.add_name('persimmon-8b-chat')
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(hidden_size)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
|
||||
# NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
|
||||
# than the head size?
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/4889
|
||||
# self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
|
||||
self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
|
||||
|
||||
self.gguf_writer.add_head_count(head_count)
|
||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
# self.gguf_writer.add_bos_token_id(71013)
|
||||
# self.gguf_writer.add_eos_token_id(71013)
|
||||
|
||||
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
|
||||
del name, new_name, bid, n_dims # unused
|
||||
|
||||
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
||||
return True
|
||||
|
||||
|
||||
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
|
||||
class StableLMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.STABLELM
|
||||
|
@ -1315,6 +1315,17 @@ class LlamaModel(Model):
|
|||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
if tokenizer_config_file.is_file():
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
tokenizer_config_json = json.load(f)
|
||||
if "add_prefix_space" in tokenizer_config_json:
|
||||
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
|
||||
|
||||
# Apply to granite small models only
|
||||
if self.hparams.get("vocab_size", 32000) == 49152:
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
|
@ -1329,9 +1340,9 @@ class LlamaModel(Model):
|
|||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
|
||||
if name.endswith("q_proj.weight"):
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith("k_proj.weight"):
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||||
|
||||
# process the experts separately
|
||||
|
@ -1779,6 +1790,38 @@ class Phi3MiniModel(Model):
|
|||
scores[token_id] = -1000.0
|
||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
if tokenizer_config_file.is_file():
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
tokenizer_config_json = json.load(f)
|
||||
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
|
||||
for token_id, foken_data in added_tokens_decoder.items():
|
||||
token_id = int(token_id)
|
||||
token = foken_data["content"].encode("utf-8")
|
||||
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
||||
assert tokens[token_id] == token
|
||||
tokens[token_id] = token
|
||||
scores[token_id] = -1000.0
|
||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||
if foken_data.get("special"):
|
||||
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||||
|
||||
tokenizer_file = self.dir_model / 'tokenizer.json'
|
||||
if tokenizer_file.is_file():
|
||||
with open(tokenizer_file, "r", encoding="utf-8") as f:
|
||||
tokenizer_json = json.load(f)
|
||||
added_tokens = tokenizer_json.get("added_tokens", [])
|
||||
for foken_data in added_tokens:
|
||||
token_id = int(foken_data["id"])
|
||||
token = foken_data["content"].encode("utf-8")
|
||||
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
||||
assert tokens[token_id] == token
|
||||
tokens[token_id] = token
|
||||
scores[token_id] = -1000.0
|
||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||
if foken_data.get("special"):
|
||||
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
|
@ -1791,23 +1834,59 @@ class Phi3MiniModel(Model):
|
|||
def set_gguf_parameters(self):
|
||||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||||
|
||||
rot_pct = 1.0
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
|
||||
rms_eps = self.find_hparam(["rms_norm_eps"])
|
||||
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
|
||||
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
|
||||
rope_dims = n_embd // n_head
|
||||
|
||||
self.gguf_writer.add_name("Phi3")
|
||||
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
|
||||
|
||||
self.gguf_writer.add_context_length(max_pos_embds)
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
self.gguf_writer.add_feed_forward_length(8192)
|
||||
self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
|
||||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dims)
|
||||
self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
# write rope scaling for long context (128k) model
|
||||
rope_scaling = self.find_hparam(['rope_scaling'], True)
|
||||
if (rope_scaling is None):
|
||||
return
|
||||
|
||||
scale = max_pos_embds / orig_max_pos_embds
|
||||
|
||||
rope_scaling_type = rope_scaling.get('type', '').lower()
|
||||
if len(rope_scaling_type) == 0:
|
||||
raise KeyError('Missing the required key rope_scaling.type')
|
||||
|
||||
if rope_scaling_type == 'su':
|
||||
attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
|
||||
elif rope_scaling_type == 'yarn':
|
||||
attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
|
||||
else:
|
||||
raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
|
||||
|
||||
self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
|
||||
|
||||
long_factors = rope_scaling.get('long_factor', None)
|
||||
short_factors = rope_scaling.get('short_factor', None)
|
||||
|
||||
if long_factors is None or short_factors is None:
|
||||
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
|
||||
|
||||
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
|
||||
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
|
||||
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
|
||||
|
||||
|
||||
@Model.register("PlamoForCausalLM")
|
||||
class PlamoModel(Model):
|
||||
|
@ -2325,7 +2404,8 @@ class CommandR2Model(Model):
|
|||
|
||||
# max_position_embeddings = 8192 in config.json but model was actually
|
||||
# trained on 128k context length
|
||||
self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
|
||||
# aya-23 models don't have model_max_length specified
|
||||
self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
@ -2398,6 +2478,236 @@ class JinaBertV2Model(BertModel):
|
|||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
|
||||
@Model.register("ArcticForCausalLM")
|
||||
class ArcticModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.ARCTIC
|
||||
|
||||
def set_vocab(self):
|
||||
# The reason for using a custom implementation here is that the
|
||||
# snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
|
||||
# tokenizer.model and used them as BOS and EOS instead of adding new tokens.
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
logger.error(f'Error: Missing {tokenizer_path}')
|
||||
sys.exit(1)
|
||||
|
||||
# Read the whole vocabulary from the tokenizer.model file
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
|
||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||
scores: list[float] = [-10000.0] * vocab_size
|
||||
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
||||
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.IsUnknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.IsControl(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.IsUnused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.IsByte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
|
||||
# Use the added_tokens_decoder field from tokeniser_config.json as the source
|
||||
# of information about added/redefined tokens and modify them accordingly.
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
if tokenizer_config_file.is_file():
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
tokenizer_config_json = json.load(f)
|
||||
|
||||
if "added_tokens_decoder" in tokenizer_config_json:
|
||||
added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
|
||||
for token_id, token_json in added_tokens_decoder.items():
|
||||
token_id = int(token_id)
|
||||
if (token_id >= vocab_size):
|
||||
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
|
||||
token_content = token_json["content"]
|
||||
token_type = SentencePieceTokenTypes.USER_DEFINED
|
||||
token_score = -10000.0
|
||||
|
||||
# Map unk_token to UNKNOWN, other special tokens to CONTROL
|
||||
# Set the score to 0.0 as in the original tokenizer.model
|
||||
if ("special" in token_json) and token_json["special"]:
|
||||
if token_content == tokenizer_config_json["unk_token"]:
|
||||
token_type = SentencePieceTokenTypes.UNKNOWN
|
||||
else:
|
||||
token_type = SentencePieceTokenTypes.CONTROL
|
||||
token_score = 0.0
|
||||
|
||||
logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
|
||||
tokens[token_id] = token_content.encode("utf-8")
|
||||
toktypes[token_id] = token_type
|
||||
scores[token_id] = token_score
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
|
||||
if name.endswith("q_proj.weight"):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith("k_proj.weight"):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||||
|
||||
# process the experts separately
|
||||
if name.find("block_sparse_moe.experts") != -1:
|
||||
n_experts = self.hparams["num_local_experts"]
|
||||
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
# merge the experts into a single 3d tensor
|
||||
for wid in ["w1", "w2", "w3"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
|
||||
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
|
||||
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
|
||||
tensors.append((new_name, data_torch))
|
||||
return tensors
|
||||
else:
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def write_tensors(self):
|
||||
super().write_tensors()
|
||||
|
||||
if self._experts is not None:
|
||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("DeepseekV2ForCausalLM")
|
||||
class DeepseekV2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
|
||||
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
|
||||
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
|
||||
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
|
||||
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
|
||||
self.gguf_writer.add_value_length(hparams["v_head_dim"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||||
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
|
||||
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
|
||||
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
|
||||
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# process the experts separately
|
||||
if name.find("mlp.experts") != -1:
|
||||
n_experts = self.hparams["n_routed_experts"]
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
# merge the experts into a single 3d tensor
|
||||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
|
||||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||||
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
|
||||
tensors.append((new_name, data_torch))
|
||||
return tensors
|
||||
else:
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def write_tensors(self):
|
||||
super().write_tensors()
|
||||
|
||||
if self._experts is not None:
|
||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
|
|
@ -1,143 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from pprint import pprint
|
||||
|
||||
import torch
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
logger = logging.getLogger("persimmon-to-gguf")
|
||||
|
||||
|
||||
def _flatten_dict(dct, tensors, prefix=None):
|
||||
assert isinstance(dct, dict)
|
||||
for key in dct.keys():
|
||||
new_prefix = prefix + '.' + key if prefix is not None else key
|
||||
if isinstance(dct[key], torch.Tensor):
|
||||
tensors[new_prefix] = dct[key]
|
||||
elif isinstance(dct[key], dict):
|
||||
_flatten_dict(dct[key], tensors, new_prefix)
|
||||
else:
|
||||
raise ValueError(type(dct[key]))
|
||||
return None
|
||||
|
||||
|
||||
def _get_sentencepiece_tokenizer_info(dir_model: Path):
|
||||
tokenizer_path = dir_model / 'adept_vocab.model'
|
||||
logger.info('getting sentencepiece tokenizer from', tokenizer_path)
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
logger.info('adding tokens')
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
pass
|
||||
return tokens, scores, toktypes
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
|
||||
parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
|
||||
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
args = parser.parse_args()
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
sys.path.append(str(args.adept_inference_dir))
|
||||
persimmon_model = torch.load(args.ckpt_path)
|
||||
hparams = persimmon_model['args']
|
||||
pprint(hparams)
|
||||
tensors: dict[str, torch.Tensor] = {}
|
||||
_flatten_dict(persimmon_model['model'], tensors, None)
|
||||
|
||||
arch = gguf.MODEL_ARCH.PERSIMMON
|
||||
gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
|
||||
|
||||
block_count = hparams.num_layers
|
||||
head_count = hparams.num_attention_heads
|
||||
head_count_kv = head_count
|
||||
ctx_length = hparams.seq_length
|
||||
hidden_size = hparams.hidden_size
|
||||
|
||||
gguf_writer.add_name('persimmon-8b-chat')
|
||||
gguf_writer.add_context_length(ctx_length)
|
||||
gguf_writer.add_embedding_length(hidden_size)
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
|
||||
gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
|
||||
gguf_writer.add_head_count(head_count)
|
||||
gguf_writer.add_head_count_kv(head_count_kv)
|
||||
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
|
||||
gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
|
||||
|
||||
tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
|
||||
gguf_writer.add_tokenizer_model('llama')
|
||||
gguf_writer.add_tokenizer_pre('default')
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
gguf_writer.add_bos_token_id(71013)
|
||||
gguf_writer.add_eos_token_id(71013)
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(arch, block_count)
|
||||
logger.info(tensor_map)
|
||||
for name in tensors.keys():
|
||||
data_torch = tensors[name]
|
||||
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
old_dtype = data_torch.dtype
|
||||
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
||||
data = data_torch.to(torch.float32).squeeze().numpy()
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
raise ValueError(f"Can not map tensor '{name}'")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
logger.debug(f"{new_name}, n_dims = {str(n_dims)}, {str(old_dtype)} --> {str(data.dtype)}")
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
logger.info("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
logger.info("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
logger.info("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
logger.info(f"gguf: model successfully exported to '{args.outfile}'")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -17,7 +17,7 @@ Also, it is important to check that the examples and main ggml backends (CUDA, M
|
|||
### 1. Convert the model to GGUF
|
||||
|
||||
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
|
||||
Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py).
|
||||
Depending on the model architecture, you can use either [convert-hf-to-gguf.py](../convert-hf-to-gguf.py) or [examples/convert-legacy-llama.py](../examples/convert-legacy-llama.py) (for `llama/llama2` models in `.pth` format).
|
||||
|
||||
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
|
||||
|
||||
|
|
|
@ -48,7 +48,7 @@ int main(int argc, char ** argv) {
|
|||
params.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
process_escapes(params.prompt);
|
||||
string_process_escapes(params.prompt);
|
||||
|
||||
// init LLM
|
||||
|
||||
|
|
|
@ -24,14 +24,16 @@ from abc import ABC, abstractmethod
|
|||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable, Optional
|
||||
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional
|
||||
|
||||
import numpy as np
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
# use .parent.parent since we are in "examples" directory
|
||||
sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py'))
|
||||
|
||||
import gguf
|
||||
from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing_extensions import Self, TypeAlias
|
||||
|
@ -380,306 +382,6 @@ class Metadata:
|
|||
return metadata
|
||||
|
||||
|
||||
#
|
||||
# vocab
|
||||
#
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class BaseVocab(Protocol):
|
||||
tokenizer_model: ClassVar[str]
|
||||
name: ClassVar[str]
|
||||
|
||||
|
||||
class NoVocab(BaseVocab):
|
||||
tokenizer_model = "no_vocab"
|
||||
name = "no_vocab"
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return "<NoVocab for a model without integrated vocabulary>"
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class Vocab(BaseVocab, Protocol):
|
||||
vocab_size: int
|
||||
added_tokens_dict: dict[str, int]
|
||||
added_tokens_list: list[str]
|
||||
fname_tokenizer: Path
|
||||
|
||||
def __init__(self, base_path: Path): ...
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
|
||||
|
||||
|
||||
class BpeVocab(Vocab):
|
||||
tokenizer_model = "gpt2"
|
||||
name = "bpe"
|
||||
|
||||
def __init__(self, base_path: Path):
|
||||
added_tokens: dict[str, int] = {}
|
||||
|
||||
if (fname_tokenizer := base_path / 'vocab.json').exists():
|
||||
# "slow" tokenizer
|
||||
with open(fname_tokenizer, encoding="utf-8") as f:
|
||||
self.vocab = json.load(f)
|
||||
|
||||
try:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
|
||||
added_tokens = json.load(f)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
else:
|
||||
# "fast" tokenizer
|
||||
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
|
||||
|
||||
# if this fails, FileNotFoundError propagates to caller
|
||||
with open(fname_tokenizer, encoding="utf-8") as f:
|
||||
tokenizer_json = json.load(f)
|
||||
|
||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
||||
if (
|
||||
tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
|
||||
or tokenizer_json['decoder']['type'] != 'ByteLevel'
|
||||
):
|
||||
raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
|
||||
|
||||
self.vocab = tokenizer_model["vocab"]
|
||||
|
||||
if (added := tokenizer_json.get('added_tokens')) is not None:
|
||||
# Added tokens here can be duplicates of the main vocabulary.
|
||||
added_tokens = {item['content']: item['id']
|
||||
for item in added
|
||||
if item['content'] not in self.vocab}
|
||||
|
||||
vocab_size = len(self.vocab)
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
if expected_ids != actual_ids:
|
||||
expected_end_id = vocab_size + len(actual_ids) - 1
|
||||
raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
|
||||
f"{vocab_size} - {expected_end_id}; got {actual_ids}")
|
||||
|
||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
||||
self.added_tokens_dict = added_tokens
|
||||
self.added_tokens_list = [text for (text, idx) in items]
|
||||
self.vocab_size_base = vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
|
||||
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
|
||||
|
||||
for i, _ in enumerate(self.vocab):
|
||||
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
score = -1000.0
|
||||
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.bpe_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class SentencePieceVocab(Vocab):
|
||||
tokenizer_model = "llama"
|
||||
name = "spm"
|
||||
|
||||
def __init__(self, base_path: Path):
|
||||
added_tokens: dict[str, int] = {}
|
||||
if (fname_tokenizer := base_path / 'tokenizer.model').exists():
|
||||
# normal location
|
||||
try:
|
||||
with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
|
||||
added_tokens = json.load(f)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
|
||||
# not found in alternate location either
|
||||
raise FileNotFoundError('Cannot find tokenizer.model')
|
||||
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor()
|
||||
self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
|
||||
vocab_size = self.sentencepiece_tokenizer.vocab_size()
|
||||
|
||||
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
|
||||
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
|
||||
actual_new_ids = sorted(new_tokens.keys())
|
||||
|
||||
if expected_new_ids != actual_new_ids:
|
||||
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
|
||||
|
||||
# Token pieces that were added to the base vocabulary.
|
||||
self.added_tokens_dict = added_tokens
|
||||
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
|
||||
self.vocab_size_base = vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
|
||||
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.sentencepiece_tokenizer
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score: float = tokenizer.GetScore(i)
|
||||
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
if tokenizer.IsUnknown(i):
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
if tokenizer.IsControl(i):
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
|
||||
# NOTE: I think added_tokens are user defined.
|
||||
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
||||
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
|
||||
|
||||
if tokenizer.IsUnused(i):
|
||||
toktype = gguf.TokenType.UNUSED
|
||||
if tokenizer.IsByte(i):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
|
||||
yield text, score, toktype
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
score = -1000.0
|
||||
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.sentencepiece_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class LlamaHfVocab(Vocab):
|
||||
tokenizer_model = "llama"
|
||||
name = "hfft"
|
||||
|
||||
def __init__(self, base_path: Path):
|
||||
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
|
||||
# if this fails, FileNotFoundError propagates to caller
|
||||
with open(fname_tokenizer, encoding='utf-8') as f:
|
||||
tokenizer_json = json.load(f)
|
||||
|
||||
# pre-check so we know if we need transformers
|
||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
||||
is_llama3 = (
|
||||
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
|
||||
and not tokenizer_model.get('byte_fallback', True)
|
||||
)
|
||||
if is_llama3:
|
||||
raise TypeError('Llama 3 must be converted with BpeVocab')
|
||||
|
||||
if not is_llama3 and (
|
||||
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
|
||||
or tokenizer_json['decoder']['type'] != 'Sequence'
|
||||
):
|
||||
raise FileNotFoundError('Cannot find Llama BPE tokenizer')
|
||||
|
||||
try:
|
||||
from transformers import AutoTokenizer
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"To use LlamaHfVocab, please install the `transformers` package. "
|
||||
"You can install it with `pip install transformers`."
|
||||
) from e
|
||||
|
||||
# Allow the tokenizer to default to slow or fast versions.
|
||||
# Explicitly set tokenizer to use local paths.
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
base_path,
|
||||
cache_dir=base_path,
|
||||
local_files_only=True,
|
||||
)
|
||||
assert self.tokenizer.is_fast # assume tokenizer.json is used
|
||||
|
||||
# Initialize lists and dictionaries for added tokens
|
||||
self.added_tokens_list = []
|
||||
self.added_tokens_dict = dict()
|
||||
self.added_tokens_ids = set()
|
||||
|
||||
# Process added tokens
|
||||
for tok, tokidx in sorted(
|
||||
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
|
||||
):
|
||||
# Only consider added tokens that are not in the base vocabulary
|
||||
if tokidx >= self.tokenizer.vocab_size:
|
||||
self.added_tokens_list.append(tok)
|
||||
self.added_tokens_dict[tok] = tokidx
|
||||
self.added_tokens_ids.add(tokidx)
|
||||
|
||||
# Store special tokens and their IDs
|
||||
self.specials = {
|
||||
tok: self.tokenizer.get_vocab()[tok]
|
||||
for tok in self.tokenizer.all_special_tokens
|
||||
}
|
||||
self.special_ids = set(self.tokenizer.all_special_ids)
|
||||
|
||||
# Set vocabulary sizes
|
||||
self.vocab_size_base = self.tokenizer.vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
|
||||
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
reverse_vocab = {
|
||||
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
|
||||
}
|
||||
|
||||
for token_id in range(self.vocab_size_base):
|
||||
# Skip processing added tokens here
|
||||
if token_id in self.added_tokens_ids:
|
||||
continue
|
||||
|
||||
# Convert token text to bytes
|
||||
token_text = reverse_vocab[token_id].encode("utf-8")
|
||||
|
||||
# Yield token text, score, and type
|
||||
yield token_text, self.get_token_score(token_id), self.get_token_type(
|
||||
token_id, token_text, self.special_ids # Reuse already stored special IDs
|
||||
)
|
||||
|
||||
def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
|
||||
# Special case for byte tokens
|
||||
if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
|
||||
return gguf.TokenType.BYTE
|
||||
|
||||
# Determine token type based on whether it's a special token
|
||||
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
|
||||
|
||||
def get_token_score(self, token_id: int) -> float:
|
||||
# Placeholder for actual logic to determine the token's score
|
||||
# This needs to be implemented based on specific requirements
|
||||
return -1000.0 # Default score
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
if text in self.specials:
|
||||
toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
|
||||
score = self.get_token_score(self.specials[text])
|
||||
else:
|
||||
toktype = gguf.TokenType.USER_DEFINED
|
||||
score = -1000.0
|
||||
|
||||
yield text.encode("utf-8"), score, toktype
|
||||
|
||||
def has_newline_token(self):
|
||||
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.hf_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
#
|
||||
# data loading
|
||||
# TODO: reuse (probably move to gguf.py?)
|
|
@ -774,7 +774,7 @@ static struct train_params get_default_train_params() {
|
|||
|
||||
params.samples_start_after_nl = false;
|
||||
params.use_adam = true;
|
||||
params.use_flash = true;
|
||||
params.use_flash = false;
|
||||
params.use_scratch = true;
|
||||
|
||||
// only adam
|
||||
|
|
|
@ -80,7 +80,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
params.prompt = string_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init();
|
||||
|
@ -107,7 +107,7 @@ int main(int argc, char ** argv) {
|
|||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
// split the prompt into lines
|
||||
|
|
|
@ -152,7 +152,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
params.prompt = string_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init();
|
||||
|
@ -176,7 +176,7 @@ int main(int argc, char ** argv) {
|
|||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
bool OK = run(ctx, params);
|
||||
|
|
|
@ -563,8 +563,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
|||
// not capturing these, to silcence warnings
|
||||
const int rope_mode = 0;
|
||||
|
||||
return ggml_rope_custom(ctx,
|
||||
t, KQ_pos, n_rot, rope_mode, n_ctx, 0,
|
||||
return ggml_rope_ext(ctx,
|
||||
t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0,
|
||||
rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
|
||||
);
|
||||
};
|
||||
|
@ -643,7 +643,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
|||
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch);
|
||||
struct ggml_tensor * t16;
|
||||
if (enable_flash_attn) {
|
||||
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
|
||||
GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
|
||||
//t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
|
||||
} else {
|
||||
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
|
||||
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
|
||||
|
|
|
@ -598,7 +598,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
params.prompt = string_random_prompt(rng);
|
||||
}
|
||||
|
||||
sparams.dataset = params.prompt_file;
|
||||
|
@ -667,7 +667,7 @@ int main(int argc, char ** argv) {
|
|||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk);
|
||||
|
|
|
@ -50,9 +50,9 @@ static void write_logfile(
|
|||
return;
|
||||
}
|
||||
|
||||
const std::string timestamp = get_sortable_timestamp();
|
||||
const std::string timestamp = string_get_sortable_timestamp();
|
||||
|
||||
const bool success = create_directory_with_parents(params.logdir);
|
||||
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||
if (!success) {
|
||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||
__func__, params.logdir.c_str());
|
||||
|
@ -70,7 +70,7 @@ static void write_logfile(
|
|||
fprintf(logfile, "binary: infill\n");
|
||||
char model_desc[128];
|
||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||
|
||||
fprintf(logfile, "\n");
|
||||
fprintf(logfile, "######################\n");
|
||||
|
@ -78,8 +78,8 @@ static void write_logfile(
|
|||
fprintf(logfile, "######################\n");
|
||||
fprintf(logfile, "\n");
|
||||
|
||||
dump_string_yaml_multiline(logfile, "output", output.c_str());
|
||||
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
|
||||
yaml_dump_string_multiline(logfile, "output", output.c_str());
|
||||
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
|
||||
|
||||
llama_dump_timing_info_yaml(logfile, ctx);
|
||||
fclose(logfile);
|
||||
|
@ -236,7 +236,7 @@ int main(int argc, char ** argv) {
|
|||
// print system information
|
||||
{
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s\n", get_system_info(params).c_str());
|
||||
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
GGML_ASSERT(llama_add_eos_token(model) != 1);
|
||||
|
@ -625,8 +625,8 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if (params.escape) {
|
||||
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
|
||||
process_escapes(params.input_prefix);
|
||||
process_escapes(params.input_suffix);
|
||||
string_process_escapes(params.input_prefix);
|
||||
string_process_escapes(params.input_suffix);
|
||||
}
|
||||
suff_rm_leading_spc = params.escape;
|
||||
if (suff_rm_leading_spc && params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
|
||||
|
|
|
@ -178,6 +178,7 @@ struct cmd_params {
|
|||
std::vector<ggml_type> type_v;
|
||||
std::vector<int> n_threads;
|
||||
std::vector<int> n_gpu_layers;
|
||||
std::vector<std::string> rpc_servers;
|
||||
std::vector<llama_split_mode> split_mode;
|
||||
std::vector<int> main_gpu;
|
||||
std::vector<bool> no_kv_offload;
|
||||
|
@ -195,13 +196,14 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
|
||||
/* n_prompt */ {512},
|
||||
/* n_gen */ {128},
|
||||
/* n_pg */ {{512, 128}},
|
||||
/* n_pg */ {},
|
||||
/* n_batch */ {2048},
|
||||
/* n_ubatch */ {512},
|
||||
/* type_k */ {GGML_TYPE_F16},
|
||||
/* type_v */ {GGML_TYPE_F16},
|
||||
/* n_threads */ {get_math_cpu_count()},
|
||||
/* n_threads */ {cpu_get_num_math()},
|
||||
/* n_gpu_layers */ {99},
|
||||
/* rpc_servers */ {""},
|
||||
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
||||
/* main_gpu */ {0},
|
||||
/* no_kv_offload */ {false},
|
||||
|
@ -230,6 +232,7 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
|
@ -384,6 +387,12 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
|
||||
} else if (arg == "-rpc" || arg == "--rpc") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rpc_servers.push_back(argv[i]);
|
||||
} else if (arg == "-sm" || arg == "--split-mode") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -519,6 +528,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
||||
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
|
||||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||
if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
|
||||
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
|
||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
|
||||
|
@ -541,6 +551,7 @@ struct cmd_params_instance {
|
|||
ggml_type type_v;
|
||||
int n_threads;
|
||||
int n_gpu_layers;
|
||||
std::string rpc_servers;
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
|
@ -553,6 +564,9 @@ struct cmd_params_instance {
|
|||
llama_model_params mparams = llama_model_default_params();
|
||||
|
||||
mparams.n_gpu_layers = n_gpu_layers;
|
||||
if (!rpc_servers.empty()) {
|
||||
mparams.rpc_servers = rpc_servers.c_str();
|
||||
}
|
||||
mparams.split_mode = split_mode;
|
||||
mparams.main_gpu = main_gpu;
|
||||
mparams.tensor_split = tensor_split.data();
|
||||
|
@ -564,6 +578,7 @@ struct cmd_params_instance {
|
|||
bool equal_mparams(const cmd_params_instance & other) const {
|
||||
return model == other.model &&
|
||||
n_gpu_layers == other.n_gpu_layers &&
|
||||
rpc_servers == other.rpc_servers &&
|
||||
split_mode == other.split_mode &&
|
||||
main_gpu == other.main_gpu &&
|
||||
use_mmap == other.use_mmap &&
|
||||
|
@ -592,6 +607,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
// this ordering minimizes the number of times that each model needs to be reloaded
|
||||
for (const auto & m : params.model)
|
||||
for (const auto & nl : params.n_gpu_layers)
|
||||
for (const auto & rpc : params.rpc_servers)
|
||||
for (const auto & sm : params.split_mode)
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
|
@ -618,6 +634,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .rpc_servers = */ rpc,
|
||||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
|
@ -643,6 +660,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .rpc_servers = */ rpc,
|
||||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
|
@ -668,6 +686,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .rpc_servers = */ rpc,
|
||||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
|
@ -692,6 +711,7 @@ struct test {
|
|||
static const bool kompute;
|
||||
static const bool metal;
|
||||
static const bool sycl;
|
||||
static const bool rpc;
|
||||
static const bool gpu_blas;
|
||||
static const bool blas;
|
||||
static const std::string cpu_info;
|
||||
|
@ -790,6 +810,9 @@ struct test {
|
|||
if (sycl) {
|
||||
return GGML_SYCL_NAME;
|
||||
}
|
||||
if (rpc) {
|
||||
return "RPC";
|
||||
}
|
||||
if (gpu_blas) {
|
||||
return "GPU BLAS";
|
||||
}
|
||||
|
@ -803,7 +826,7 @@ struct test {
|
|||
static const std::vector<std::string> & get_fields() {
|
||||
static const std::vector<std::string> fields = {
|
||||
"build_commit", "build_number",
|
||||
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
|
||||
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
|
||||
"cpu_info", "gpu_info",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_ubatch",
|
||||
|
@ -859,7 +882,7 @@ struct test {
|
|||
std::vector<std::string> values = {
|
||||
build_commit, std::to_string(build_number),
|
||||
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
|
||||
std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
|
||||
std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas),
|
||||
cpu_info, gpu_info,
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_ubatch),
|
||||
|
@ -894,6 +917,7 @@ const bool test::metal = !!ggml_cpu_has_metal();
|
|||
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
|
||||
const bool test::blas = !!ggml_cpu_has_blas();
|
||||
const bool test::sycl = !!ggml_cpu_has_sycl();
|
||||
const bool test::rpc = !!ggml_cpu_has_rpc();
|
||||
const std::string test::cpu_info = get_cpu_info();
|
||||
const std::string test::gpu_info = get_gpu_info();
|
||||
|
||||
|
|
|
@ -7,8 +7,6 @@ android {
|
|||
namespace = "com.example.llama"
|
||||
compileSdk = 34
|
||||
|
||||
ndkVersion = "26.1.10909125"
|
||||
|
||||
defaultConfig {
|
||||
applicationId = "com.example.llama"
|
||||
minSdk = 33
|
||||
|
@ -20,17 +18,6 @@ android {
|
|||
vectorDrawables {
|
||||
useSupportLibrary = true
|
||||
}
|
||||
ndk {
|
||||
// Add NDK properties if wanted, e.g.
|
||||
// abiFilters += listOf("arm64-v8a")
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
arguments += "-DCMAKE_BUILD_TYPE=Release"
|
||||
cppFlags += listOf()
|
||||
arguments += listOf()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
buildTypes {
|
||||
|
@ -55,17 +42,6 @@ android {
|
|||
composeOptions {
|
||||
kotlinCompilerExtensionVersion = "1.5.1"
|
||||
}
|
||||
packaging {
|
||||
resources {
|
||||
excludes += "/META-INF/{AL2.0,LGPL2.1}"
|
||||
}
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
path = file("src/main/cpp/CMakeLists.txt")
|
||||
version = "3.22.1"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dependencies {
|
||||
|
@ -78,6 +54,7 @@ dependencies {
|
|||
implementation("androidx.compose.ui:ui-graphics")
|
||||
implementation("androidx.compose.ui:ui-tooling-preview")
|
||||
implementation("androidx.compose.material3:material3")
|
||||
implementation(project(":llama"))
|
||||
testImplementation("junit:junit:4.13.2")
|
||||
androidTestImplementation("androidx.test.ext:junit:1.1.5")
|
||||
androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1")
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
package com.example.llama
|
||||
|
||||
import android.llama.cpp.LLamaAndroid
|
||||
import android.util.Log
|
||||
import androidx.compose.runtime.getValue
|
||||
import androidx.compose.runtime.mutableStateOf
|
||||
|
@ -9,7 +10,7 @@ import androidx.lifecycle.viewModelScope
|
|||
import kotlinx.coroutines.flow.catch
|
||||
import kotlinx.coroutines.launch
|
||||
|
||||
class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
||||
class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instance()): ViewModel() {
|
||||
companion object {
|
||||
@JvmStatic
|
||||
private val NanosPerSecond = 1_000_000_000.0
|
||||
|
@ -28,7 +29,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
|||
|
||||
viewModelScope.launch {
|
||||
try {
|
||||
llm.unload()
|
||||
llamaAndroid.unload()
|
||||
} catch (exc: IllegalStateException) {
|
||||
messages += exc.message!!
|
||||
}
|
||||
|
@ -44,7 +45,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
|||
messages += ""
|
||||
|
||||
viewModelScope.launch {
|
||||
llm.send(text)
|
||||
llamaAndroid.send(text)
|
||||
.catch {
|
||||
Log.e(tag, "send() failed", it)
|
||||
messages += it.message!!
|
||||
|
@ -57,7 +58,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
|||
viewModelScope.launch {
|
||||
try {
|
||||
val start = System.nanoTime()
|
||||
val warmupResult = llm.bench(pp, tg, pl, nr)
|
||||
val warmupResult = llamaAndroid.bench(pp, tg, pl, nr)
|
||||
val end = System.nanoTime()
|
||||
|
||||
messages += warmupResult
|
||||
|
@ -70,7 +71,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
|||
return@launch
|
||||
}
|
||||
|
||||
messages += llm.bench(512, 128, 1, 3)
|
||||
messages += llamaAndroid.bench(512, 128, 1, 3)
|
||||
} catch (exc: IllegalStateException) {
|
||||
Log.e(tag, "bench() failed", exc)
|
||||
messages += exc.message!!
|
||||
|
@ -81,7 +82,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
|||
fun load(pathToModel: String) {
|
||||
viewModelScope.launch {
|
||||
try {
|
||||
llm.load(pathToModel)
|
||||
llamaAndroid.load(pathToModel)
|
||||
messages += "Loaded $pathToModel"
|
||||
} catch (exc: IllegalStateException) {
|
||||
Log.e(tag, "load() failed", exc)
|
||||
|
|
|
@ -2,4 +2,5 @@
|
|||
plugins {
|
||||
id("com.android.application") version "8.2.0" apply false
|
||||
id("org.jetbrains.kotlin.android") version "1.9.0" apply false
|
||||
id("com.android.library") version "8.2.0" apply false
|
||||
}
|
||||
|
|
1
examples/llama.android/llama/.gitignore
vendored
Normal file
1
examples/llama.android/llama/.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
/build
|
68
examples/llama.android/llama/build.gradle.kts
Normal file
68
examples/llama.android/llama/build.gradle.kts
Normal file
|
@ -0,0 +1,68 @@
|
|||
plugins {
|
||||
id("com.android.library")
|
||||
id("org.jetbrains.kotlin.android")
|
||||
}
|
||||
|
||||
android {
|
||||
namespace = "android.llama.cpp"
|
||||
compileSdk = 34
|
||||
|
||||
defaultConfig {
|
||||
minSdk = 33
|
||||
|
||||
testInstrumentationRunner = "androidx.test.runner.AndroidJUnitRunner"
|
||||
consumerProguardFiles("consumer-rules.pro")
|
||||
ndk {
|
||||
// Add NDK properties if wanted, e.g.
|
||||
// abiFilters += listOf("arm64-v8a")
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
arguments += "-DCMAKE_BUILD_TYPE=Release"
|
||||
cppFlags += listOf()
|
||||
arguments += listOf()
|
||||
|
||||
cppFlags("")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
buildTypes {
|
||||
release {
|
||||
isMinifyEnabled = false
|
||||
proguardFiles(
|
||||
getDefaultProguardFile("proguard-android-optimize.txt"),
|
||||
"proguard-rules.pro"
|
||||
)
|
||||
}
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
path("src/main/cpp/CMakeLists.txt")
|
||||
version = "3.22.1"
|
||||
}
|
||||
}
|
||||
compileOptions {
|
||||
sourceCompatibility = JavaVersion.VERSION_1_8
|
||||
targetCompatibility = JavaVersion.VERSION_1_8
|
||||
}
|
||||
kotlinOptions {
|
||||
jvmTarget = "1.8"
|
||||
}
|
||||
|
||||
packaging {
|
||||
resources {
|
||||
excludes += "/META-INF/{AL2.0,LGPL2.1}"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dependencies {
|
||||
|
||||
implementation("androidx.core:core-ktx:1.12.0")
|
||||
implementation("androidx.appcompat:appcompat:1.6.1")
|
||||
implementation("com.google.android.material:material:1.11.0")
|
||||
testImplementation("junit:junit:4.13.2")
|
||||
androidTestImplementation("androidx.test.ext:junit:1.1.5")
|
||||
androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1")
|
||||
}
|
0
examples/llama.android/llama/consumer-rules.pro
Normal file
0
examples/llama.android/llama/consumer-rules.pro
Normal file
21
examples/llama.android/llama/proguard-rules.pro
vendored
Normal file
21
examples/llama.android/llama/proguard-rules.pro
vendored
Normal file
|
@ -0,0 +1,21 @@
|
|||
# Add project specific ProGuard rules here.
|
||||
# You can control the set of applied configuration files using the
|
||||
# proguardFiles setting in build.gradle.
|
||||
#
|
||||
# For more details, see
|
||||
# http://developer.android.com/guide/developing/tools/proguard.html
|
||||
|
||||
# If your project uses WebView with JS, uncomment the following
|
||||
# and specify the fully qualified class name to the JavaScript interface
|
||||
# class:
|
||||
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
|
||||
# public *;
|
||||
#}
|
||||
|
||||
# Uncomment this to preserve the line number information for
|
||||
# debugging stack traces.
|
||||
#-keepattributes SourceFile,LineNumberTable
|
||||
|
||||
# If you keep the line number information, uncomment this to
|
||||
# hide the original source file name.
|
||||
#-renamesourcefileattribute SourceFile
|
|
@ -0,0 +1,24 @@
|
|||
package android.llama.cpp
|
||||
|
||||
import androidx.test.platform.app.InstrumentationRegistry
|
||||
import androidx.test.ext.junit.runners.AndroidJUnit4
|
||||
|
||||
import org.junit.Test
|
||||
import org.junit.runner.RunWith
|
||||
|
||||
import org.junit.Assert.*
|
||||
|
||||
/**
|
||||
* Instrumented test, which will execute on an Android device.
|
||||
*
|
||||
* See [testing documentation](http://d.android.com/tools/testing).
|
||||
*/
|
||||
@RunWith(AndroidJUnit4::class)
|
||||
class ExampleInstrumentedTest {
|
||||
@Test
|
||||
fun useAppContext() {
|
||||
// Context of the app under test.
|
||||
val appContext = InstrumentationRegistry.getInstrumentation().targetContext
|
||||
assertEquals("android.llama.cpp.test", appContext.packageName)
|
||||
}
|
||||
}
|
|
@ -0,0 +1,4 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
|
||||
|
||||
</manifest>
|
49
examples/llama.android/llama/src/main/cpp/CMakeLists.txt
Normal file
49
examples/llama.android/llama/src/main/cpp/CMakeLists.txt
Normal file
|
@ -0,0 +1,49 @@
|
|||
# For more information about using CMake with Android Studio, read the
|
||||
# documentation: https://d.android.com/studio/projects/add-native-code.html.
|
||||
# For more examples on how to use CMake, see https://github.com/android/ndk-samples.
|
||||
|
||||
# Sets the minimum CMake version required for this project.
|
||||
cmake_minimum_required(VERSION 3.22.1)
|
||||
|
||||
# Declares the project name. The project name can be accessed via ${ PROJECT_NAME},
|
||||
# Since this is the top level CMakeLists.txt, the project name is also accessible
|
||||
# with ${CMAKE_PROJECT_NAME} (both CMake variables are in-sync within the top level
|
||||
# build script scope).
|
||||
project("llama-android")
|
||||
|
||||
include(FetchContent)
|
||||
FetchContent_Declare(
|
||||
llama
|
||||
GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
|
||||
GIT_TAG master
|
||||
)
|
||||
|
||||
# Also provides "common"
|
||||
FetchContent_MakeAvailable(llama)
|
||||
|
||||
# Creates and names a library, sets it as either STATIC
|
||||
# or SHARED, and provides the relative paths to its source code.
|
||||
# You can define multiple libraries, and CMake builds them for you.
|
||||
# Gradle automatically packages shared libraries with your APK.
|
||||
#
|
||||
# In this top level CMakeLists.txt, ${CMAKE_PROJECT_NAME} is used to define
|
||||
# the target library name; in the sub-module's CMakeLists.txt, ${PROJECT_NAME}
|
||||
# is preferred for the same purpose.
|
||||
#
|
||||
# In order to load a library into your app from Java/Kotlin, you must call
|
||||
# System.loadLibrary() and pass the name of the library defined here;
|
||||
# for GameActivity/NativeActivity derived applications, the same library name must be
|
||||
# used in the AndroidManifest.xml file.
|
||||
add_library(${CMAKE_PROJECT_NAME} SHARED
|
||||
# List C/C++ source files with relative paths to this CMakeLists.txt.
|
||||
llama-android.cpp)
|
||||
|
||||
# Specifies libraries CMake should link to your target library. You
|
||||
# can link libraries from various origins, such as libraries defined in this
|
||||
# build script, prebuilt third-party libraries, or Android system libraries.
|
||||
target_link_libraries(${CMAKE_PROJECT_NAME}
|
||||
# List libraries link to the target library
|
||||
llama
|
||||
common
|
||||
android
|
||||
log)
|
|
@ -81,7 +81,7 @@ static void log_callback(ggml_log_level level, const char * fmt, void * data) {
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) {
|
||||
Java_android_llama_cpp_LLamaAndroid_load_1model(JNIEnv *env, jobject, jstring filename) {
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
auto path_to_model = env->GetStringUTFChars(filename, 0);
|
||||
|
@ -101,13 +101,13 @@ Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) {
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_free_1model(JNIEnv *, jobject, jlong model) {
|
||||
Java_android_llama_cpp_LLamaAndroid_free_1model(JNIEnv *, jobject, jlong model) {
|
||||
llama_free_model(reinterpret_cast<llama_model *>(model));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) {
|
||||
Java_android_llama_cpp_LLamaAndroid_new_1context(JNIEnv *env, jobject, jlong jmodel) {
|
||||
auto model = reinterpret_cast<llama_model *>(jmodel);
|
||||
|
||||
if (!model) {
|
||||
|
@ -139,25 +139,25 @@ Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) {
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_free_1context(JNIEnv *, jobject, jlong context) {
|
||||
Java_android_llama_cpp_LLamaAndroid_free_1context(JNIEnv *, jobject, jlong context) {
|
||||
llama_free(reinterpret_cast<llama_context *>(context));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_backend_1free(JNIEnv *, jobject) {
|
||||
Java_android_llama_cpp_LLamaAndroid_backend_1free(JNIEnv *, jobject) {
|
||||
llama_backend_free();
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_log_1to_1android(JNIEnv *, jobject) {
|
||||
Java_android_llama_cpp_LLamaAndroid_log_1to_1android(JNIEnv *, jobject) {
|
||||
llama_log_set(log_callback, NULL);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_example_llama_Llm_bench_1model(
|
||||
Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
JNIEnv *env,
|
||||
jobject,
|
||||
jlong context_pointer,
|
||||
|
@ -271,13 +271,13 @@ Java_com_example_llama_Llm_bench_1model(
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
|
||||
Java_android_llama_cpp_LLamaAndroid_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
|
||||
llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) {
|
||||
Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) {
|
||||
|
||||
// Source: Copy of llama.cpp:llama_batch_init but heap-allocated.
|
||||
|
||||
|
@ -313,19 +313,19 @@ Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint emb
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_backend_1init(JNIEnv *, jobject) {
|
||||
Java_android_llama_cpp_LLamaAndroid_backend_1init(JNIEnv *, jobject) {
|
||||
llama_backend_init();
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_example_llama_Llm_system_1info(JNIEnv *env, jobject) {
|
||||
Java_android_llama_cpp_LLamaAndroid_system_1info(JNIEnv *env, jobject) {
|
||||
return env->NewStringUTF(llama_print_system_info());
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jint JNICALL
|
||||
Java_com_example_llama_Llm_completion_1init(
|
||||
Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
JNIEnv *env,
|
||||
jobject,
|
||||
jlong context_pointer,
|
||||
|
@ -376,7 +376,7 @@ Java_com_example_llama_Llm_completion_1init(
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_example_llama_Llm_completion_1loop(
|
||||
Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
JNIEnv * env,
|
||||
jobject,
|
||||
jlong context_pointer,
|
||||
|
@ -438,6 +438,6 @@ Java_com_example_llama_Llm_completion_1loop(
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
|
||||
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
|
||||
llama_kv_cache_clear(reinterpret_cast<llama_context *>(context));
|
||||
}
|
|
@ -1,4 +1,4 @@
|
|||
package com.example.llama
|
||||
package android.llama.cpp
|
||||
|
||||
import android.util.Log
|
||||
import kotlinx.coroutines.CoroutineDispatcher
|
||||
|
@ -10,7 +10,7 @@ import kotlinx.coroutines.withContext
|
|||
import java.util.concurrent.Executors
|
||||
import kotlin.concurrent.thread
|
||||
|
||||
class Llm {
|
||||
class LLamaAndroid {
|
||||
private val tag: String? = this::class.simpleName
|
||||
|
||||
private val threadLocalState: ThreadLocal<State> = ThreadLocal.withInitial { State.Idle }
|
||||
|
@ -165,8 +165,8 @@ class Llm {
|
|||
}
|
||||
|
||||
// Enforce only one instance of Llm.
|
||||
private val _instance: Llm = Llm()
|
||||
private val _instance: LLamaAndroid = LLamaAndroid()
|
||||
|
||||
fun instance(): Llm = _instance
|
||||
fun instance(): LLamaAndroid = _instance
|
||||
}
|
||||
}
|
|
@ -0,0 +1,17 @@
|
|||
package android.llama.cpp
|
||||
|
||||
import org.junit.Test
|
||||
|
||||
import org.junit.Assert.*
|
||||
|
||||
/**
|
||||
* Example local unit test, which will execute on the development machine (host).
|
||||
*
|
||||
* See [testing documentation](http://d.android.com/tools/testing).
|
||||
*/
|
||||
class ExampleUnitTest {
|
||||
@Test
|
||||
fun addition_isCorrect() {
|
||||
assertEquals(4, 2 + 2)
|
||||
}
|
||||
}
|
|
@ -15,3 +15,4 @@ dependencyResolutionManagement {
|
|||
|
||||
rootProject.name = "LlamaAndroid"
|
||||
include(":app")
|
||||
include(":llama")
|
||||
|
|
|
@ -54,10 +54,10 @@ python ./examples/llava/convert-image-encoder-to-gguf \
|
|||
--projector-type ldpv2
|
||||
```
|
||||
|
||||
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
4. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
|
||||
```sh
|
||||
python ./convert.py path/to/MobileVLM-1.7B
|
||||
python ./examples/convert-legacy-llama.py path/to/MobileVLM-1.7B
|
||||
```
|
||||
|
||||
5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k`
|
||||
|
|
|
@ -50,10 +50,10 @@ python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
|
|||
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
5. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
5. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
|
||||
```sh
|
||||
python ./convert.py ../llava-v1.5-7b --skip-unknown
|
||||
python ./examples/convert-legacy-llama.py ../llava-v1.5-7b --skip-unknown
|
||||
```
|
||||
|
||||
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
|
||||
|
@ -92,7 +92,7 @@ python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projecto
|
|||
|
||||
6) Then convert the model to gguf format:
|
||||
```console
|
||||
python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
|
||||
python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
|
||||
```
|
||||
|
||||
7) And finally we can run the llava-cli using the 1.6 model version:
|
||||
|
|
|
@ -68,7 +68,7 @@ CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8
|
|||
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
|
||||
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
|
||||
|
||||
/** preprocess img and store the result in res_imgs, pad_to_square may be overriden to false depending on model configuration */
|
||||
/** preprocess img and store the result in res_imgs, pad_to_square may be overridden to false depending on model configuration */
|
||||
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs );
|
||||
|
||||
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);
|
||||
|
|
|
@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
|
|||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
gpt_print_usage(argc, argv, params);
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
-r ../../requirements/requirements-convert.txt
|
||||
-r ../../requirements/requirements-convert-legacy-llama.txt
|
||||
pillow~=10.2.0
|
||||
torch~=2.1.1
|
||||
|
|
|
@ -174,7 +174,7 @@ int main(int argc, char ** argv) {
|
|||
// debug
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
dump_kv_cache_view_seqs(kvc_view, 40);
|
||||
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
||||
|
|
|
@ -121,7 +121,7 @@ int main(int argc, char ** argv){
|
|||
// debug
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
dump_kv_cache_view_seqs(kvc_view, 40);
|
||||
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
// print current draft sequence
|
||||
|
|
|
@ -325,3 +325,5 @@ These options provide extra functionality and customization when running the LLa
|
|||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
|
||||
- `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache.
|
||||
|
|
|
@ -60,9 +60,9 @@ static void write_logfile(
|
|||
return;
|
||||
}
|
||||
|
||||
const std::string timestamp = get_sortable_timestamp();
|
||||
const std::string timestamp = string_get_sortable_timestamp();
|
||||
|
||||
const bool success = create_directory_with_parents(params.logdir);
|
||||
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||
if (!success) {
|
||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||
__func__, params.logdir.c_str());
|
||||
|
@ -80,7 +80,7 @@ static void write_logfile(
|
|||
fprintf(logfile, "binary: main\n");
|
||||
char model_desc[128];
|
||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||
|
||||
fprintf(logfile, "\n");
|
||||
fprintf(logfile, "######################\n");
|
||||
|
@ -88,8 +88,8 @@ static void write_logfile(
|
|||
fprintf(logfile, "######################\n");
|
||||
fprintf(logfile, "\n");
|
||||
|
||||
dump_string_yaml_multiline(logfile, "output", output.c_str());
|
||||
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
|
||||
yaml_dump_string_multiline(logfile, "output", output.c_str());
|
||||
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
|
||||
|
||||
llama_dump_timing_info_yaml(logfile, ctx);
|
||||
fclose(logfile);
|
||||
|
@ -181,7 +181,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
params.prompt = string_random_prompt(rng);
|
||||
}
|
||||
|
||||
LOG("%s: llama backend init\n", __func__);
|
||||
|
@ -219,7 +219,7 @@ int main(int argc, char ** argv) {
|
|||
// print system information
|
||||
{
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s\n", get_system_info(params).c_str());
|
||||
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
std::string path_session = params.path_prompt_cache;
|
||||
|
@ -474,12 +474,12 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("\n\n");
|
||||
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
const char * control_message;
|
||||
if (params.multiline_input) {
|
||||
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
||||
control_message = " - To return control to the AI, end your input with '\\'.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n";
|
||||
} else {
|
||||
control_message = " - Press Return to return control to LLaMa.\n"
|
||||
control_message = " - Press Return to return control to the AI.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n"
|
||||
" - If you want to submit another line, end your input with '\\'.\n";
|
||||
}
|
||||
|
@ -707,7 +707,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
||||
|
||||
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
||||
llama_sampling_accept(ctx_sampling, ctx, id, /* apply_grammar= */ true);
|
||||
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
||||
|
||||
|
@ -728,7 +728,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
|
||||
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], /* apply_grammar= */ false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
|
@ -740,18 +740,26 @@ int main(int argc, char ** argv) {
|
|||
// display text
|
||||
if (input_echo && display) {
|
||||
for (auto id : embd) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, id, !params.conversation);
|
||||
printf("%s", token_str.c_str());
|
||||
const std::string token_str = llama_token_to_piece(ctx, id, params.special);
|
||||
|
||||
// Console/Stream Output
|
||||
fprintf(stdout, "%s", token_str.c_str());
|
||||
|
||||
// Record Displayed Tokens To Log
|
||||
// Note: Generated tokens are created one by one hence this check
|
||||
if (embd.size() > 1) {
|
||||
// Incoming Requested Tokens
|
||||
input_tokens.push_back(id);
|
||||
} else {
|
||||
// Outgoing Generated Tokens
|
||||
output_tokens.push_back(id);
|
||||
output_ss << token_str;
|
||||
}
|
||||
}
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
// reset color to default if there is no pending user input
|
||||
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
||||
console::set_display(console::reset);
|
||||
|
@ -879,7 +887,7 @@ int main(int argc, char ** argv) {
|
|||
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
|
||||
}
|
||||
if (params.escape) {
|
||||
process_escapes(buffer);
|
||||
string_process_escapes(buffer);
|
||||
}
|
||||
|
||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||
|
|
|
@ -1,98 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
This script converts Hugging Face Llama, StarCoder, Falcon, Baichuan, and GPT-NeoX models to GGUF and quantizes them.
|
||||
|
||||
Usage:
|
||||
python make-ggml.py {model_dir_or_hf_repo_name} --model_type {model_type} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)]
|
||||
|
||||
Arguments:
|
||||
- model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub.
|
||||
- --model_type: (Required) The type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.
|
||||
- --outname: (Optional) The name of the output model. If not specified, the last part of the model directory path or the Hugging Face model repo name will be used.
|
||||
- --outdir: (Optional) The directory where the output model(s) will be stored. If not specified, '../models/{outname}' will be used.
|
||||
- --quants: (Optional) The types of quantization to apply. This should be a space-separated list. The default is 'Q4_K_M Q5_K_S'.
|
||||
- --keep_fp16: (Optional) If specified, the FP16 model will not be deleted after the quantized models are created.
|
||||
|
||||
Old quant types (some base model types require these):
|
||||
- Q4_0: small, very high quality loss - legacy, prefer using Q3_K_M
|
||||
- Q4_1: small, substantial quality loss - legacy, prefer using Q3_K_L
|
||||
- Q5_0: medium, balanced quality - legacy, prefer using Q4_K_M
|
||||
- Q5_1: medium, low quality loss - legacy, prefer using Q5_K_M
|
||||
|
||||
New quant types (recommended):
|
||||
- Q2_K: smallest, extreme quality loss - not recommended
|
||||
- Q3_K: alias for Q3_K_M
|
||||
- Q3_K_S: very small, very high quality loss
|
||||
- Q3_K_M: very small, very high quality loss
|
||||
- Q3_K_L: small, substantial quality loss
|
||||
- Q4_K: alias for Q4_K_M
|
||||
- Q4_K_S: small, significant quality loss
|
||||
- Q4_K_M: medium, balanced quality - recommended
|
||||
- Q5_K: alias for Q5_K_M
|
||||
- Q5_K_S: large, low quality loss - recommended
|
||||
- Q5_K_M: large, very low quality loss - recommended
|
||||
- Q6_K: very large, extremely low quality loss
|
||||
- Q8_0: very large, extremely low quality loss - not recommended
|
||||
- F16: extremely large, virtually no quality loss - not recommended
|
||||
- F32: absolutely huge, lossless - not recommended
|
||||
"""
|
||||
import subprocess
|
||||
subprocess.run(f"pip install huggingface-hub==0.16.4", shell=True, check=True)
|
||||
|
||||
import argparse
|
||||
import os
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
def main(model, model_type, outname, outdir, quants, keep_fp16):
|
||||
if not os.path.isdir(model):
|
||||
print(f"Model not found at {model}. Downloading...")
|
||||
try:
|
||||
if outname is None:
|
||||
outname = model.split('/')[-1]
|
||||
model = snapshot_download(repo_id=model, cache_dir='../models/hf_cache')
|
||||
except Exception as e:
|
||||
raise Exception(f"Could not download the model: {e}")
|
||||
|
||||
if outdir is None:
|
||||
outdir = f'../models/{outname}'
|
||||
|
||||
if not os.path.isfile(f"{model}/config.json"):
|
||||
raise Exception(f"Could not find config.json in {model}")
|
||||
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
|
||||
print("Building llama.cpp")
|
||||
subprocess.run(f"cd .. && make quantize", shell=True, check=True)
|
||||
|
||||
fp16 = f"{outdir}/{outname}.gguf.fp16.bin"
|
||||
|
||||
print(f"Making unquantised GGUF at {fp16}")
|
||||
if not os.path.isfile(fp16):
|
||||
if model_type != "llama":
|
||||
subprocess.run(f"python3 ../convert-{model_type}-hf-to-gguf.py {model} 1 --outfile {fp16}", shell=True, check=True)
|
||||
else:
|
||||
subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True)
|
||||
else:
|
||||
print(f"Unquantised GGML already exists at: {fp16}")
|
||||
|
||||
print("Making quants")
|
||||
for type in quants:
|
||||
outfile = f"{outdir}/{outname}.gguf.{type}.bin"
|
||||
print(f"Making {type} : {outfile}")
|
||||
subprocess.run(f"../quantize {fp16} {outfile} {type}", shell=True, check=True)
|
||||
|
||||
if not keep_fp16:
|
||||
os.remove(fp16)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description='Convert/Quantize HF models to GGUF. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.')
|
||||
parser.add_argument('model', help='Downloaded model dir or Hugging Face model repo name')
|
||||
parser.add_argument('--model_type', required=True, choices=['llama', 'starcoder', 'falcon', 'baichuan', 'gptneox'], help='Type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.')
|
||||
parser.add_argument('--outname', default=None, help='Output model(s) name')
|
||||
parser.add_argument('--outdir', default=None, help='Output directory')
|
||||
parser.add_argument('--quants', nargs='*', default=["Q4_K_M", "Q5_K_S"], help='Quant types')
|
||||
parser.add_argument('--keep_fp16', action='store_true', help='Keep fp16 model', default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args.model, args.model_type, args.outname, args.outdir, args.quants, args.keep_fp16)
|
|
@ -210,7 +210,7 @@ int main(int argc, char ** argv) {
|
|||
while (true) {
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
dump_kv_cache_view_seqs(kvc_view, 40);
|
||||
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
|
|
@ -42,10 +42,13 @@ In addition to the KL divergence the following statistics are calculated with `-
|
|||
|
||||
Results were generated using the CUDA backend and are sorted by Kullback-Leibler divergence relative to FP16.
|
||||
The "WT" importance matrices were created using varying numbers of Wikitext tokens and can be found [here](https://huggingface.co/JohannesGaessler/llama.cpp_importance_matrices/blob/main/imatrix-llama_3-8b-f16-2.7m_tokens.dat).
|
||||
Note: the FP16 logits used for the calculation of all metrics other than perplexity are stored in a binary file between runs.
|
||||
In order to save space this file does **not** contain the exact same FP32 logits but instead casts them to 16 bit unsigned integers (with some scaling).
|
||||
So the "f16" results are to be understood as the difference resulting only from this downcast.
|
||||
|
||||
| Quantization | imatrix | Model size [GiB] | PPL | ΔPPL | KLD | Mean Δp | RMS Δp |
|
||||
|--------------|---------|------------------|------------------------|------------------------|-----------------------|-------------------|------------------|
|
||||
| f16 | None | 14.97 | 6.233160 ± 0.037828 | - | - | - | - |
|
||||
| f16 | None | 14.97 | 6.233160 ± 0.037828 | 0.001524 ± 0.000755 | 0.000551 ± 0.000002 | 0.001 ± 0.002 % | 0.787 ± 0.004 % |
|
||||
| q8_0 | None | 7.96 | 6.234284 ± 0.037878 | 0.002650 ± 0.001006 | 0.001355 ± 0.000006 | -0.019 ± 0.003 % | 1.198 ± 0.007 % |
|
||||
| q6_K | None | 6.14 | 6.253382 ± 0.038078 | 0.021748 ± 0.001852 | 0.005452 ± 0.000035 | -0.007 ± 0.006 % | 2.295 ± 0.019 % |
|
||||
| q5_K_M | None | 5.33 | 6.288607 ± 0.038338 | 0.056974 ± 0.002598 | 0.010762 ± 0.000079 | -0.114 ± 0.008 % | 3.160 ± 0.031 % |
|
||||
|
|
|
@ -44,9 +44,9 @@ static void write_logfile(
|
|||
return;
|
||||
}
|
||||
|
||||
const std::string timestamp = get_sortable_timestamp();
|
||||
const std::string timestamp = string_get_sortable_timestamp();
|
||||
|
||||
const bool success = create_directory_with_parents(params.logdir);
|
||||
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||
if (!success) {
|
||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||
__func__, params.logdir.c_str());
|
||||
|
@ -64,7 +64,7 @@ static void write_logfile(
|
|||
fprintf(logfile, "binary: main\n");
|
||||
char model_desc[128];
|
||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||
dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
|
||||
yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc);
|
||||
|
||||
fprintf(logfile, "\n");
|
||||
fprintf(logfile, "######################\n");
|
||||
|
@ -72,9 +72,9 @@ static void write_logfile(
|
|||
fprintf(logfile, "######################\n");
|
||||
fprintf(logfile, "\n");
|
||||
|
||||
dump_vector_float_yaml(logfile, "logits", results.logits);
|
||||
yaml_dump_vector_float(logfile, "logits", results.logits);
|
||||
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
|
||||
dump_vector_float_yaml(logfile, "probs", results.probs);
|
||||
yaml_dump_vector_float(logfile, "probs", results.probs);
|
||||
|
||||
llama_dump_timing_info_yaml(logfile, ctx);
|
||||
fclose(logfile);
|
||||
|
@ -2007,7 +2007,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
params.prompt = string_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init();
|
||||
|
@ -2035,7 +2035,7 @@ int main(int argc, char ** argv) {
|
|||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
struct results_perplexity results;
|
||||
|
|
|
@ -259,7 +259,7 @@ int main(int argc, char ** argv) {
|
|||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
|
||||
if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
||||
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
|
||||
|
|
|
@ -11,7 +11,7 @@ struct retrieval_params {
|
|||
};
|
||||
|
||||
static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
|
||||
gpt_print_usage(argc, argv, gpt_params);
|
||||
gpt_params_print_usage(argc, argv, gpt_params);
|
||||
printf("retrieval options:\n");
|
||||
printf(" --context-file FNAME file containing context to embed.\n");
|
||||
printf(" specify multiple files by providing --context-file option multiple times.\n");
|
||||
|
@ -226,7 +226,7 @@ int main(int argc, char ** argv) {
|
|||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
// max batch size
|
||||
|
|
|
@ -594,7 +594,7 @@
|
|||
message = html`<${Probabilities} data=${data} />`
|
||||
} else {
|
||||
const text = isArrayMessage ?
|
||||
data.map(msg => msg.content).join('').replace(/^\s+/, '') :
|
||||
data.map(msg => msg.content).join('') :
|
||||
data;
|
||||
message = isCompletionMode ?
|
||||
text :
|
||||
|
@ -877,7 +877,11 @@
|
|||
|
||||
// poor mans markdown replacement
|
||||
const Markdownish = (params) => {
|
||||
const md = params.text
|
||||
const chunks = params.text.split('```');
|
||||
|
||||
for (let i = 0; i < chunks.length; i++) {
|
||||
if (i % 2 === 0) { // outside code block
|
||||
chunks[i] = chunks[i]
|
||||
.replace(/&/g, '&')
|
||||
.replace(/</g, '<')
|
||||
.replace(/>/g, '>')
|
||||
|
@ -889,7 +893,14 @@
|
|||
.replace(/```.*?\n([\s\S]*?)```/g, '<pre><code>$1</code></pre>')
|
||||
.replace(/`(.*?)`/g, '<code>$1</code>')
|
||||
.replace(/\n/gim, '<br />');
|
||||
return html`<span dangerouslySetInnerHTML=${{ __html: md }} />`;
|
||||
} else { // inside code block
|
||||
chunks[i] = `<pre><code>${chunks[i]}</code></pre>`;
|
||||
}
|
||||
}
|
||||
|
||||
const restoredText = chunks.join('');
|
||||
|
||||
return html`<span dangerouslySetInnerHTML=${{ __html: restoredText }} />`;
|
||||
};
|
||||
|
||||
const ModelGenerationInfo = (params) => {
|
||||
|
@ -903,6 +914,7 @@
|
|||
`
|
||||
}
|
||||
|
||||
|
||||
// simple popover impl
|
||||
const Popover = (props) => {
|
||||
const isOpen = useSignal(false);
|
||||
|
@ -1054,4 +1066,3 @@
|
|||
</body>
|
||||
|
||||
</html>
|
||||
|
||||
|
|
49
examples/server/public_simplechat/index.html
Normal file
49
examples/server/public_simplechat/index.html
Normal file
|
@ -0,0 +1,49 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<title>SimpleChat LlamaCppEtal </title>
|
||||
<meta charset="UTF-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<meta name="message" content="Save Nature Save Earth" />
|
||||
<meta name="description" content="SimpleChat: trigger LLM web service endpoints /chat/completions and /completions, single/multi chat sessions" />
|
||||
<meta name="author" content="by Humans for All" />
|
||||
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate" />
|
||||
<script src="simplechat.js" defer></script>
|
||||
<link rel="stylesheet" href="simplechat.css" />
|
||||
</head>
|
||||
<body>
|
||||
<div class="samecolumn" id="fullbody">
|
||||
|
||||
<div class="sameline">
|
||||
<p class="heading flex-grow" > <b> SimpleChat </b> </p>
|
||||
<div class="sameline">
|
||||
<label for="api-ep">Mode:</label>
|
||||
<select name="api-ep" id="api-ep">
|
||||
<option value="chat" selected>Chat</option>
|
||||
<option value="completion">Completion</option>
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="sessions-div" class="sameline"></div>
|
||||
|
||||
<hr>
|
||||
<div class="sameline">
|
||||
<label for="system-in">System</label>
|
||||
<input type="text" name="system" id="system-in" placeholder="e.g. you are a helpful ai assistant, who provides concise answers" class="flex-grow"/>
|
||||
</div>
|
||||
|
||||
<hr>
|
||||
<div id="chat-div">
|
||||
<p> You need to have javascript enabled.</p>
|
||||
</div>
|
||||
|
||||
<hr>
|
||||
<div class="sameline">
|
||||
<textarea id="user-in" class="flex-grow" rows="3" placeholder="enter your query to the ai model here" ></textarea>
|
||||
<button id="user-btn">submit</button>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
201
examples/server/public_simplechat/readme.md
Normal file
201
examples/server/public_simplechat/readme.md
Normal file
|
@ -0,0 +1,201 @@
|
|||
|
||||
# SimpleChat
|
||||
|
||||
by Humans for All.
|
||||
|
||||
|
||||
## overview
|
||||
|
||||
This simple web frontend, allows triggering/testing the server's /completions or /chat/completions endpoints
|
||||
in a simple way with minimal code from a common code base. Inturn additionally it tries to allow single or
|
||||
multiple independent back and forth chatting to an extent, with the ai llm model at a basic level, with their
|
||||
own system prompts.
|
||||
|
||||
The UI follows a responsive web design so that the layout can adapt to available display space in a usable
|
||||
enough manner, in general.
|
||||
|
||||
Allows developer/end-user to control some of the behaviour by updating gMe members from browser's devel-tool
|
||||
console.
|
||||
|
||||
NOTE: Given that the idea is for basic minimal testing, it doesnt bother with any model context length and
|
||||
culling of old messages from the chat by default. However by enabling the sliding window chat logic, a crude
|
||||
form of old messages culling can be achieved.
|
||||
|
||||
NOTE: It doesnt set any parameters other than temperature and max_tokens for now. However if someone wants
|
||||
they can update the js file or equivalent member in gMe as needed.
|
||||
|
||||
|
||||
## usage
|
||||
|
||||
One could run this web frontend directly using server itself or if anyone is thinking of adding a built in web
|
||||
frontend to configure the server over http(s) or so, then run this web frontend using something like python's
|
||||
http module.
|
||||
|
||||
### running using examples/server
|
||||
|
||||
bin/server -m path/model.gguf --path ../examples/server/public_simplechat [--port PORT]
|
||||
|
||||
### running using python3's server module
|
||||
|
||||
first run examples/server
|
||||
* bin/server -m path/model.gguf
|
||||
|
||||
next run this web front end in examples/server/public_simplechat
|
||||
* cd ../examples/server/public_simplechat
|
||||
* python3 -m http.server PORT
|
||||
|
||||
### using the front end
|
||||
|
||||
Open this simple web front end from your local browser
|
||||
|
||||
* http://127.0.0.1:PORT/index.html
|
||||
|
||||
Once inside
|
||||
|
||||
* Select between chat and completion mode. By default it is set to chat mode.
|
||||
|
||||
* In completion mode
|
||||
* logic by default doesnt insert any role specific "ROLE: " prefix wrt each role's message.
|
||||
If the model requires any prefix wrt user role messages, then the end user has to
|
||||
explicitly add the needed prefix, when they enter their chat message.
|
||||
Similarly if the model requires any prefix to trigger assistant/ai-model response,
|
||||
then the end user needs to enter the same.
|
||||
This keeps the logic simple, while still giving flexibility to the end user to
|
||||
manage any templating/tagging requirement wrt their messages to the model.
|
||||
* the logic doesnt insert newline at the begining and end wrt the prompt message generated.
|
||||
However if the chat being sent to /completions end point has more than one role's message,
|
||||
then insert newline when moving from one role's message to the next role's message, so
|
||||
that it can be clearly identified/distinguished.
|
||||
* given that /completions endpoint normally doesnt add additional chat-templating of its
|
||||
own, the above ensures that end user can create a custom single/multi message combo with
|
||||
any tags/special-tokens related chat templating to test out model handshake. Or enduser
|
||||
can use it just for normal completion related/based query.
|
||||
|
||||
* If you want to provide a system prompt, then ideally enter it first, before entering any user query.
|
||||
Normally Completion mode doesnt need system prompt, while Chat mode can generate better/interesting
|
||||
responses with a suitable system prompt.
|
||||
* if chat.add_system_begin is used
|
||||
* you cant change the system prompt, after it is has been submitted once along with user query.
|
||||
* you cant set a system prompt, after you have submitted any user query
|
||||
* if chat.add_system_anytime is used
|
||||
* one can change the system prompt any time during chat, by changing the contents of system prompt.
|
||||
* inturn the updated/changed system prompt will be inserted into the chat session.
|
||||
* this allows for the subsequent user chatting to be driven by the new system prompt set above.
|
||||
|
||||
* Enter your query and either press enter or click on the submit button.
|
||||
If you want to insert enter (\n) as part of your chat/query to ai model, use shift+enter.
|
||||
|
||||
* Wait for the logic to communicate with the server and get the response.
|
||||
* the user is not allowed to enter any fresh query during this time.
|
||||
* the user input box will be disabled and a working message will be shown in it.
|
||||
|
||||
* just refresh the page, to reset wrt the chat history and or system prompt and start afresh.
|
||||
|
||||
* Using NewChat one can start independent chat sessions.
|
||||
* two independent chat sessions are setup by default.
|
||||
|
||||
|
||||
## Devel note
|
||||
|
||||
### Reason behind this
|
||||
|
||||
The idea is to be easy enough to use for basic purposes, while also being simple and easily discernable
|
||||
by developers who may not be from web frontend background (so inturn may not be familiar with template /
|
||||
end-use-specific-language-extensions driven flows) so that they can use it to explore/experiment things.
|
||||
|
||||
And given that the idea is also to help explore/experiment for developers, some flexibility is provided
|
||||
to change behaviour easily using the devel-tools/console, for now. And skeletal logic has been implemented
|
||||
to explore some of the end points and ideas/implications around them.
|
||||
|
||||
|
||||
### General
|
||||
|
||||
Me/gMe consolidates the settings which control the behaviour into one object.
|
||||
One can see the current settings, as well as change/update them using browsers devel-tool/console.
|
||||
|
||||
bCompletionFreshChatAlways - whether Completion mode collates complete/sliding-window history when
|
||||
communicating with the server or only sends the latest user query/message.
|
||||
|
||||
bCompletionInsertStandardRolePrefix - whether Completion mode inserts role related prefix wrt the
|
||||
messages that get inserted into prompt field wrt /Completion endpoint.
|
||||
|
||||
chatRequestOptions - maintains the list of options/fields to send along with chat request,
|
||||
irrespective of whether /chat/completions or /completions endpoint.
|
||||
|
||||
If you want to add additional options/fields to send to the server/ai-model, and or
|
||||
modify the existing options value or remove them, for now you can update this global var
|
||||
using browser's development-tools/console.
|
||||
|
||||
iRecentUserMsgCnt - a simple minded SlidingWindow to limit context window load at Ai Model end.
|
||||
This is disabled by default. However if enabled, then in addition to latest system message, only
|
||||
the last/latest iRecentUserMsgCnt user messages after the latest system prompt and its responses
|
||||
from the ai model will be sent to the ai-model, when querying for a new response. IE if enabled,
|
||||
only user messages after the latest system message/prompt will be considered.
|
||||
|
||||
This specified sliding window user message count also includes the latest user query.
|
||||
<0 : Send entire chat history to server
|
||||
0 : Send only the system message if any to the server
|
||||
>0 : Send the latest chat history from the latest system prompt, limited to specified cnt.
|
||||
|
||||
|
||||
By using gMe's iRecentUserMsgCnt and chatRequestOptions.max_tokens one can try to control the
|
||||
implications of loading of the ai-model's context window by chat history, wrt chat response to
|
||||
some extent in a simple crude way.
|
||||
|
||||
|
||||
Sometimes the browser may be stuborn with caching of the file, so your updates to html/css/js
|
||||
may not be visible. Also remember that just refreshing/reloading page in browser or for that
|
||||
matter clearing site data, dont directly override site caching in all cases. Worst case you may
|
||||
have to change port. Or in dev tools of browser, you may be able to disable caching fully.
|
||||
|
||||
|
||||
Concept of multiple chat sessions with different servers, as well as saving and restoring of
|
||||
those across browser usage sessions, can be woven around the SimpleChat/MultiChatUI class and
|
||||
its instances relatively easily, however given the current goal of keeping this simple, it has
|
||||
not been added, for now.
|
||||
|
||||
|
||||
By switching between chat.add_system_begin/anytime, one can control whether one can change
|
||||
the system prompt, anytime during the conversation or only at the beginning.
|
||||
|
||||
|
||||
read_json_early, is to experiment with reading json response data early on, if available,
|
||||
so that user can be shown generated data, as and when it is being generated, rather than
|
||||
at the end when full data is available.
|
||||
|
||||
the server flow doesnt seem to be sending back data early, atleast for request (inc options)
|
||||
that is currently sent.
|
||||
|
||||
if able to read json data early on in future, as and when ai model is generating data, then
|
||||
this helper needs to indirectly update the chat div with the recieved data, without waiting
|
||||
for the overall data to be available.
|
||||
|
||||
|
||||
### Default setup
|
||||
|
||||
By default things are setup to try and make the user experience a bit better, if possible.
|
||||
However a developer when testing the server of ai-model may want to change these value.
|
||||
|
||||
Using iRecentUserMsgCnt reduce chat history context sent to the server/ai-model to be
|
||||
just the system-prompt, prev-user-request-and-ai-response and cur-user-request, instead of
|
||||
full chat history. This way if there is any response with garbage/repeatation, it doesnt
|
||||
mess with things beyond the next question/request/query, in some ways.
|
||||
|
||||
Set max_tokens to 1024, so that a relatively large previous reponse doesnt eat up the space
|
||||
available wrt next query-response. However dont forget that the server when started should
|
||||
also be started with a model context size of 1k or more, to be on safe side.
|
||||
|
||||
The /completions endpoint of examples/server doesnt take max_tokens, instead it takes the
|
||||
internal n_predict, for now add the same here on the client side, maybe later add max_tokens
|
||||
to /completions endpoint handling code on server side.
|
||||
|
||||
Frequency and presence penalty fields are set to 1.2 in the set of fields sent to server
|
||||
along with the user query. So that the model is partly set to try avoid repeating text in
|
||||
its response.
|
||||
|
||||
A end-user can change these behaviour by editing gMe from browser's devel-tool/console.
|
||||
|
||||
|
||||
## At the end
|
||||
|
||||
Also a thank you to all open source and open model developers, who strive for the common good.
|
68
examples/server/public_simplechat/simplechat.css
Normal file
68
examples/server/public_simplechat/simplechat.css
Normal file
|
@ -0,0 +1,68 @@
|
|||
/**
|
||||
* the styling of the simplechat web frontend
|
||||
* by Humans for All
|
||||
*/
|
||||
|
||||
#fullbody {
|
||||
height: 98vh;
|
||||
}
|
||||
|
||||
.heading {
|
||||
background-color: lightgray;
|
||||
}
|
||||
|
||||
.session-selected {
|
||||
background-color: lightblue;
|
||||
}
|
||||
|
||||
.role-system {
|
||||
background-color: lightblue;
|
||||
}
|
||||
.role-user {
|
||||
background-color: lightgray;
|
||||
}
|
||||
|
||||
.flex-grow {
|
||||
flex-grow: 1;
|
||||
}
|
||||
.float-right {
|
||||
float: right;
|
||||
}
|
||||
|
||||
#chat-div {
|
||||
overflow: scroll;
|
||||
flex-grow: 1;
|
||||
flex-shrink: 1;
|
||||
min-height: 40vh;
|
||||
}
|
||||
button {
|
||||
min-width: 8vw;
|
||||
}
|
||||
|
||||
.sameline {
|
||||
display: flex;
|
||||
flex-direction: row;
|
||||
}
|
||||
.samecolumn {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
}
|
||||
|
||||
.ul1 {
|
||||
padding-inline-start: 2vw;
|
||||
}
|
||||
.ul2 {
|
||||
padding-inline-start: 2vw;
|
||||
}
|
||||
|
||||
* {
|
||||
margin: 0.6vmin;
|
||||
}
|
||||
|
||||
@media print {
|
||||
|
||||
#fullbody {
|
||||
height: auto;
|
||||
}
|
||||
|
||||
}
|
629
examples/server/public_simplechat/simplechat.js
Normal file
629
examples/server/public_simplechat/simplechat.js
Normal file
|
@ -0,0 +1,629 @@
|
|||
// @ts-check
|
||||
// A simple completions and chat/completions test related web front end logic
|
||||
// by Humans for All
|
||||
|
||||
class Roles {
|
||||
static System = "system";
|
||||
static User = "user";
|
||||
static Assistant = "assistant";
|
||||
}
|
||||
|
||||
class ApiEP {
|
||||
static Chat = "chat";
|
||||
static Completion = "completion";
|
||||
}
|
||||
|
||||
let gUsageMsg = `
|
||||
<p class="role-system">Usage</p>
|
||||
<ul class="ul1">
|
||||
<li> Set system prompt above, to try control ai response charactersitic, if model supports same.</li>
|
||||
<ul class="ul2">
|
||||
<li> Completion mode normally wont have a system prompt.</li>
|
||||
</ul>
|
||||
<li> Enter your query to ai assistant below.</li>
|
||||
<ul class="ul2">
|
||||
<li> Completion mode doesnt insert user/role: prefix implicitly.</li>
|
||||
<li> Use shift+enter for inserting enter/newline.</li>
|
||||
</ul>
|
||||
<li> Default ContextWindow = [System, Last Query+Resp, Cur Query].</li>
|
||||
<ul class="ul2">
|
||||
<li> experiment iRecentUserMsgCnt, max_tokens, model ctxt window to expand</li>
|
||||
</ul>
|
||||
</ul>
|
||||
`;
|
||||
|
||||
/** @typedef {{role: string, content: string}[]} ChatMessages */
|
||||
|
||||
class SimpleChat {
|
||||
|
||||
constructor() {
|
||||
/**
|
||||
* Maintain in a form suitable for common LLM web service chat/completions' messages entry
|
||||
* @type {ChatMessages}
|
||||
*/
|
||||
this.xchat = [];
|
||||
this.iLastSys = -1;
|
||||
}
|
||||
|
||||
clear() {
|
||||
this.xchat = [];
|
||||
this.iLastSys = -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Recent chat messages.
|
||||
* If iRecentUserMsgCnt < 0
|
||||
* Then return the full chat history
|
||||
* Else
|
||||
* Return chat messages from latest going back till the last/latest system prompt.
|
||||
* While keeping track that the number of user queries/messages doesnt exceed iRecentUserMsgCnt.
|
||||
* @param {number} iRecentUserMsgCnt
|
||||
*/
|
||||
recent_chat(iRecentUserMsgCnt) {
|
||||
if (iRecentUserMsgCnt < 0) {
|
||||
return this.xchat;
|
||||
}
|
||||
if (iRecentUserMsgCnt == 0) {
|
||||
console.warn("WARN:SimpleChat:SC:RecentChat:iRecentUsermsgCnt of 0 means no user message/query sent");
|
||||
}
|
||||
/** @type{ChatMessages} */
|
||||
let rchat = [];
|
||||
let sysMsg = this.get_system_latest();
|
||||
if (sysMsg.length != 0) {
|
||||
rchat.push({role: Roles.System, content: sysMsg});
|
||||
}
|
||||
let iUserCnt = 0;
|
||||
let iStart = this.xchat.length;
|
||||
for(let i=this.xchat.length-1; i > this.iLastSys; i--) {
|
||||
if (iUserCnt >= iRecentUserMsgCnt) {
|
||||
break;
|
||||
}
|
||||
let msg = this.xchat[i];
|
||||
if (msg.role == Roles.User) {
|
||||
iStart = i;
|
||||
iUserCnt += 1;
|
||||
}
|
||||
}
|
||||
for(let i = iStart; i < this.xchat.length; i++) {
|
||||
let msg = this.xchat[i];
|
||||
if (msg.role == Roles.System) {
|
||||
continue;
|
||||
}
|
||||
rchat.push({role: msg.role, content: msg.content});
|
||||
}
|
||||
return rchat;
|
||||
}
|
||||
|
||||
/**
|
||||
* Add an entry into xchat
|
||||
* @param {string} role
|
||||
* @param {string|undefined|null} content
|
||||
*/
|
||||
add(role, content) {
|
||||
if ((content == undefined) || (content == null) || (content == "")) {
|
||||
return false;
|
||||
}
|
||||
this.xchat.push( {role: role, content: content} );
|
||||
if (role == Roles.System) {
|
||||
this.iLastSys = this.xchat.length - 1;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Show the contents in the specified div
|
||||
* @param {HTMLDivElement} div
|
||||
* @param {boolean} bClear
|
||||
*/
|
||||
show(div, bClear=true) {
|
||||
if (bClear) {
|
||||
div.replaceChildren();
|
||||
}
|
||||
let last = undefined;
|
||||
for(const x of this.recent_chat(gMe.iRecentUserMsgCnt)) {
|
||||
let entry = document.createElement("p");
|
||||
entry.className = `role-${x.role}`;
|
||||
entry.innerText = `${x.role}: ${x.content}`;
|
||||
div.appendChild(entry);
|
||||
last = entry;
|
||||
}
|
||||
if (last !== undefined) {
|
||||
last.scrollIntoView(false);
|
||||
} else {
|
||||
if (bClear) {
|
||||
div.innerHTML = gUsageMsg;
|
||||
gMe.show_info(div);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Add needed fields wrt json object to be sent wrt LLM web services completions endpoint.
|
||||
* The needed fields/options are picked from a global object.
|
||||
* Convert the json into string.
|
||||
* @param {Object} obj
|
||||
*/
|
||||
request_jsonstr(obj) {
|
||||
for(let k in gMe.chatRequestOptions) {
|
||||
obj[k] = gMe.chatRequestOptions[k];
|
||||
}
|
||||
return JSON.stringify(obj);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a string form of json object suitable for chat/completions
|
||||
*/
|
||||
request_messages_jsonstr() {
|
||||
let req = {
|
||||
messages: this.recent_chat(gMe.iRecentUserMsgCnt),
|
||||
}
|
||||
return this.request_jsonstr(req);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a string form of json object suitable for /completions
|
||||
* @param {boolean} bInsertStandardRolePrefix Insert "<THE_ROLE>: " as prefix wrt each role's message
|
||||
*/
|
||||
request_prompt_jsonstr(bInsertStandardRolePrefix) {
|
||||
let prompt = "";
|
||||
let iCnt = 0;
|
||||
for(const chat of this.recent_chat(gMe.iRecentUserMsgCnt)) {
|
||||
iCnt += 1;
|
||||
if (iCnt > 1) {
|
||||
prompt += "\n";
|
||||
}
|
||||
if (bInsertStandardRolePrefix) {
|
||||
prompt += `${chat.role}: `;
|
||||
}
|
||||
prompt += `${chat.content}`;
|
||||
}
|
||||
let req = {
|
||||
prompt: prompt,
|
||||
}
|
||||
return this.request_jsonstr(req);
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow setting of system prompt, but only at begining.
|
||||
* @param {string} sysPrompt
|
||||
* @param {string} msgTag
|
||||
*/
|
||||
add_system_begin(sysPrompt, msgTag) {
|
||||
if (this.xchat.length == 0) {
|
||||
if (sysPrompt.length > 0) {
|
||||
return this.add(Roles.System, sysPrompt);
|
||||
}
|
||||
} else {
|
||||
if (sysPrompt.length > 0) {
|
||||
if (this.xchat[0].role !== Roles.System) {
|
||||
console.error(`ERRR:SimpleChat:SC:${msgTag}:You need to specify system prompt before any user query, ignoring...`);
|
||||
} else {
|
||||
if (this.xchat[0].content !== sysPrompt) {
|
||||
console.error(`ERRR:SimpleChat:SC:${msgTag}:You cant change system prompt, mid way through, ignoring...`);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow setting of system prompt, at any time.
|
||||
* @param {string} sysPrompt
|
||||
* @param {string} msgTag
|
||||
*/
|
||||
add_system_anytime(sysPrompt, msgTag) {
|
||||
if (sysPrompt.length <= 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (this.iLastSys < 0) {
|
||||
return this.add(Roles.System, sysPrompt);
|
||||
}
|
||||
|
||||
let lastSys = this.xchat[this.iLastSys].content;
|
||||
if (lastSys !== sysPrompt) {
|
||||
return this.add(Roles.System, sysPrompt);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Retrieve the latest system prompt.
|
||||
*/
|
||||
get_system_latest() {
|
||||
if (this.iLastSys == -1) {
|
||||
return "";
|
||||
}
|
||||
let sysPrompt = this.xchat[this.iLastSys].content;
|
||||
return sysPrompt;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
let gBaseURL = "http://127.0.0.1:8080";
|
||||
let gChatURL = {
|
||||
'chat': `${gBaseURL}/chat/completions`,
|
||||
'completion': `${gBaseURL}/completions`,
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Set the class of the children, based on whether it is the idSelected or not.
|
||||
* @param {HTMLDivElement} elBase
|
||||
* @param {string} idSelected
|
||||
* @param {string} classSelected
|
||||
* @param {string} classUnSelected
|
||||
*/
|
||||
function el_children_config_class(elBase, idSelected, classSelected, classUnSelected="") {
|
||||
for(let child of elBase.children) {
|
||||
if (child.id == idSelected) {
|
||||
child.className = classSelected;
|
||||
} else {
|
||||
child.className = classUnSelected;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create button and set it up.
|
||||
* @param {string} id
|
||||
* @param {(this: HTMLButtonElement, ev: MouseEvent) => any} callback
|
||||
* @param {string | undefined} name
|
||||
* @param {string | undefined} innerText
|
||||
*/
|
||||
function el_create_button(id, callback, name=undefined, innerText=undefined) {
|
||||
if (!name) {
|
||||
name = id;
|
||||
}
|
||||
if (!innerText) {
|
||||
innerText = id;
|
||||
}
|
||||
let btn = document.createElement("button");
|
||||
btn.id = id;
|
||||
btn.name = name;
|
||||
btn.innerText = innerText;
|
||||
btn.addEventListener("click", callback);
|
||||
return btn;
|
||||
}
|
||||
|
||||
|
||||
class MultiChatUI {
|
||||
|
||||
constructor() {
|
||||
/** @type {Object<string, SimpleChat>} */
|
||||
this.simpleChats = {};
|
||||
/** @type {string} */
|
||||
this.curChatId = "";
|
||||
|
||||
// the ui elements
|
||||
this.elInSystem = /** @type{HTMLInputElement} */(document.getElementById("system-in"));
|
||||
this.elDivChat = /** @type{HTMLDivElement} */(document.getElementById("chat-div"));
|
||||
this.elBtnUser = /** @type{HTMLButtonElement} */(document.getElementById("user-btn"));
|
||||
this.elInUser = /** @type{HTMLInputElement} */(document.getElementById("user-in"));
|
||||
this.elSelectApiEP = /** @type{HTMLSelectElement} */(document.getElementById("api-ep"));
|
||||
this.elDivSessions = /** @type{HTMLDivElement} */(document.getElementById("sessions-div"));
|
||||
|
||||
this.validate_element(this.elInSystem, "system-in");
|
||||
this.validate_element(this.elDivChat, "chat-div");
|
||||
this.validate_element(this.elInUser, "user-in");
|
||||
this.validate_element(this.elSelectApiEP, "api-ep");
|
||||
this.validate_element(this.elDivChat, "sessions-div");
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if the element got
|
||||
* @param {HTMLElement | null} el
|
||||
* @param {string} msgTag
|
||||
*/
|
||||
validate_element(el, msgTag) {
|
||||
if (el == null) {
|
||||
throw Error(`ERRR:SimpleChat:MCUI:${msgTag} element missing in html...`);
|
||||
} else {
|
||||
console.debug(`INFO:SimpleChat:MCUI:${msgTag} Id[${el.id}] Name[${el["name"]}]`);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset user input ui.
|
||||
* * clear user input
|
||||
* * enable user input
|
||||
* * set focus to user input
|
||||
*/
|
||||
ui_reset_userinput() {
|
||||
this.elInUser.value = "";
|
||||
this.elInUser.disabled = false;
|
||||
this.elInUser.focus();
|
||||
}
|
||||
|
||||
/**
|
||||
* Setup the needed callbacks wrt UI, curChatId to defaultChatId and
|
||||
* optionally switch to specified defaultChatId.
|
||||
* @param {string} defaultChatId
|
||||
* @param {boolean} bSwitchSession
|
||||
*/
|
||||
setup_ui(defaultChatId, bSwitchSession=false) {
|
||||
|
||||
this.curChatId = defaultChatId;
|
||||
if (bSwitchSession) {
|
||||
this.handle_session_switch(this.curChatId);
|
||||
}
|
||||
|
||||
this.elBtnUser.addEventListener("click", (ev)=>{
|
||||
if (this.elInUser.disabled) {
|
||||
return;
|
||||
}
|
||||
this.handle_user_submit(this.curChatId, this.elSelectApiEP.value).catch((/** @type{Error} */reason)=>{
|
||||
let msg = `ERRR:SimpleChat\nMCUI:HandleUserSubmit:${this.curChatId}\n${reason.name}:${reason.message}`;
|
||||
console.debug(msg.replace("\n", ":"));
|
||||
alert(msg);
|
||||
this.ui_reset_userinput();
|
||||
});
|
||||
});
|
||||
|
||||
this.elInUser.addEventListener("keyup", (ev)=> {
|
||||
// allow user to insert enter into their message using shift+enter.
|
||||
// while just pressing enter key will lead to submitting.
|
||||
if ((ev.key === "Enter") && (!ev.shiftKey)) {
|
||||
let value = this.elInUser.value;
|
||||
this.elInUser.value = value.substring(0,value.length-1);
|
||||
this.elBtnUser.click();
|
||||
ev.preventDefault();
|
||||
}
|
||||
});
|
||||
|
||||
this.elInSystem.addEventListener("keyup", (ev)=> {
|
||||
// allow user to insert enter into the system prompt using shift+enter.
|
||||
// while just pressing enter key will lead to setting the system prompt.
|
||||
if ((ev.key === "Enter") && (!ev.shiftKey)) {
|
||||
let chat = this.simpleChats[this.curChatId];
|
||||
chat.add_system_anytime(this.elInSystem.value, this.curChatId);
|
||||
chat.show(this.elDivChat);
|
||||
ev.preventDefault();
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Setup a new chat session and optionally switch to it.
|
||||
* @param {string} chatId
|
||||
* @param {boolean} bSwitchSession
|
||||
*/
|
||||
new_chat_session(chatId, bSwitchSession=false) {
|
||||
this.simpleChats[chatId] = new SimpleChat();
|
||||
if (bSwitchSession) {
|
||||
this.handle_session_switch(chatId);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Try read json response early, if available.
|
||||
* @param {Response} resp
|
||||
*/
|
||||
async read_json_early(resp) {
|
||||
if (!resp.body) {
|
||||
throw Error("ERRR:SimpleChat:MCUI:ReadJsonEarly:No body...");
|
||||
}
|
||||
let tdUtf8 = new TextDecoder("utf-8");
|
||||
let rr = resp.body.getReader();
|
||||
let gotBody = "";
|
||||
while(true) {
|
||||
let { value: cur, done: done} = await rr.read();
|
||||
let curBody = tdUtf8.decode(cur);
|
||||
console.debug("DBUG:SC:PART:", curBody);
|
||||
gotBody += curBody;
|
||||
if (done) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return JSON.parse(gotBody);
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle user query submit request, wrt specified chat session.
|
||||
* @param {string} chatId
|
||||
* @param {string} apiEP
|
||||
*/
|
||||
async handle_user_submit(chatId, apiEP) {
|
||||
|
||||
let chat = this.simpleChats[chatId];
|
||||
|
||||
// In completion mode, if configured, clear any previous chat history.
|
||||
// So if user wants to simulate a multi-chat based completion query,
|
||||
// they will have to enter the full thing, as a suitable multiline
|
||||
// user input/query.
|
||||
if ((apiEP == ApiEP.Completion) && (gMe.bCompletionFreshChatAlways)) {
|
||||
chat.clear();
|
||||
}
|
||||
|
||||
chat.add_system_anytime(this.elInSystem.value, chatId);
|
||||
|
||||
let content = this.elInUser.value;
|
||||
if (!chat.add(Roles.User, content)) {
|
||||
console.debug(`WARN:SimpleChat:MCUI:${chatId}:HandleUserSubmit:Ignoring empty user input...`);
|
||||
return;
|
||||
}
|
||||
chat.show(this.elDivChat);
|
||||
|
||||
let theBody;
|
||||
let theUrl = gChatURL[apiEP]
|
||||
if (apiEP == ApiEP.Chat) {
|
||||
theBody = chat.request_messages_jsonstr();
|
||||
} else {
|
||||
theBody = chat.request_prompt_jsonstr(gMe.bCompletionInsertStandardRolePrefix);
|
||||
}
|
||||
|
||||
this.elInUser.value = "working...";
|
||||
this.elInUser.disabled = true;
|
||||
console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:${theUrl}:ReqBody:${theBody}`);
|
||||
let resp = await fetch(theUrl, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
body: theBody,
|
||||
});
|
||||
|
||||
let respBody = await resp.json();
|
||||
//let respBody = await this.read_json_early(resp);
|
||||
console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:RespBody:${JSON.stringify(respBody)}`);
|
||||
let assistantMsg;
|
||||
if (apiEP == ApiEP.Chat) {
|
||||
assistantMsg = respBody["choices"][0]["message"]["content"];
|
||||
} else {
|
||||
try {
|
||||
assistantMsg = respBody["choices"][0]["text"];
|
||||
} catch {
|
||||
assistantMsg = respBody["content"];
|
||||
}
|
||||
}
|
||||
chat.add(Roles.Assistant, assistantMsg);
|
||||
if (chatId == this.curChatId) {
|
||||
chat.show(this.elDivChat);
|
||||
} else {
|
||||
console.debug(`DBUG:SimpleChat:MCUI:HandleUserSubmit:ChatId has changed:[${chatId}] [${this.curChatId}]`);
|
||||
}
|
||||
this.ui_reset_userinput();
|
||||
}
|
||||
|
||||
/**
|
||||
* Show buttons for NewChat and available chat sessions, in the passed elDiv.
|
||||
* If elDiv is undefined/null, then use this.elDivSessions.
|
||||
* Take care of highlighting the selected chat-session's btn.
|
||||
* @param {HTMLDivElement | undefined} elDiv
|
||||
*/
|
||||
show_sessions(elDiv=undefined) {
|
||||
if (!elDiv) {
|
||||
elDiv = this.elDivSessions;
|
||||
}
|
||||
elDiv.replaceChildren();
|
||||
// Btn for creating new chat session
|
||||
let btnNew = el_create_button("New CHAT", (ev)=> {
|
||||
if (this.elInUser.disabled) {
|
||||
console.error(`ERRR:SimpleChat:MCUI:NewChat:Current session [${this.curChatId}] awaiting response, ignoring request...`);
|
||||
alert("ERRR:SimpleChat\nMCUI:NewChat\nWait for response to pending query, before starting new chat session");
|
||||
return;
|
||||
}
|
||||
let chatId = `Chat${Object.keys(this.simpleChats).length}`;
|
||||
let chatIdGot = prompt("INFO:SimpleChat\nMCUI:NewChat\nEnter id for new chat session", chatId);
|
||||
if (!chatIdGot) {
|
||||
console.error("ERRR:SimpleChat:MCUI:NewChat:Skipping based on user request...");
|
||||
return;
|
||||
}
|
||||
this.new_chat_session(chatIdGot, true);
|
||||
this.create_session_btn(elDiv, chatIdGot);
|
||||
el_children_config_class(elDiv, chatIdGot, "session-selected", "");
|
||||
});
|
||||
elDiv.appendChild(btnNew);
|
||||
// Btns for existing chat sessions
|
||||
let chatIds = Object.keys(this.simpleChats);
|
||||
for(let cid of chatIds) {
|
||||
let btn = this.create_session_btn(elDiv, cid);
|
||||
if (cid == this.curChatId) {
|
||||
btn.className = "session-selected";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
create_session_btn(elDiv, cid) {
|
||||
let btn = el_create_button(cid, (ev)=>{
|
||||
let target = /** @type{HTMLButtonElement} */(ev.target);
|
||||
console.debug(`DBUG:SimpleChat:MCUI:SessionClick:${target.id}`);
|
||||
if (this.elInUser.disabled) {
|
||||
console.error(`ERRR:SimpleChat:MCUI:SessionClick:${target.id}:Current session [${this.curChatId}] awaiting response, ignoring switch...`);
|
||||
alert("ERRR:SimpleChat\nMCUI:SessionClick\nWait for response to pending query, before switching");
|
||||
return;
|
||||
}
|
||||
this.handle_session_switch(target.id);
|
||||
el_children_config_class(elDiv, target.id, "session-selected", "");
|
||||
});
|
||||
elDiv.appendChild(btn);
|
||||
return btn;
|
||||
}
|
||||
|
||||
/**
|
||||
* Switch ui to the specified chatId and set curChatId to same.
|
||||
* @param {string} chatId
|
||||
*/
|
||||
async handle_session_switch(chatId) {
|
||||
let chat = this.simpleChats[chatId];
|
||||
if (chat == undefined) {
|
||||
console.error(`ERRR:SimpleChat:MCUI:HandleSessionSwitch:${chatId} missing...`);
|
||||
return;
|
||||
}
|
||||
this.elInSystem.value = chat.get_system_latest();
|
||||
this.elInUser.value = "";
|
||||
chat.show(this.elDivChat);
|
||||
this.elInUser.focus();
|
||||
this.curChatId = chatId;
|
||||
console.log(`INFO:SimpleChat:MCUI:HandleSessionSwitch:${chatId} entered...`);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
class Me {
|
||||
|
||||
constructor() {
|
||||
this.defaultChatIds = [ "Default", "Other" ];
|
||||
this.multiChat = new MultiChatUI();
|
||||
this.bCompletionFreshChatAlways = true;
|
||||
this.bCompletionInsertStandardRolePrefix = false;
|
||||
this.iRecentUserMsgCnt = 2;
|
||||
// Add needed fields wrt json object to be sent wrt LLM web services completions endpoint.
|
||||
this.chatRequestOptions = {
|
||||
"temperature": 0.7,
|
||||
"max_tokens": 1024,
|
||||
"frequency_penalty": 1.2,
|
||||
"presence_penalty": 1.2,
|
||||
"n_predict": 1024
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* @param {HTMLDivElement} elDiv
|
||||
*/
|
||||
show_info(elDiv) {
|
||||
|
||||
var p = document.createElement("p");
|
||||
p.innerText = "Settings (devel-tools-console gMe)";
|
||||
p.className = "role-system";
|
||||
elDiv.appendChild(p);
|
||||
|
||||
var p = document.createElement("p");
|
||||
p.innerText = `bCompletionFreshChatAlways:${this.bCompletionFreshChatAlways}`;
|
||||
elDiv.appendChild(p);
|
||||
|
||||
p = document.createElement("p");
|
||||
p.innerText = `bCompletionInsertStandardRolePrefix:${this.bCompletionInsertStandardRolePrefix}`;
|
||||
elDiv.appendChild(p);
|
||||
|
||||
p = document.createElement("p");
|
||||
p.innerText = `iRecentUserMsgCnt:${this.iRecentUserMsgCnt}`;
|
||||
elDiv.appendChild(p);
|
||||
|
||||
p = document.createElement("p");
|
||||
p.innerText = `chatRequestOptions:${JSON.stringify(this.chatRequestOptions)}`;
|
||||
elDiv.appendChild(p);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/** @type {Me} */
|
||||
let gMe;
|
||||
|
||||
function startme() {
|
||||
console.log("INFO:SimpleChat:StartMe:Starting...");
|
||||
gMe = new Me();
|
||||
for (let cid of gMe.defaultChatIds) {
|
||||
gMe.multiChat.new_chat_session(cid);
|
||||
}
|
||||
gMe.multiChat.setup_ui(gMe.defaultChatIds[0], true);
|
||||
gMe.multiChat.show_sessions();
|
||||
}
|
||||
|
||||
document.addEventListener("DOMContentLoaded", startme);
|
|
@ -1019,7 +1019,7 @@ struct server_context {
|
|||
sampler_names.emplace_back(sampler_name);
|
||||
}
|
||||
}
|
||||
slot.sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
|
||||
slot.sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
|
||||
} else {
|
||||
slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
|
||||
}
|
||||
|
@ -1256,7 +1256,7 @@ struct server_context {
|
|||
std::vector<std::string> samplers_sequence;
|
||||
samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
|
||||
for (const auto & sampler_type : slot.sparams.samplers_sequence) {
|
||||
samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
|
||||
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
|
||||
}
|
||||
|
||||
return json {
|
||||
|
@ -2857,7 +2857,7 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
|||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
if (!parse_kv_override(argv[i], params.kv_overrides)) {
|
||||
if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
|
||||
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
|
@ -3315,7 +3315,7 @@ int main(int argc, char ** argv) {
|
|||
const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
||||
json request_data = json::parse(req.body);
|
||||
std::string filename = request_data.at("filename");
|
||||
if (!validate_file_name(filename)) {
|
||||
if (!fs_validate_filename(filename)) {
|
||||
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
||||
return;
|
||||
}
|
||||
|
@ -3345,7 +3345,7 @@ int main(int argc, char ** argv) {
|
|||
const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
||||
json request_data = json::parse(req.body);
|
||||
std::string filename = request_data.at("filename");
|
||||
if (!validate_file_name(filename)) {
|
||||
if (!fs_validate_filename(filename)) {
|
||||
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -13,10 +13,10 @@ if %errorlevel% neq 0 goto ERROR
|
|||
|
||||
:: for FP16
|
||||
:: faster for long-prompt inference
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
|
||||
:: for FP32
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
|
|
@ -3,40 +3,390 @@
|
|||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH PROMPT [--ids]\n" , argv[0]);
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#include <windows.h>
|
||||
#include <shellapi.h> // For CommandLineToArgvW
|
||||
#endif
|
||||
|
||||
static void print_usage_information(const char * argv0, FILE * stream) {
|
||||
fprintf(stream, "usage: %s [options]\n\n", argv0);
|
||||
fprintf(stream, "The tokenize program tokenizes a prompt using a given model,\n");
|
||||
fprintf(stream, "and prints the resulting tokens to standard output.\n\n");
|
||||
fprintf(stream, "It needs a model file, a prompt, and optionally other flags\n");
|
||||
fprintf(stream, "to control the behavior of the tokenizer.\n\n");
|
||||
fprintf(stream, " The possible options are:\n");
|
||||
fprintf(stream, "\n");
|
||||
fprintf(stream, " -h, --help print this help and exit\n");
|
||||
fprintf(stream, " -m MODEL_PATH, --model MODEL_PATH path to model.\n");
|
||||
fprintf(stream, " --ids if given, only print numerical token IDs, and not token strings.\n");
|
||||
fprintf(stream, " The output format looks like [1, 2, 3], i.e. parseable by Python.\n");
|
||||
fprintf(stream, " -f PROMPT_FNAME, --file PROMPT_FNAME read prompt from a file.\n");
|
||||
fprintf(stream, " -p PROMPT, --prompt PROMPT read prompt from the argument.\n");
|
||||
fprintf(stream, " --stdin read prompt from standard input.\n");
|
||||
fprintf(stream, " --no-bos do not ever add a BOS token to the prompt, even if normally the model uses a BOS token.\n");
|
||||
fprintf(stream, " --log-disable disable logs. Makes stderr quiet when loading the model.\n");
|
||||
}
|
||||
|
||||
static void llama_log_callback_null(ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) text;
|
||||
(void) user_data;
|
||||
}
|
||||
|
||||
static std::string read_prompt_from_file(const char * filepath, bool & success) {
|
||||
success = false;
|
||||
|
||||
std::ifstream in(filepath, std::ios::binary);
|
||||
if (!in) {
|
||||
fprintf(stderr, "%s: could not open file '%s' for reading: %s\n", __func__, filepath, strerror(errno));
|
||||
return std::string();
|
||||
}
|
||||
// do not assume the file is seekable (e.g. /dev/stdin)
|
||||
std::stringstream buffer;
|
||||
buffer << in.rdbuf();
|
||||
if (in.fail()) {
|
||||
fprintf(stderr, "%s: could not read the entire file '%s': %s\n", __func__, filepath, strerror(errno));
|
||||
return std::string();
|
||||
}
|
||||
|
||||
success = true;
|
||||
return buffer.str();
|
||||
}
|
||||
|
||||
//
|
||||
// Function: ingest_args(...) -> vector<string>
|
||||
//
|
||||
// Takes argc and argv arguments, and converts them to a vector of UTF-8 encoded
|
||||
// strings, as an STL vector<string>.
|
||||
//
|
||||
// In particular, it handles character encoding shenanigans on Windows.
|
||||
//
|
||||
// Note: raw_argc and raw_argv are not actually read at all on Windows.
|
||||
// On Windows we call GetCommandLineW to get the arguments in wchar_t
|
||||
// format, ignoring the regular argc/argv arguments to main().
|
||||
//
|
||||
// TODO: potential opportunity to roll common stuff into common/console.cpp
|
||||
// in relation to Windows wchar_t shenanigans.
|
||||
static std::vector<std::string> ingest_args(int raw_argc, char ** raw_argv) {
|
||||
std::vector<std::string> argv;
|
||||
|
||||
// Handle Windows, if given non-ASCII arguments.
|
||||
// We convert wchar_t arguments into UTF-8 char* on this platform.
|
||||
// Lets you invoke 'tokenize' on Windows cmd.exe with non-ASCII characters
|
||||
// without throwing tantrums.
|
||||
#if defined(_WIN32)
|
||||
int argc;
|
||||
const LPWSTR cmdline_wargv = GetCommandLineW();
|
||||
LPWSTR * wargv = CommandLineToArgvW(cmdline_wargv, &argc);
|
||||
|
||||
// silence unused arg warnings
|
||||
(void) raw_argc;
|
||||
(void) raw_argv;
|
||||
|
||||
for (int i = 0; i < argc; ++i) {
|
||||
int length_needed = WideCharToMultiByte(CP_UTF8, 0, wargv[i], wcslen(wargv[i]), 0, 0, NULL, NULL);
|
||||
char * output_buf = (char *) calloc(length_needed+1, sizeof(char));
|
||||
GGML_ASSERT(output_buf);
|
||||
|
||||
WideCharToMultiByte(CP_UTF8, 0, wargv[i], wcslen(wargv[i]), output_buf, length_needed, NULL, NULL);
|
||||
output_buf[length_needed] = '\0';
|
||||
|
||||
argv.push_back(output_buf);
|
||||
free(output_buf);
|
||||
}
|
||||
|
||||
LocalFree((HLOCAL) wargv);
|
||||
#else
|
||||
int argc = raw_argc;
|
||||
for (int i = 0; i < argc; ++i) {
|
||||
argv.push_back(raw_argv[i]);
|
||||
}
|
||||
#endif
|
||||
|
||||
GGML_ASSERT((unsigned int) argc == argv.size());
|
||||
|
||||
return argv;
|
||||
}
|
||||
|
||||
//
|
||||
// Function: write_utf8_cstr_to_stdout(const char *) -> <writes to stdout>
|
||||
//
|
||||
// writes a string to standard output; taking into account that on Windows
|
||||
// to display correctly you have to use special handling. Works even if the
|
||||
// user has not set a unicode code page on a Windows cmd.exe.
|
||||
//
|
||||
// In case of invalid UTF-8, invalid_utf8 is set to true on Windows, and something
|
||||
// a human-readable is written instead.
|
||||
//
|
||||
// On non-Windows systems, simply printfs() the string.
|
||||
static void write_utf8_cstr_to_stdout(const char * str, bool & invalid_utf8) {
|
||||
invalid_utf8 = false;
|
||||
|
||||
#if defined(_WIN32)
|
||||
// Are we in a console?
|
||||
HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
DWORD dwMode = 0;
|
||||
|
||||
// According to Microsoft docs:
|
||||
// "WriteConsole fails if it is used with a standard handle that is redirected to a file."
|
||||
// Also according to the docs, you can use GetConsoleMode to check for that.
|
||||
if (hConsole == INVALID_HANDLE_VALUE || !GetConsoleMode(hConsole, &dwMode)) {
|
||||
printf("%s", str);
|
||||
return;
|
||||
}
|
||||
|
||||
// MultiByteToWideChar reports an error if str is empty, don't report
|
||||
// them as invalid_utf8.
|
||||
if (*str == 0) {
|
||||
return;
|
||||
}
|
||||
int length_needed = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, str, strlen(str), NULL, 0);
|
||||
if (length_needed == 0) {
|
||||
DWORD err = GetLastError();
|
||||
if (err == ERROR_NO_UNICODE_TRANSLATION) {
|
||||
invalid_utf8 = true;
|
||||
int len = strlen(str);
|
||||
printf("<");
|
||||
for (int i = 0; i < len; ++i) {
|
||||
if (i > 0) {
|
||||
printf(" ");
|
||||
}
|
||||
printf("%02x", (uint8_t) str[i]);
|
||||
}
|
||||
printf(">");
|
||||
return;
|
||||
}
|
||||
GGML_ASSERT(false && "MultiByteToWideChar() failed in an unexpected way.");
|
||||
}
|
||||
|
||||
LPWSTR wstr = (LPWSTR) calloc(length_needed+1, sizeof(*wstr));
|
||||
GGML_ASSERT(wstr);
|
||||
|
||||
MultiByteToWideChar(CP_UTF8, 0, str, strlen(str), wstr, length_needed);
|
||||
WriteConsoleW(hConsole, wstr, length_needed, NULL, NULL);
|
||||
|
||||
free(wstr);
|
||||
#else
|
||||
// TODO: reporting invalid_utf8 would be useful on non-Windows too.
|
||||
// printf will silently just write bad unicode.
|
||||
printf("%s", str);
|
||||
#endif
|
||||
}
|
||||
|
||||
int main(int raw_argc, char ** raw_argv) {
|
||||
const std::vector<std::string> argv = ingest_args(raw_argc, raw_argv);
|
||||
const int argc = argv.size();
|
||||
|
||||
if (argc <= 1) {
|
||||
print_usage_information(argv[0].c_str(), stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const char * model_path = argv[1];
|
||||
const char * prompt = argv[2];
|
||||
//////
|
||||
// Read out all the command line arguments.
|
||||
//////
|
||||
|
||||
const bool printing_ids = argc > 3 && std::string(argv[3]) == "--ids";
|
||||
// variables where to put any arguments we see.
|
||||
bool printing_ids = false;
|
||||
bool no_bos = false;
|
||||
bool disable_logging = false;
|
||||
const char * model_path = NULL;
|
||||
const char * prompt_path = NULL;
|
||||
const char * prompt_arg = NULL;
|
||||
|
||||
// track which arguments were explicitly given
|
||||
// used for sanity checking down the line
|
||||
bool model_path_set = false;
|
||||
bool prompt_path_set = false;
|
||||
bool prompt_set = false;
|
||||
bool stdin_set = false;
|
||||
|
||||
int iarg = 1;
|
||||
for (; iarg < argc; ++iarg) {
|
||||
std::string arg{argv[iarg]};
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
print_usage_information(argv[0].c_str(), stdout);
|
||||
return 0;
|
||||
}
|
||||
else if (arg == "--ids") {
|
||||
printing_ids = true;
|
||||
}
|
||||
else if (arg == "-m" || arg == "--model") {
|
||||
if (model_path_set) {
|
||||
fprintf(stderr, "Error: -m or --model specified multiple times.\n");
|
||||
return 1;
|
||||
}
|
||||
model_path = argv[++iarg].c_str();
|
||||
model_path_set = true;
|
||||
}
|
||||
else if (arg == "--no-bos") {
|
||||
no_bos = true;
|
||||
}
|
||||
else if (arg == "-p" || arg == "--prompt") {
|
||||
if (prompt_set) {
|
||||
fprintf(stderr, "Error: -p or --prompt specified multiple times.\n");
|
||||
return 1;
|
||||
}
|
||||
prompt_arg = argv[++iarg].c_str();
|
||||
prompt_set = true;
|
||||
}
|
||||
else if (arg == "-f" || arg == "--file") {
|
||||
if (prompt_path_set) {
|
||||
fprintf(stderr, "Error: -f or --file specified multiple times.\n");
|
||||
return 1;
|
||||
}
|
||||
prompt_path = argv[++iarg].c_str();
|
||||
prompt_path_set = true;
|
||||
}
|
||||
else if (arg == "--stdin") {
|
||||
stdin_set = true;
|
||||
}
|
||||
else if (arg == "--log-disable") {
|
||||
disable_logging = true;
|
||||
}
|
||||
else {
|
||||
fprintf(stderr, "Error: unknown option '%s'\n", argv[iarg].c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
//////
|
||||
// Sanity check the command line arguments.
|
||||
//////
|
||||
|
||||
// Check that we have the required stuff set.
|
||||
if (model_path_set && model_path == NULL) {
|
||||
fprintf(stderr, "Error: --model requires an argument.\n");
|
||||
return 1;
|
||||
}
|
||||
if (!model_path_set) {
|
||||
fprintf(stderr, "Error: must specify --model.\n");
|
||||
return 1;
|
||||
}
|
||||
if (prompt_path_set && prompt_path == NULL) {
|
||||
fprintf(stderr, "Error: --file requires an argument.\n");
|
||||
return 1;
|
||||
}
|
||||
if (prompt_set && prompt_arg == NULL) {
|
||||
fprintf(stderr, "Error: --prompt requires an argument.\n");
|
||||
return 1;
|
||||
}
|
||||
const int prompts_set = !!(prompt_path_set) + !!(prompt_set) + !!(stdin_set);
|
||||
if (prompts_set > 1) {
|
||||
fprintf(stderr, "Error: --stdin, --file and --prompt are mutually exclusive.\n");
|
||||
return 1;
|
||||
}
|
||||
// Must have some prompt.
|
||||
if (prompts_set == 0) {
|
||||
fprintf(stderr, "Error: must specify one of: --stdin, --file or --prompt.\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
GGML_ASSERT(model_path);
|
||||
GGML_ASSERT(prompt_path || prompt_arg || stdin_set);
|
||||
|
||||
//////
|
||||
// Figure out where will the prompt come from.
|
||||
//////
|
||||
|
||||
std::string prompt;
|
||||
if (prompt_path_set) {
|
||||
bool success = false;
|
||||
prompt = read_prompt_from_file(prompt_path, success);
|
||||
if (!success) {
|
||||
return 1;
|
||||
}
|
||||
} else if (prompt_set) {
|
||||
prompt = prompt_arg;
|
||||
} else {
|
||||
GGML_ASSERT(stdin_set);
|
||||
// we read stdin *after* loading model (early exit if model cannot
|
||||
// be loaded, which can be a nicer user experience)
|
||||
}
|
||||
|
||||
//////
|
||||
// Start actually doing the tokenizing stuff.
|
||||
//////
|
||||
|
||||
#ifdef LOG_DISABLE_LOGS
|
||||
disable_logging = true;
|
||||
#endif
|
||||
|
||||
if (disable_logging) {
|
||||
llama_log_set(llama_log_callback_null, NULL);
|
||||
}
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
model_params.vocab_only = true;
|
||||
llama_model * model = llama_load_model_from_file(model_path, model_params);
|
||||
if (!model) {
|
||||
fprintf(stderr, "Error: could not load model from file '%s'.\n", model_path);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
if (!ctx) {
|
||||
fprintf(stderr, "Error: could not create context.\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// read entire prompt from stdin?
|
||||
if (stdin_set) {
|
||||
GGML_ASSERT(!prompt_path_set && !prompt_set);
|
||||
|
||||
std::stringstream stdin_buffer;
|
||||
stdin_buffer << std::cin.rdbuf();
|
||||
if (std::cin.fail()) {
|
||||
fprintf(stderr, "Error: could not read the entire standard input.\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
prompt = stdin_buffer.str();
|
||||
}
|
||||
|
||||
const bool model_wants_add_bos = llama_should_add_bos_token(model);
|
||||
const bool add_bos = model_wants_add_bos && !no_bos;
|
||||
|
||||
std::vector<llama_token> tokens;
|
||||
tokens = ::llama_tokenize(model, prompt, add_bos, true);
|
||||
|
||||
tokens = ::llama_tokenize(model, prompt, true, true);
|
||||
if (printing_ids) {
|
||||
printf("[");
|
||||
}
|
||||
|
||||
for (int i = 0; i < (int) tokens.size(); i++) {
|
||||
if (printing_ids) {
|
||||
printf("%d\n", tokens[i]);
|
||||
if (i > 0) {
|
||||
printf(", ");
|
||||
}
|
||||
printf("%d", tokens[i]);
|
||||
} else {
|
||||
printf("%6d -> '%s'\n", tokens[i], llama_token_to_piece(ctx, tokens[i]).c_str());
|
||||
bool invalid_utf8 = false;
|
||||
printf("%6d -> '", tokens[i]);
|
||||
write_utf8_cstr_to_stdout(llama_token_to_piece(ctx, tokens[i]).c_str(), invalid_utf8);
|
||||
if (invalid_utf8) {
|
||||
printf("' (utf-8 decode failure)\n");
|
||||
} else {
|
||||
printf("'\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (printing_ids) {
|
||||
printf("]\n");
|
||||
}
|
||||
|
||||
// silence valgrind
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -301,8 +301,8 @@ static struct ggml_tensor * llama_build_train_graphs(
|
|||
// not capturing these, to silcence warnings
|
||||
const int rope_mode = 0;
|
||||
|
||||
return ggml_rope_custom(
|
||||
ctx, t, KQ_pos, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
|
||||
return ggml_rope_ext(
|
||||
ctx, t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
|
||||
);
|
||||
};
|
||||
|
||||
|
@ -341,7 +341,8 @@ static struct ggml_tensor * llama_build_train_graphs(
|
|||
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
|
||||
struct ggml_tensor * t16;
|
||||
if (enable_flash_attn) {
|
||||
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
|
||||
GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
|
||||
//t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
|
||||
} else {
|
||||
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
|
||||
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
|
||||
|
|
12
flake.lock
generated
12
flake.lock
generated
|
@ -5,11 +5,11 @@
|
|||
"nixpkgs-lib": "nixpkgs-lib"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1714641030,
|
||||
"narHash": "sha256-yzcRNDoyVP7+SCNX0wmuDju1NUCt8Dz9+lyUXEI0dbI=",
|
||||
"lastModified": 1715865404,
|
||||
"narHash": "sha256-/GJvTdTpuDjNn84j82cU6bXztE0MSkdnTWClUCRub78=",
|
||||
"owner": "hercules-ci",
|
||||
"repo": "flake-parts",
|
||||
"rev": "e5d10a24b66c3ea8f150e47dfdb0416ab7c3390e",
|
||||
"rev": "8dc45382d5206bd292f9c2768b8058a8fd8311d9",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
@ -20,11 +20,11 @@
|
|||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1714635257,
|
||||
"narHash": "sha256-4cPymbty65RvF1DWQfc+Bc8B233A1BWxJnNULJKQ1EY=",
|
||||
"lastModified": 1716509168,
|
||||
"narHash": "sha256-4zSIhSRRIoEBwjbPm3YiGtbd8HDWzFxJjw5DYSDy1n8=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "63c3a29ca82437c87573e4c6919b09a24ea61b0f",
|
||||
"rev": "bfb7a882678e518398ce9a31a881538679f6f092",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
|
|
@ -65,13 +65,8 @@ typedef sycl::half2 ggml_half2;
|
|||
// QK = number of values after dequantization
|
||||
// QK_K = super-block size
|
||||
|
||||
#ifdef GGML_QKK_64
|
||||
#define QK_K 64
|
||||
#define K_SCALE_SIZE 4
|
||||
#else
|
||||
#define QK_K 256
|
||||
#define K_SCALE_SIZE 12
|
||||
#endif // GGML_QKK_64
|
||||
|
||||
#if defined(GGML_COMMON_DECL_CUDA) || defined(GGML_COMMON_DECL_HIP) || defined(GGML_COMMON_DECL_SYCL)
|
||||
// QR = QK / number of values before dequantization
|
||||
|
@ -131,13 +126,8 @@ typedef sycl::half2 ggml_half2;
|
|||
#define QI4_NL (QK4_NL / (4*QR4_NL))
|
||||
#define QR4_NL 2
|
||||
|
||||
#if QK_K == 64
|
||||
#define QI4_XS QI4_NL
|
||||
#define QR4_XS QR4_NL
|
||||
#else
|
||||
#define QI4_XS (QK_K / (4*QR4_XS))
|
||||
#define QR4_XS 8
|
||||
#endif
|
||||
|
||||
#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP
|
||||
|
||||
|
@ -228,15 +218,6 @@ static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_half) + QK_K/16 + QK_K/4, "wro
|
|||
// weight is represented as x = a * q
|
||||
// 16 blocks of 16 elements each
|
||||
// Effectively 3.4375 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||
uint8_t scales[2];
|
||||
ggml_half d; // super-block scale
|
||||
} block_q3_K;
|
||||
static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||
|
@ -244,20 +225,11 @@ typedef struct {
|
|||
ggml_half d; // super-block scale
|
||||
} block_q3_K;
|
||||
static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 4-bit quantization
|
||||
// 8 blocks of 32 elements each
|
||||
// weight is represented as x = a * q + b
|
||||
// Effectively 4.5 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
ggml_half d[2]; // super-block scales/mins
|
||||
uint8_t scales[2]; // 4-bit block scales/mins
|
||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||
} block_q4_K;
|
||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + QK_K/2 + 2, "wrong q4_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
union {
|
||||
struct {
|
||||
|
@ -270,21 +242,11 @@ typedef struct {
|
|||
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||
} block_q4_K;
|
||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 5-bit quantization
|
||||
// 8 blocks of 32 elements each
|
||||
// weight is represented as x = a * q + b
|
||||
// Effectively 5.5 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
ggml_half d; // super-block scale
|
||||
int8_t scales[QK_K/16]; // 8-bit block scales
|
||||
uint8_t qh[QK_K/8]; // quants, high bit
|
||||
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||
} block_q5_K;
|
||||
static_assert(sizeof(block_q5_K) == sizeof(ggml_half) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
union {
|
||||
struct {
|
||||
|
@ -298,7 +260,6 @@ typedef struct {
|
|||
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||
} block_q5_K;
|
||||
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 6-bit quantization
|
||||
// weight is represented as x = a * q
|
||||
|
@ -356,11 +317,7 @@ typedef struct {
|
|||
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
|
||||
|
||||
// 3.4375 bpw
|
||||
#if QK_K == 64
|
||||
#define IQ3S_N_SCALE 2
|
||||
#else
|
||||
#define IQ3S_N_SCALE QK_K/64
|
||||
#endif
|
||||
typedef struct {
|
||||
ggml_half d;
|
||||
uint8_t qs[QK_K/4];
|
||||
|
@ -381,16 +338,9 @@ static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wron
|
|||
typedef struct {
|
||||
uint8_t qs[QK_K/8]; // grid index, low 8 bits
|
||||
uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8)
|
||||
#if QK_K == 64
|
||||
ggml_half d;
|
||||
#endif
|
||||
uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64)
|
||||
} block_iq1_m;
|
||||
#if QK_K == 64
|
||||
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding");
|
||||
#else
|
||||
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding");
|
||||
#endif
|
||||
|
||||
// Used by IQ1_M quants
|
||||
typedef union {
|
||||
|
@ -406,9 +356,6 @@ typedef struct {
|
|||
} block_iq4_nl;
|
||||
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_half) + QK4_NL/2, "wrong iq4_nl block size/padding");
|
||||
|
||||
#if QK_K == 64
|
||||
#define block_iq4_xs block_iq4_nl
|
||||
#else
|
||||
typedef struct {
|
||||
ggml_half d;
|
||||
uint16_t scales_h;
|
||||
|
@ -416,7 +363,6 @@ typedef struct {
|
|||
uint8_t qs[QK_K/2];
|
||||
} block_iq4_xs;
|
||||
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
|
||||
#endif
|
||||
|
||||
#endif // GGML_COMMON_DECL
|
||||
#endif // GGML_COMMON_DECL
|
||||
|
|
37
ggml-cuda.cu
37
ggml-cuda.cu
|
@ -119,6 +119,20 @@ int ggml_cuda_get_device() {
|
|||
return id;
|
||||
}
|
||||
|
||||
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
|
||||
ggml_cuda_set_device(device);
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(GGML_HIP_UMA)
|
||||
auto res = hipMallocManaged(ptr, size);
|
||||
if (res == hipSuccess) {
|
||||
// if error we "need" to know why...
|
||||
CUDA_CHECK(hipMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
|
||||
}
|
||||
return res;
|
||||
#else
|
||||
return cudaMalloc(ptr, size);
|
||||
#endif
|
||||
}
|
||||
|
||||
static ggml_cuda_device_info ggml_cuda_init() {
|
||||
#ifdef __HIP_PLATFORM_AMD__
|
||||
// Workaround for a rocBLAS bug when using multiple graphics cards:
|
||||
|
@ -271,7 +285,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
|||
size_t look_ahead_size = (size_t) (1.05 * size);
|
||||
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
|
||||
ggml_cuda_set_device(device);
|
||||
CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
|
||||
CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
|
||||
*actual_size = look_ahead_size;
|
||||
pool_size += look_ahead_size;
|
||||
#ifdef DEBUG_CUDA_MALLOC
|
||||
|
@ -537,7 +551,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffe
|
|||
size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
|
||||
|
||||
void * dev_ptr;
|
||||
cudaError_t err = cudaMalloc(&dev_ptr, size);
|
||||
cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
|
@ -798,7 +812,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_bu
|
|||
// currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
|
||||
ggml_cuda_set_device(id);
|
||||
char * buf;
|
||||
CUDA_CHECK(cudaMalloc(&buf, size));
|
||||
CUDA_CHECK(ggml_cuda_device_malloc((void**)&buf, size, id));
|
||||
|
||||
// set padding to 0 to avoid possible NaN values
|
||||
if (size > original_size) {
|
||||
|
@ -1856,7 +1870,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
|||
}
|
||||
}
|
||||
#else
|
||||
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
|
||||
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
|
||||
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
||||
// use cublasGemmStridedBatchedEx
|
||||
CUBLAS_CHECK(
|
||||
|
@ -2510,9 +2524,9 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||
|
||||
bool use_cuda_graph = true;
|
||||
bool cuda_graph_update_required = false;
|
||||
// pointer to CUDA cpy kernel, which is required to identify
|
||||
// vector of pointers to CUDA cpy kernels, which are required to identify
|
||||
// kernel parameters which need updated in the graph for each token
|
||||
void * ggml_cuda_cpy_fn_ptr = nullptr;
|
||||
std::vector<void *> ggml_cuda_cpy_fn_ptrs;
|
||||
|
||||
if (cuda_ctx->cuda_graph->graph == nullptr) {
|
||||
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
|
||||
|
@ -2588,9 +2602,10 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||
if (node->op == GGML_OP_CPY) {
|
||||
// store the copy op parameter which changes with each token.
|
||||
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
|
||||
if (ggml_cuda_cpy_fn_ptr == nullptr) {
|
||||
// store a pointer to the copy op CUDA kernel to identify it later
|
||||
ggml_cuda_cpy_fn_ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
|
||||
// store a pointer to each copy op CUDA kernel to identify it later
|
||||
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
|
||||
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
|
||||
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2720,7 +2735,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||
if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
|
||||
int k = 0;
|
||||
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||
if (cuda_ctx->cuda_graph->params[i].func == ggml_cuda_cpy_fn_ptr) {
|
||||
if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
|
||||
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
|
||||
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
|
||||
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
|
||||
|
@ -2871,7 +2886,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
case GGML_OP_CONT:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
return true;
|
||||
case GGML_OP_ROPE:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
|
|
|
@ -79,13 +79,8 @@
|
|||
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
|
||||
#define cudaHostUnregister hipHostUnregister
|
||||
#define cudaLaunchHostFunc hipLaunchHostFunc
|
||||
#ifdef GGML_HIP_UMA
|
||||
#define cudaMalloc hipMallocManaged
|
||||
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
|
||||
#else
|
||||
#define cudaMalloc hipMalloc
|
||||
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
|
||||
#endif
|
||||
#define cudaMemcpy hipMemcpy
|
||||
#define cudaMemcpyAsync hipMemcpyAsync
|
||||
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
|
||||
|
|
|
@ -1,15 +1,69 @@
|
|||
#include "concat.cuh"
|
||||
|
||||
static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
|
||||
// contiguous kernels
|
||||
static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
return;
|
||||
}
|
||||
// operation
|
||||
|
||||
int offset_dst =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
|
||||
if (nidx < ne00) { // src0
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne00 +
|
||||
blockIdx.z * ne00 * gridDim.y;
|
||||
dst[offset_dst] = x[offset_src];
|
||||
} else {
|
||||
int offset_src =
|
||||
(nidx - ne00) +
|
||||
blockIdx.y * (ne0 - ne00) +
|
||||
blockIdx.z * (ne0 - ne00) * gridDim.y;
|
||||
dst[offset_dst] = y[offset_src];
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void concat_f32_dim1(const float * x, const float * y, float * dst, const int ne0, const int ne01) {
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
int offset_dst =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
|
||||
if (blockIdx.y < ne01) { // src0
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * ne01;
|
||||
dst[offset_dst] = x[offset_src];
|
||||
} else {
|
||||
int offset_src =
|
||||
nidx +
|
||||
(blockIdx.y - ne01) * ne0 +
|
||||
blockIdx.z * ne0 * (gridDim.y - ne01);
|
||||
dst[offset_dst] = y[offset_src];
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void concat_f32_dim2(const float * x, const float * y, float * dst, const int ne0, const int ne02) {
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
int offset_dst =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
|
||||
if (blockIdx.z < ne02) { // src0
|
||||
int offset_src =
|
||||
nidx +
|
||||
|
@ -25,25 +79,118 @@ static __global__ void concat_f32(const float * x,const float * y, float * dst,
|
|||
}
|
||||
}
|
||||
|
||||
static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
|
||||
static void concat_f32_cuda(const float * x, const float * y, float * dst, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2, int dim, cudaStream_t stream) {
|
||||
int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
|
||||
dim3 gridDim(num_blocks, ne1, ne2);
|
||||
concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
||||
if (dim == 0) {
|
||||
concat_f32_dim0<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne00);
|
||||
return;
|
||||
}
|
||||
if (dim == 1) {
|
||||
concat_f32_dim1<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne01);
|
||||
return;
|
||||
}
|
||||
concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
||||
}
|
||||
|
||||
// non-contiguous kernel (slow)
|
||||
static __global__ void concat_f32_non_cont(
|
||||
const char * src0,
|
||||
const char * src1,
|
||||
char * dst,
|
||||
int64_t ne00,
|
||||
int64_t ne01,
|
||||
int64_t ne02,
|
||||
int64_t ne03,
|
||||
uint64_t nb00,
|
||||
uint64_t nb01,
|
||||
uint64_t nb02,
|
||||
uint64_t nb03,
|
||||
int64_t /*ne10*/,
|
||||
int64_t /*ne11*/,
|
||||
int64_t /*ne12*/,
|
||||
int64_t /*ne13*/,
|
||||
uint64_t nb10,
|
||||
uint64_t nb11,
|
||||
uint64_t nb12,
|
||||
uint64_t nb13,
|
||||
int64_t ne0,
|
||||
int64_t /*ne1*/,
|
||||
int64_t /*ne2*/,
|
||||
int64_t /*ne3*/,
|
||||
uint64_t nb0,
|
||||
uint64_t nb1,
|
||||
uint64_t nb2,
|
||||
uint64_t nb3,
|
||||
int32_t dim) {
|
||||
const int64_t i3 = blockIdx.z;
|
||||
const int64_t i2 = blockIdx.y;
|
||||
const int64_t i1 = blockIdx.x;
|
||||
|
||||
int64_t o[4] = {0, 0, 0, 0};
|
||||
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
|
||||
|
||||
const float * x;
|
||||
|
||||
for (int i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
|
||||
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
x = (const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
|
||||
} else {
|
||||
x = (const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
|
||||
}
|
||||
|
||||
float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
*y = *x;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int32_t dim = ((int32_t *) dst->op_params)[0];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
|
||||
float * dst_d = (float *)dst->data;
|
||||
|
||||
if (dim != 3) {
|
||||
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
||||
concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream);
|
||||
concat_f32_cuda(
|
||||
src0_d + i3 * (src0->nb[3] / 4),
|
||||
src1_d + i3 * (src1->nb[3] / 4),
|
||||
dst_d + i3 * ( dst->nb[3] / 4),
|
||||
src0->ne[0], src0->ne[1], src0->ne[2],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
|
||||
}
|
||||
} else {
|
||||
const size_t size0 = ggml_nbytes(src0);
|
||||
const size_t size1 = ggml_nbytes(src1);
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
|
||||
CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
|
||||
}
|
||||
} else {
|
||||
dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
|
||||
concat_f32_non_cont<<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
|
||||
(const char *)src0->data,
|
||||
(const char *)src1->data,
|
||||
( char *)dst->data,
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
|
||||
src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
|
||||
src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
|
||||
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -131,7 +131,6 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
|
|||
const block_q2_K * x = (const block_q2_K *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t n = tid/32;
|
||||
const int64_t l = tid - 32*n;
|
||||
const int64_t is = 8*n + l/16;
|
||||
|
@ -145,17 +144,6 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
|
|||
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
||||
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
||||
#else
|
||||
const int64_t is = tid/16; // 0 or 1
|
||||
const int64_t il = tid%16; // 0...15
|
||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||
float dall = __low2half(x[i].dm);
|
||||
float dmin = __high2half(x[i].dm);
|
||||
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -164,7 +152,6 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
|
|||
const int64_t i = blockIdx.x;
|
||||
const block_q3_K * x = (const block_q3_K *) vx;
|
||||
|
||||
#if QK_K == 256
|
||||
const int64_t r = threadIdx.x/4;
|
||||
const int64_t tid = r/2;
|
||||
const int64_t is0 = r%2;
|
||||
|
@ -188,31 +175,8 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
|
|||
const uint8_t * hm = x[i].hmask;
|
||||
|
||||
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
||||
#else
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t is = tid/16; // 0 or 1
|
||||
const int64_t il = tid%16; // 0...15
|
||||
const int64_t im = il/8; // 0...1
|
||||
const int64_t in = il%8; // 0...7
|
||||
|
||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||
|
||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||
const uint8_t h = x[i].hmask[in] >> (2*is + im);
|
||||
const float d = (float)x[i].d;
|
||||
|
||||
if (is == 0) {
|
||||
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||
} else {
|
||||
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
||||
if (j < 4) {
|
||||
d = q[j] & 63; m = q[j + 4] & 63;
|
||||
|
@ -221,7 +185,6 @@ static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t
|
|||
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
@ -229,7 +192,6 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
|
|||
|
||||
const int64_t i = blockIdx.x;
|
||||
|
||||
#if QK_K == 256
|
||||
// assume 32 threads
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8;
|
||||
|
@ -253,15 +215,6 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
|
|||
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
||||
y[l +32] = d2 * (q[l] >> 4) - m2;
|
||||
}
|
||||
#else
|
||||
const int64_t tid = threadIdx.x;
|
||||
const uint8_t * q = x[i].qs;
|
||||
dst_t * y = yy + i*QK_K;
|
||||
const float d = (float)x[i].dm[0];
|
||||
const float m = (float)x[i].dm[1];
|
||||
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
||||
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -270,7 +223,6 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
|
|||
|
||||
const int64_t i = blockIdx.x;
|
||||
|
||||
#if QK_K == 256
|
||||
// assume 64 threads - this is very slightly better than the one below
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/16; // il is in 0...3
|
||||
|
@ -297,18 +249,6 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
|
|||
hm <<= 1;
|
||||
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
||||
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
||||
#else
|
||||
const int64_t tid = threadIdx.x;
|
||||
const uint8_t q = x[i].qs[tid];
|
||||
const int64_t im = tid/8; // 0...3
|
||||
const int64_t in = tid%8; // 0...7
|
||||
const int64_t is = tid/16; // 0 or 1
|
||||
const uint8_t h = x[i].qh[in] >> im;
|
||||
const float d = x[i].d;
|
||||
dst_t * y = yy + i*QK_K + tid;
|
||||
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
|
||||
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -316,7 +256,6 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
|
|||
const block_q6_K * x = (const block_q6_K *) vx;
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
#if QK_K == 256
|
||||
|
||||
// assume 64 threads - this is very slightly better than the one below
|
||||
const int64_t tid = threadIdx.x;
|
||||
|
@ -336,24 +275,6 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
|
|||
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
||||
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
||||
#else
|
||||
|
||||
// assume 32 threads
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t ip = tid/16; // 0 or 1
|
||||
const int64_t il = tid - 16*ip; // 0...15
|
||||
|
||||
dst_t * y = yy + i*QK_K + 16*ip + il;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t ql = x[i].ql[16*ip + il];
|
||||
const uint8_t qh = x[i].qh[il] >> (2*ip);
|
||||
const int8_t * sc = x[i].scales;
|
||||
|
||||
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -363,7 +284,6 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds
|
|||
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
|
@ -374,10 +294,6 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds
|
|||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -387,7 +303,6 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
|
|||
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
|
@ -396,10 +311,6 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
|
|||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -409,7 +320,6 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_
|
|||
const block_iq2_s * x = (const block_iq2_s *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
|
@ -417,10 +327,6 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_
|
|||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -430,7 +336,6 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds
|
|||
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
|
@ -445,10 +350,6 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds
|
|||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -458,7 +359,6 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
|
|||
const block_iq3_s * x = (const block_iq3_s *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
|
@ -471,10 +371,6 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
|
|||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -484,7 +380,6 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
|
|||
const block_iq1_s * x = (const block_iq1_s *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
|
@ -497,10 +392,6 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
|
|||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = d * (q[j] + delta);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -510,7 +401,6 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_
|
|||
const block_iq1_m * x = (const block_iq1_m *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
|
@ -527,13 +417,8 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_
|
|||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = d * (q[j] + delta);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
|
@ -550,10 +435,8 @@ static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst
|
|||
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#if QK_K != 64
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
const int64_t i = blockIdx.x;
|
||||
|
@ -570,7 +453,6 @@ static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst
|
|||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
|
||||
|
@ -592,21 +474,13 @@ static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half *
|
|||
template<typename dst_t>
|
||||
static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -632,21 +506,13 @@ static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int64_t k
|
|||
template<typename dst_t>
|
||||
static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
|
@ -700,11 +566,7 @@ static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int64_t
|
|||
template<typename dst_t>
|
||||
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
#if QK_K == 64
|
||||
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
|
|
|
@ -22,7 +22,6 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
|
|||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
#if QK_K == 256
|
||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||
|
||||
|
@ -71,37 +70,6 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
|
|||
tmp += dall * sum1 - dmin * sum2;
|
||||
|
||||
}
|
||||
#else
|
||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
||||
const int offset = tid * K_QUANTS_PER_ITERATION;
|
||||
|
||||
uint32_t uaux[2];
|
||||
const uint8_t * d = (const uint8_t *)uaux;
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + offset;
|
||||
const uint8_t * q = x[i].qs + offset;
|
||||
const uint32_t * s = (const uint32_t *)x[i].scales;
|
||||
|
||||
uaux[0] = s[0] & 0x0f0f0f0f;
|
||||
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
|
||||
|
||||
const float2 dall = __half22float2(x[i].dm);
|
||||
|
||||
float sum1 = 0, sum2 = 0;
|
||||
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||
const uint8_t ql = q[l];
|
||||
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
|
||||
+ y[l+16] * d[1] * ((ql >> 2) & 3)
|
||||
+ y[l+32] * d[2] * ((ql >> 4) & 3)
|
||||
+ y[l+48] * d[3] * ((ql >> 6) & 3);
|
||||
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
|
||||
}
|
||||
tmp += dall.x * sum1 - dall.y * sum2;
|
||||
}
|
||||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
@ -123,8 +91,6 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
|
|||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
#if QK_K == 256
|
||||
|
||||
const uint16_t kmask1 = 0x0303;
|
||||
const uint16_t kmask2 = 0x0f0f;
|
||||
|
||||
|
@ -175,34 +141,6 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
|
|||
tmp += d * sum;
|
||||
|
||||
}
|
||||
#else
|
||||
|
||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
||||
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
|
||||
const int in = offset/8; // 0 or 1
|
||||
const int im = offset%8; // 0...7
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + offset;
|
||||
const uint8_t * q = x[i].qs + offset;
|
||||
const uint8_t * s = x[i].scales;
|
||||
|
||||
const float dall = (float)x[i].d;
|
||||
|
||||
float sum = 0;
|
||||
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||
const uint8_t hl = x[i].hmask[im+l] >> in;
|
||||
const uint8_t ql = q[l];
|
||||
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
|
||||
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
|
||||
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
|
||||
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
|
||||
}
|
||||
tmp += sum;
|
||||
}
|
||||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
@ -221,7 +159,6 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
|
|||
|
||||
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
||||
|
||||
#if QK_K == 256
|
||||
const uint16_t kmask1 = 0x3f3f;
|
||||
const uint16_t kmask2 = 0x0f0f;
|
||||
const uint16_t kmask3 = 0xc0c0;
|
||||
|
@ -306,36 +243,6 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
|
|||
#endif
|
||||
|
||||
}
|
||||
#else
|
||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
||||
|
||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||
|
||||
uint16_t aux16[2];
|
||||
const uint8_t * s = (const uint8_t *)aux16;
|
||||
|
||||
float tmp = 0;
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||
const uint8_t * q = x[i].qs + step;
|
||||
const float * y = yy + i*QK_K + step;
|
||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||
aux16[0] = a[0] & 0x0f0f;
|
||||
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||||
const float d = (float)x[i].dm[0];
|
||||
const float m = (float)x[i].dm[1];
|
||||
float sum = 0.f;
|
||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
|
||||
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
|
||||
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
|
||||
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
|
||||
}
|
||||
tmp += sum;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
@ -355,7 +262,6 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
|
|||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
#if QK_K == 256
|
||||
const uint16_t kmask1 = 0x3f3f;
|
||||
const uint16_t kmask2 = 0x0f0f;
|
||||
const uint16_t kmask3 = 0xc0c0;
|
||||
|
@ -426,30 +332,6 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
|
|||
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
||||
}
|
||||
|
||||
#else
|
||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||
const int im = step/8;
|
||||
const int in = step%8;
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||
const uint8_t * q = x[i].qs + step;
|
||||
const int8_t * s = x[i].scales;
|
||||
const float * y = yy + i*QK_K + step;
|
||||
const float d = x[i].d;
|
||||
float sum = 0.f;
|
||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||
const uint8_t h = x[i].qh[in+j] >> im;
|
||||
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
|
||||
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
|
||||
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
|
||||
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
|
||||
}
|
||||
tmp += sum;
|
||||
}
|
||||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
|
@ -470,8 +352,6 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
|
|||
|
||||
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
||||
|
||||
#if QK_K == 256
|
||||
|
||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
||||
|
||||
|
@ -526,37 +406,6 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
|
|||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
|
||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
|
||||
|
||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + step;
|
||||
const uint8_t * ql = x[i].ql + step;
|
||||
const uint8_t * qh = x[i].qh + step;
|
||||
const int8_t * s = x[i].scales;
|
||||
|
||||
const float d = x[i+0].d;
|
||||
|
||||
float sum = 0;
|
||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
|
||||
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
|
||||
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
|
||||
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
|
||||
}
|
||||
tmp += sum;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
|
|
|
@ -83,7 +83,7 @@ static __global__ void flash_attn_tile_ext_f16(
|
|||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
|
||||
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
|
||||
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
}
|
||||
|
@ -238,6 +238,10 @@ static __global__ void flash_attn_tile_ext_f16(
|
|||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
|
||||
kqsum_j = warp_reduce_sum(kqsum_j);
|
||||
|
||||
|
|
|
@ -79,7 +79,7 @@ static __global__ void flash_attn_tile_ext_f32(
|
|||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
|
||||
float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x];
|
||||
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
|
||||
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
|
||||
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
|
||||
}
|
||||
|
@ -237,6 +237,10 @@ static __global__ void flash_attn_tile_ext_f32(
|
|||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
float kqsum_j = kqsum[j_VKQ_0/nwarps];
|
||||
kqsum_j = warp_reduce_sum(kqsum_j);
|
||||
|
||||
|
@ -283,12 +287,8 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int parallel_blocks = 4;
|
||||
|
|
|
@ -94,7 +94,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
|
||||
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
|
||||
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
}
|
||||
|
@ -212,6 +212,10 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||
|
||||
#pragma unroll
|
||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
||||
break;
|
||||
}
|
||||
|
||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||
|
||||
|
@ -223,7 +227,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && tid < ncols) {
|
||||
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
||||
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||
}
|
||||
#else
|
||||
|
|
|
@ -91,7 +91,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
Q_h2[j][i0/WARP_SIZE] = Q_f2[j*(nb01/sizeof(float2)) + i];
|
||||
Q_h2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
|
||||
Q_h2[j][i0/WARP_SIZE].x *= scale;
|
||||
Q_h2[j][i0/WARP_SIZE].y *= scale;
|
||||
}
|
||||
|
@ -200,6 +200,10 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||
|
||||
#pragma unroll
|
||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
||||
break;
|
||||
}
|
||||
|
||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||
|
||||
|
@ -211,7 +215,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && tid < ncols) {
|
||||
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
||||
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||
}
|
||||
}
|
||||
|
|
1253
ggml-cuda/mmq.cu
1253
ggml-cuda/mmq.cu
File diff suppressed because it is too large
Load diff
|
@ -170,6 +170,8 @@ void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
|
@ -188,6 +190,8 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
|
|||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
|
@ -202,6 +206,8 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
|
|
|
@ -58,10 +58,10 @@ static __global__ void rope(
|
|||
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T, bool has_pos>
|
||||
template<typename T, bool has_pos, bool has_freq_facs>
|
||||
static __global__ void rope_neox(
|
||||
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors
|
||||
) {
|
||||
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
|
@ -85,13 +85,13 @@ static __global__ void rope_neox(
|
|||
const int i = row*ncols + ib*n_dims + ic/2;
|
||||
const int i2 = row/p_delta_rows;
|
||||
|
||||
float cur_rot = inv_ndims * ic - ib;
|
||||
|
||||
const int p = has_pos ? pos[i2] : 0;
|
||||
const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
|
||||
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
|
||||
|
||||
const float theta_base = p*powf(theta_scale, col/2.0f)/freq_factor;
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
rope_yarn(theta_base, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + n_dims/2];
|
||||
|
@ -164,7 +164,7 @@ static void rope_cuda(
|
|||
template<typename T>
|
||||
static void rope_neox_cuda(
|
||||
const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
|
||||
) {
|
||||
GGML_ASSERT(ncols % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
|
@ -172,19 +172,32 @@ static void rope_neox_cuda(
|
|||
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
const float inv_ndims = -1.0f / n_dims;
|
||||
|
||||
if (pos == nullptr) {
|
||||
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
if (freq_factors == nullptr) {
|
||||
rope_neox<T, false, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, inv_ndims
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
} else {
|
||||
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
rope_neox<T, false, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, inv_ndims
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
}
|
||||
} else {
|
||||
if (freq_factors == nullptr) {
|
||||
rope_neox<T, true, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
} else {
|
||||
rope_neox<T, true, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void rope_glm_f32_cuda(
|
||||
|
@ -214,34 +227,37 @@ static void rope_cuda_f32(
|
|||
|
||||
static void rope_neox_cuda_f16(
|
||||
const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
|
||||
rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
||||
rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
}
|
||||
|
||||
static void rope_neox_cuda_f32(
|
||||
const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
||||
rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const ggml_tensor * src2 = dst->src[2];
|
||||
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne2 = dst->ne[2];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
|
@ -259,16 +275,22 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
|
||||
const float * freq_factors = nullptr;
|
||||
const int32_t * pos = nullptr;
|
||||
if ((mode & 1) == 0) {
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(src1->ne[0] == ne2);
|
||||
pos = (const int32_t *) src1_d;
|
||||
}
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
const bool is_glm = mode & 4;
|
||||
|
||||
pos = (const int32_t *) src1_d;
|
||||
|
||||
if (is_neox) {
|
||||
if (src2 != nullptr) {
|
||||
freq_factors = (const float *) src2->data;
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
|
||||
}
|
||||
|
||||
rope_corr_dims corr_dims;
|
||||
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
|
||||
|
||||
|
@ -280,12 +302,12 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_neox_cuda_f32(
|
||||
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, stream
|
||||
attn_factor, corr_dims, freq_factors, stream
|
||||
);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_neox_cuda_f16(
|
||||
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, stream
|
||||
attn_factor, corr_dims, freq_factors, stream
|
||||
);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
|
|
|
@ -712,7 +712,6 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
|
|||
static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
|
||||
#ifndef GGML_QKK_64
|
||||
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
||||
|
||||
int v[2];
|
||||
|
@ -754,58 +753,11 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
|||
}
|
||||
|
||||
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
|
||||
|
||||
#else
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
||||
|
||||
float sumf_d = 0.0f;
|
||||
float sumf_m = 0.0f;
|
||||
|
||||
uint16_t aux16[2];
|
||||
const uint8_t * s = (const uint8_t *)aux16;
|
||||
|
||||
const uint16_t * a = (const uint16_t *)bq4_K->scales;
|
||||
aux16[0] = a[0] & 0x0f0f;
|
||||
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||||
|
||||
const float dall = bq4_K->dm[0];
|
||||
const float dmin = bq4_K->dm[1];
|
||||
|
||||
const float d8_1 = __low2float(bq8_1[0].ds);
|
||||
const float d8_2 = __low2float(bq8_1[1].ds);
|
||||
|
||||
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
||||
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
||||
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
||||
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
||||
|
||||
const int * q4 = (const int *)bq4_K->qs + (iqs/2);
|
||||
const int v1 = q4[0];
|
||||
const int v2 = q4[4];
|
||||
|
||||
const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
|
||||
const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
|
||||
const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
|
||||
const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
|
||||
|
||||
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
|
||||
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
|
||||
|
||||
return dall * sumf_d - dmin * sumf_m;
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
|
||||
#ifndef GGML_QKK_64
|
||||
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
||||
|
||||
int vl[2];
|
||||
|
@ -847,48 +799,6 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
|||
}
|
||||
|
||||
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
|
||||
|
||||
#else
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
||||
|
||||
const int8_t * s = bq5_K->scales;
|
||||
|
||||
const float d = bq5_K->d;
|
||||
|
||||
const float d8_1 = __low2half(bq8_1[0].ds);
|
||||
const float d8_2 = __low2half(bq8_1[1].ds);
|
||||
|
||||
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
||||
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
||||
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
||||
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
||||
|
||||
const int * ql = (const int *)bq5_K->qs + (iqs/2);
|
||||
const int vl1 = ql[0];
|
||||
const int vl2 = ql[4];
|
||||
|
||||
const int step = 4 * (iqs/2); // 0, 4, 8, 12
|
||||
const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
|
||||
const int in = step%8; // 0, 4, 0, 4
|
||||
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
|
||||
|
||||
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
|
||||
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
|
||||
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
|
||||
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
|
||||
|
||||
const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
|
||||
+ d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
|
||||
|
||||
return d * sumf_d;
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
||||
|
@ -919,7 +829,6 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
|||
|
||||
static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if QK_K == 256
|
||||
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
|
||||
|
||||
#if QR2_XXS == 8
|
||||
|
@ -960,15 +869,11 @@ static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
|
|||
}
|
||||
return d * (sumi1 + sumi2);
|
||||
#endif
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
#if QK_K == 256
|
||||
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
|
||||
|
||||
const int ib32 = iqs;
|
||||
|
@ -1002,17 +907,12 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
|||
GGML_UNUSED(ksigns64);
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
#else
|
||||
GGML_UNUSED(ksigns64);
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
}
|
||||
|
||||
// TODO
|
||||
static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
#if QK_K == 256
|
||||
const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
|
||||
|
||||
const int ib32 = iqs;
|
||||
|
@ -1048,16 +948,11 @@ static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
|
|||
GGML_UNUSED(ksigns64);
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
#else
|
||||
GGML_UNUSED(ksigns64);
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
#if QK_K == 256
|
||||
const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
|
||||
|
||||
const int ib32 = iqs;
|
||||
|
@ -1082,16 +977,12 @@ static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
|
|||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
}
|
||||
|
||||
// TODO: don't use lookup table for signs
|
||||
static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
#if QK_K == 256
|
||||
const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
|
||||
|
||||
const int ib32 = iqs;
|
||||
|
@ -1114,14 +1005,10 @@ static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
|
|||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if QK_K == 256
|
||||
const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
|
||||
|
||||
const int ib32 = iqs;
|
||||
|
@ -1149,14 +1036,10 @@ static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
|
|||
const float d = d1q * __low2float (bq8_1[ib32].ds);
|
||||
const float m = d1q * __high2float(bq8_1[ib32].ds);
|
||||
return d * sumi + m * delta;
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if QK_K == 256
|
||||
const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
|
||||
|
||||
const int ib32 = iqs;
|
||||
|
@ -1192,9 +1075,6 @@ static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
|
|||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds);
|
||||
return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
}
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
|
@ -1250,9 +1130,7 @@ static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
|
|||
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
|
||||
#if QK_K == 256
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
|
||||
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
|
||||
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
||||
|
||||
|
@ -1270,10 +1148,6 @@ static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
|
|||
sumi2 = __dp4a(v2, q8[j+4], sumi2);
|
||||
}
|
||||
return d * (sumi1 + sumi2);
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
#else
|
||||
return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
|
||||
#endif
|
||||
|
|
|
@ -144,6 +144,10 @@ extern "C" {
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <arm_sve.h>
|
||||
#endif
|
||||
|
||||
// 16-bit float
|
||||
// on Arm, we use __fp16
|
||||
// on x86, we use uint16_t
|
||||
|
|
|
@ -1597,7 +1597,6 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
|||
{
|
||||
GGML_ASSERT(ne00 == ne10);
|
||||
|
||||
// TODO: assert that dim2 and dim3 are contiguous
|
||||
GGML_ASSERT(ne12 % ne02 == 0);
|
||||
GGML_ASSERT(ne13 % ne03 == 0);
|
||||
|
||||
|
@ -1677,6 +1676,10 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
|||
} break;
|
||||
case GGML_OP_ROPE:
|
||||
{
|
||||
#pragma message("TODO: implement phi3 frequency factors support")
|
||||
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
|
||||
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
|
||||
|
||||
GGML_ASSERT(ne10 == ne02);
|
||||
GGML_ASSERT(src0t == dstt);
|
||||
// const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
|
|
198
ggml-metal.m
198
ggml-metal.m
|
@ -35,6 +35,10 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_MUL_ROW,
|
||||
GGML_METAL_KERNEL_TYPE_DIV,
|
||||
GGML_METAL_KERNEL_TYPE_DIV_ROW,
|
||||
GGML_METAL_KERNEL_TYPE_REPEAT_F32,
|
||||
GGML_METAL_KERNEL_TYPE_REPEAT_F16,
|
||||
GGML_METAL_KERNEL_TYPE_REPEAT_I32,
|
||||
GGML_METAL_KERNEL_TYPE_REPEAT_I16,
|
||||
GGML_METAL_KERNEL_TYPE_SCALE,
|
||||
GGML_METAL_KERNEL_TYPE_SCALE_4,
|
||||
GGML_METAL_KERNEL_TYPE_CLAMP,
|
||||
|
@ -184,9 +188,9 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256,
|
||||
//GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256,
|
||||
//GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261
|
||||
GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
|
||||
GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
|
||||
|
@ -381,10 +385,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
// dictionary of preprocessor macros
|
||||
NSMutableDictionary * prep = [NSMutableDictionary dictionary];
|
||||
|
||||
#ifdef GGML_QKK_64
|
||||
prep[@"GGML_QKK_64"] = @(1);
|
||||
#endif
|
||||
|
||||
MTLCompileOptions* options = [MTLCompileOptions new];
|
||||
options.preprocessorMacros = prep;
|
||||
|
||||
|
@ -489,6 +489,10 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32, repeat_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16, repeat_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32, repeat_i32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I16, repeat_i16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
|
||||
|
@ -638,9 +642,9 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, ctx->support_simdgroup_mm);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, ctx->support_simdgroup_reduction);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
|
||||
|
@ -750,6 +754,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
|||
case GGML_OP_ACC:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_SQR:
|
||||
|
@ -774,6 +779,9 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
|||
case GGML_OP_LEAKY_RELU:
|
||||
return true;
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
if (op->src[0]->ne[0] == 256) {
|
||||
return false;
|
||||
}
|
||||
return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
|
@ -927,12 +935,22 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
const int64_t ne10 = src1 ? src1->ne[0] : 0;
|
||||
const int64_t ne11 = src1 ? src1->ne[1] : 0;
|
||||
const int64_t ne12 = src1 ? src1->ne[2] : 0;
|
||||
const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
|
||||
const int64_t ne13 = src1 ? src1->ne[3] : 0;
|
||||
|
||||
const uint64_t nb10 = src1 ? src1->nb[0] : 0;
|
||||
const uint64_t nb11 = src1 ? src1->nb[1] : 0;
|
||||
const uint64_t nb12 = src1 ? src1->nb[2] : 0;
|
||||
const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
|
||||
const uint64_t nb13 = src1 ? src1->nb[3] : 0;
|
||||
|
||||
const int64_t ne20 = src2 ? src2->ne[0] : 0;
|
||||
const int64_t ne21 = src2 ? src2->ne[1] : 0;
|
||||
const int64_t ne22 = src2 ? src2->ne[2] : 0; GGML_UNUSED(ne22);
|
||||
const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);
|
||||
|
||||
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
|
||||
const uint64_t nb21 = src2 ? src2->nb[1] : 0;
|
||||
const uint64_t nb22 = src2 ? src2->nb[2] : 0;
|
||||
const uint64_t nb23 = src2 ? src2->nb[3] : 0;
|
||||
|
||||
const int64_t ne0 = dst ? dst->ne[0] : 0;
|
||||
const int64_t ne1 = dst ? dst->ne[1] : 0;
|
||||
|
@ -970,10 +988,10 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
switch (dst->op) {
|
||||
case GGML_OP_CONCAT:
|
||||
{
|
||||
const int64_t nb = ne00;
|
||||
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;
|
||||
|
||||
const int32_t dim = ((int32_t *) dst->op_params)[0];
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
|
@ -1002,7 +1020,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
|
||||
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
|
||||
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
|
||||
[encoder setBytes:&nb length:sizeof(nb) atIndex:27];
|
||||
[encoder setBytes:&dim length:sizeof(dim) atIndex:27];
|
||||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
|
@ -1012,11 +1030,14 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
{
|
||||
GGML_ASSERT(src0t == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
|
||||
const size_t offs = 0;
|
||||
|
||||
bool bcast_row = false;
|
||||
|
||||
int64_t nb = ne00;
|
||||
int64_t nb = ne00; // used by the "row" kernels
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
|
@ -1085,6 +1106,42 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_REPEAT:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline;
|
||||
|
||||
switch (src0t) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F32].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break;
|
||||
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break;
|
||||
case GGML_TYPE_I16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break;
|
||||
default: GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
||||
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
|
||||
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
|
||||
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
|
||||
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
||||
|
||||
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ACC:
|
||||
{
|
||||
GGML_ASSERT(src0t == GGML_TYPE_F32);
|
||||
|
@ -1462,7 +1519,6 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
{
|
||||
GGML_ASSERT(ne00 == ne10);
|
||||
|
||||
// TODO: assert that dim2 and dim3 are contiguous
|
||||
GGML_ASSERT(ne12 % ne02 == 0);
|
||||
GGML_ASSERT(ne13 % ne03 == 0);
|
||||
|
||||
|
@ -1763,11 +1819,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q3_K) {
|
||||
#ifdef GGML_QKK_64
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#else
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#endif
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q5_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
|
@ -1785,16 +1837,6 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
const int n_as = src0->ne[2];
|
||||
|
||||
// src2 = ids
|
||||
const int64_t ne20 = src2->ne[0];
|
||||
const int64_t ne21 = src2->ne[1];
|
||||
const int64_t ne22 = src2->ne[2]; GGML_UNUSED(ne22);
|
||||
const int64_t ne23 = src2->ne[3]; GGML_UNUSED(ne23);
|
||||
|
||||
const uint64_t nb20 = src2->nb[0]; GGML_UNUSED(nb20);
|
||||
const uint64_t nb21 = src2->nb[1];
|
||||
const uint64_t nb22 = src2->nb[2]; GGML_UNUSED(nb22);
|
||||
const uint64_t nb23 = src2->nb[3]; GGML_UNUSED(nb23);
|
||||
|
||||
const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t);
|
||||
|
||||
GGML_ASSERT(src2t == GGML_TYPE_I32);
|
||||
|
@ -2018,12 +2060,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
#if QK_K == 64
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
|
||||
#else
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
|
||||
#endif
|
||||
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
|
@ -2088,11 +2125,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q3_K) {
|
||||
#ifdef GGML_QKK_64
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#else
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#endif
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q5_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
|
@ -2153,6 +2186,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
case GGML_OP_RMS_NORM:
|
||||
{
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
@ -2180,6 +2214,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
case GGML_OP_GROUP_NORM:
|
||||
{
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
//float eps;
|
||||
//memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
@ -2213,6 +2248,8 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
} break;
|
||||
case GGML_OP_NORM:
|
||||
{
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
|
@ -2244,7 +2281,13 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
|
||||
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
|
||||
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
float ext_factor;
|
||||
float attn_factor;
|
||||
float beta_fast;
|
||||
float beta_slow;
|
||||
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||
|
@ -2252,6 +2295,15 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
const bool is_glm = mode & 4;
|
||||
|
||||
GGML_ASSERT(!is_glm && "GLM RoPE not implemented in Metal");
|
||||
|
||||
if (!is_neox) {
|
||||
GGML_ASSERT(id_src2 == nil && "TODO: freq_factors not implemented for !is_neox");
|
||||
}
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
switch (src0->type) {
|
||||
|
@ -2263,33 +2315,38 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6];
|
||||
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
|
||||
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14];
|
||||
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18];
|
||||
[encoder setBytes:&n_past length:sizeof( int) atIndex:19];
|
||||
[encoder setBytes:&n_dims length:sizeof( int) atIndex:20];
|
||||
[encoder setBytes:&mode length:sizeof( int) atIndex:21];
|
||||
[encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22];
|
||||
[encoder setBytes:&freq_base length:sizeof( float) atIndex:23];
|
||||
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:24];
|
||||
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:25];
|
||||
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:26];
|
||||
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:27];
|
||||
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:28];
|
||||
if (id_src2 != nil) {
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
||||
} else {
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:2];
|
||||
}
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:4];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
|
||||
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:8];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:10];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:11];
|
||||
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:12];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:14];
|
||||
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:15];
|
||||
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:18];
|
||||
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:19];
|
||||
[encoder setBytes:&n_past length:sizeof( int) atIndex:20];
|
||||
[encoder setBytes:&n_dims length:sizeof( int) atIndex:21];
|
||||
[encoder setBytes:&mode length:sizeof( int) atIndex:22];
|
||||
[encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:23];
|
||||
[encoder setBytes:&freq_base length:sizeof( float) atIndex:24];
|
||||
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:25];
|
||||
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:26];
|
||||
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:27];
|
||||
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:28];
|
||||
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:29];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
|
@ -2535,11 +2592,6 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) &&
|
||||
"the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big");
|
||||
|
||||
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
|
||||
const uint64_t nb21 = src2 ? src2->nb[1] : 0;
|
||||
const uint64_t nb22 = src2 ? src2->nb[2] : 0;
|
||||
const uint64_t nb23 = src2 ? src2->nb[3] : 0;
|
||||
|
||||
const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30);
|
||||
//const int64_t ne31 = src3 ? src3->ne[1] : 0;
|
||||
const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32);
|
||||
|
@ -2575,7 +2627,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break;
|
||||
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break;
|
||||
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break;
|
||||
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break;
|
||||
//case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
|
||||
|
@ -2588,7 +2640,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
|
||||
switch (ne00) {
|
||||
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break;
|
||||
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break;
|
||||
//case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
|
||||
|
|
523
ggml-metal.metal
523
ggml-metal.metal
|
@ -168,6 +168,53 @@ kernel void kernel_div(
|
|||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
kernel void kernel_repeat(
|
||||
device const char * src0,
|
||||
device char * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i3 = tgpig.z;
|
||||
const int64_t i2 = tgpig.y;
|
||||
const int64_t i1 = tgpig.x;
|
||||
|
||||
const int64_t i03 = i3 % ne03;
|
||||
const int64_t i02 = i2 % ne02;
|
||||
const int64_t i01 = i1 % ne01;
|
||||
|
||||
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||
device char * dst_ptr = dst + i3*nb3 + i2*nb2 + i1*nb1 ;
|
||||
|
||||
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
const int i00 = i0 % ne00;
|
||||
*((device T *)(dst_ptr + i0*nb0)) = *((device T *)(src0_ptr + i00*nb00));
|
||||
}
|
||||
}
|
||||
|
||||
typedef decltype(kernel_repeat<float>) kernel_repeat_t;
|
||||
|
||||
template [[host_name("kernel_repeat_f32")]] kernel kernel_repeat_t kernel_repeat<float>;
|
||||
template [[host_name("kernel_repeat_f16")]] kernel kernel_repeat_t kernel_repeat<half>;
|
||||
template [[host_name("kernel_repeat_i32")]] kernel kernel_repeat_t kernel_repeat<int>;
|
||||
template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat<short>;
|
||||
|
||||
// assumption: src1 is a row
|
||||
// broadcast src1 into src0
|
||||
kernel void kernel_add_row(
|
||||
|
@ -1640,6 +1687,7 @@ static void rope_yarn_corr_dims(
|
|||
typedef void (rope_t)(
|
||||
device const void * src0,
|
||||
device const int32_t * src1,
|
||||
device const float * src2,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
|
@ -1675,6 +1723,7 @@ template<typename T>
|
|||
kernel void kernel_rope(
|
||||
device const void * src0,
|
||||
device const int32_t * src1,
|
||||
device const float * src2,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
|
@ -1718,13 +1767,13 @@ kernel void kernel_rope(
|
|||
|
||||
const int64_t p = pos[i2];
|
||||
|
||||
const float theta_0 = (float)p;
|
||||
const float theta_base = (float)p;
|
||||
const float inv_ndims = -1.f/n_dims;
|
||||
|
||||
if (!is_neox) {
|
||||
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
|
||||
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
|
||||
|
||||
const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
|
@ -1740,16 +1789,14 @@ kernel void kernel_rope(
|
|||
} else {
|
||||
for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
|
||||
if (ic < n_dims) {
|
||||
const int64_t ib = 0;
|
||||
const int64_t i0 = ic/2;
|
||||
|
||||
// simplified from `(ib * n_dims + ic) * inv_ndims`
|
||||
const float cur_rot = inv_ndims*ic - ib;
|
||||
const float freq_factor = src2 != src0 ? src2[i0] : 1.0f;
|
||||
|
||||
const float theta = theta_base * pow(freq_base, inv_ndims*ic);
|
||||
|
||||
const float theta = theta_0 * pow(freq_base, cur_rot);
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
const int64_t i0 = ib*n_dims + ic/2;
|
||||
rope_yarn(theta/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
@ -2204,11 +2251,7 @@ kernel void kernel_flash_attn_ext_f16(
|
|||
// pointer to the mask
|
||||
device const half * mp = (device const half *) (mask + iq1*nb31);
|
||||
|
||||
// prepare diagonal scale matrix
|
||||
simdgroup_float8x8 mscale(scale);
|
||||
|
||||
// prepare diagonal slope matrix
|
||||
simdgroup_float8x8 mslope(1.0f);
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
|
@ -2217,7 +2260,7 @@ kernel void kernel_flash_attn_ext_f16(
|
|||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
mslope = simdgroup_float8x8(pow(base, exph));
|
||||
slope = pow(base, exph);
|
||||
}
|
||||
|
||||
// loop over the KV cache
|
||||
|
@ -2242,18 +2285,20 @@ kernel void kernel_flash_attn_ext_f16(
|
|||
simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk);
|
||||
}
|
||||
|
||||
simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
|
||||
|
||||
const short tx = tiisg%4;
|
||||
const short ty = tiisg/4;
|
||||
|
||||
if (mask != q) {
|
||||
// mqk = mqk*scale + mask*slope
|
||||
simdgroup_half8x8 mm;
|
||||
simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false);
|
||||
simdgroup_multiply(mm, mslope, mm);
|
||||
simdgroup_multiply_accumulate(mqk, mqk, mscale, mm);
|
||||
ss[8*cc + ty*TF + 2*tx + 0] = scale*ss[8*cc + ty*TF + 2*tx + 0] + slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 0];
|
||||
ss[8*cc + ty*TF + 2*tx + 1] = scale*ss[8*cc + ty*TF + 2*tx + 1] + slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 1];
|
||||
} else {
|
||||
// mqk = mqk*scale
|
||||
simdgroup_multiply(mqk, mscale, mqk);
|
||||
ss[8*cc + ty*TF + 2*tx + 0] *= scale;
|
||||
ss[8*cc + ty*TF + 2*tx + 1] *= scale;
|
||||
}
|
||||
|
||||
simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2416,7 +2461,7 @@ template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_f
|
|||
template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<96>;
|
||||
template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<112>;
|
||||
template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<128>;
|
||||
template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256>;
|
||||
//template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256>;
|
||||
|
||||
template<int64_t D, int64_t Q = 1, int64_t C = 32> // head size, queries per threadgroup, cache items per threadgroup
|
||||
kernel void kernel_flash_attn_ext_vec_f16(
|
||||
|
@ -2694,7 +2739,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
|||
}
|
||||
|
||||
template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<128>;
|
||||
template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<256>;
|
||||
//template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<256>;
|
||||
|
||||
kernel void kernel_cpy_f16_f16(
|
||||
device const half * src0,
|
||||
|
@ -2816,8 +2861,7 @@ kernel void kernel_cpy_f32_f16(
|
|||
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
|
||||
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||
|
||||
// TODO: is there a better way to handle -INFINITY?
|
||||
dst_data[i00] = src[0] == -INFINITY ? -MAXHALF : src[0];
|
||||
dst_data[i00] = src[0];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3318,31 +3362,30 @@ kernel void kernel_concat(
|
|||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
constant int32_t & dim,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
|
||||
const int64_t i03 = tgpig.z;
|
||||
const int64_t i02 = tgpig.y;
|
||||
const int64_t i01 = tgpig.x;
|
||||
const int64_t i3 = tgpig.z;
|
||||
const int64_t i2 = tgpig.y;
|
||||
const int64_t i1 = tgpig.x;
|
||||
|
||||
const int64_t i13 = i03 % ne13;
|
||||
const int64_t i12 = i02 % ne12;
|
||||
const int64_t i11 = i01 % ne11;
|
||||
int64_t o[4] = {0, 0, 0, 0};
|
||||
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
|
||||
|
||||
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
|
||||
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
|
||||
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
|
||||
device const float * x;
|
||||
|
||||
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
if (i02 < ne02) {
|
||||
((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
|
||||
src0_ptr += ntg.x*nb00;
|
||||
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
x = (device const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
|
||||
} else {
|
||||
((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
|
||||
src1_ptr += ntg.x*nb10;
|
||||
x = (device const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
|
||||
}
|
||||
dst_ptr += ntg.x*nb0;
|
||||
|
||||
device float * y = (device float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
*y = *x;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3385,7 +3428,6 @@ void kernel_mul_mv_q2_K_f32_impl(
|
|||
|
||||
const int step = sizeof(block_q2_K) * nb;
|
||||
|
||||
#if QK_K == 256
|
||||
const int ix = tiisg/8; // 0...3
|
||||
const int it = tiisg%8; // 0...7
|
||||
const int iq = it/4; // 0 or 1
|
||||
|
@ -3437,57 +3479,6 @@ void kernel_mul_mv_q2_K_f32_impl(
|
|||
|
||||
y4 += 4 * QK_K;
|
||||
}
|
||||
#else
|
||||
const int ix = tiisg/2; // 0...15
|
||||
const int it = tiisg%2; // 0...1
|
||||
|
||||
device const float * y4 = y + ix * QK_K + 8 * it;
|
||||
|
||||
for (int ib = ix; ib < nb; ib += 16) {
|
||||
|
||||
float4 sumy = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
|
||||
yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
|
||||
yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
|
||||
yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
|
||||
}
|
||||
|
||||
device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
|
||||
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
|
||||
device const half * dh = &x[ib].d;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
|
||||
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int i = 0; i < 8; i += 2) {
|
||||
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
|
||||
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
|
||||
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
|
||||
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
|
||||
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
|
||||
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
|
||||
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
|
||||
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
|
||||
}
|
||||
|
||||
float dall = dh[0];
|
||||
float dmin = dh[1];
|
||||
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
|
||||
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
|
||||
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
|
||||
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
|
||||
dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
|
||||
|
||||
qs += step/2;
|
||||
sc += step;
|
||||
dh += step/2;
|
||||
}
|
||||
|
||||
y4 += 16 * QK_K;
|
||||
}
|
||||
#endif
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
|
@ -3525,7 +3516,6 @@ kernel void kernel_mul_mv_q2_K_f32(
|
|||
kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
void kernel_mul_mv_q3_K_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
|
@ -3684,84 +3674,6 @@ void kernel_mul_mv_q3_K_f32_impl(
|
|||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
void kernel_mul_mv_q3_K_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t r1 = tgpig.y;
|
||||
const int64_t im = tgpig.z;
|
||||
|
||||
const int row = 2 * r0 + sgitg;
|
||||
|
||||
const uint i12 = im%ne12;
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
|
||||
device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
const int ix = tiisg/4;
|
||||
const int il = 4 * (tiisg%4);// 0, 4, 8, 12
|
||||
const int iq = il/8; // 0, 0, 1, 1
|
||||
const int in = il%8; // 0, 4, 0, 4
|
||||
|
||||
float2 sum = {0.f, 0.f};
|
||||
|
||||
for (int i = ix; i < nb; i += 8) {
|
||||
|
||||
const float d_all = (float)(x[i].d);
|
||||
|
||||
device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
|
||||
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
|
||||
device const uint16_t * s = (device const uint16_t *)(x[i].scales);
|
||||
device const float * y = yy + i * QK_K + il;
|
||||
|
||||
const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
|
||||
const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
|
||||
const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
|
||||
const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
|
||||
|
||||
for (int l = 0; l < 4; l += 2) {
|
||||
const uint16_t hm = h[l/2] >> iq;
|
||||
sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
|
||||
+ y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
|
||||
+ y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
|
||||
+ y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
|
||||
sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
|
||||
+ y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
|
||||
+ y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
|
||||
+ y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
|
||||
}
|
||||
|
||||
}
|
||||
const float sumf = sum[0] + sum[1] * 1.f/256.f;
|
||||
|
||||
const float tot = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
[[host_name("kernel_mul_mv_q3_K_f32")]]
|
||||
kernel void kernel_mul_mv_q3_K_f32(
|
||||
|
@ -3791,7 +3703,6 @@ kernel void kernel_mul_mv_q3_K_f32(
|
|||
kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
void kernel_mul_mv_q4_K_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
|
@ -3905,103 +3816,6 @@ void kernel_mul_mv_q4_K_f32_impl(
|
|||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
void kernel_mul_mv_q4_K_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
const int ix = tiisg/4; // 0...7
|
||||
const int it = tiisg%4; // 0...3
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int im = tgpig.z;
|
||||
const int first_row = r0 * N_DST;
|
||||
const int ib_row = first_row * nb;
|
||||
|
||||
const uint i12 = im%ne12;
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float yl[8];
|
||||
float yh[8];
|
||||
float sumf[N_DST]={0.f}, all_sum;
|
||||
|
||||
const int step = sizeof(block_q4_K) * nb / 2;
|
||||
|
||||
device const float * y4 = y + ix * QK_K + 8 * it;
|
||||
|
||||
uint16_t sc16[4];
|
||||
|
||||
for (int ib = ix; ib < nb; ib += 8) {
|
||||
|
||||
float2 sumy = {0.f, 0.f};
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
yl[i] = y4[i+ 0]; sumy[0] += yl[i];
|
||||
yh[i] = y4[i+32]; sumy[1] += yh[i];
|
||||
}
|
||||
|
||||
device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
|
||||
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
|
||||
device const half * dh = x[ib].d;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
sc16[0] = sc[0] & 0x000f;
|
||||
sc16[1] = sc[0] & 0x0f00;
|
||||
sc16[2] = sc[0] & 0x00f0;
|
||||
sc16[3] = sc[0] & 0xf000;
|
||||
|
||||
float2 acc1 = {0.f, 0.f};
|
||||
float2 acc2 = {0.f, 0.f};
|
||||
for (int i = 0; i < 8; i += 2) {
|
||||
acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
|
||||
acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
|
||||
acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
|
||||
acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
|
||||
}
|
||||
|
||||
float dall = dh[0];
|
||||
float dmin = dh[1];
|
||||
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
|
||||
(acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
|
||||
dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
|
||||
|
||||
qs += step;
|
||||
sc += step;
|
||||
dh += step;
|
||||
}
|
||||
|
||||
y4 += 8 * QK_K;
|
||||
}
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
[[host_name("kernel_mul_mv_q4_K_f32")]]
|
||||
kernel void kernel_mul_mv_q4_K_f32(
|
||||
|
@ -4069,8 +3883,6 @@ void kernel_mul_mv_q5_K_f32_impl(
|
|||
|
||||
const int step = sizeof(block_q5_K) * nb;
|
||||
|
||||
#if QK_K == 256
|
||||
#
|
||||
float yl[16], yh[16];
|
||||
|
||||
const uint16_t kmask1 = 0x3f3f;
|
||||
|
@ -4153,54 +3965,6 @@ void kernel_mul_mv_q5_K_f32_impl(
|
|||
y1 += 4 * QK_K;
|
||||
|
||||
}
|
||||
#else
|
||||
float yl[8], yh[8];
|
||||
|
||||
const int il = 4 * (tiisg/8); // 0, 4, 8, 12
|
||||
const int ix = tiisg%8;
|
||||
const int iq = il/8; // 0, 0, 1, 1
|
||||
const int in = il%8; // 0, 4, 0, 4
|
||||
|
||||
device const float * y = yy + ix*QK_K + il;
|
||||
|
||||
for (int i = ix; i < nb; i += 8) {
|
||||
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
yl[l+0] = y[l+ 0];
|
||||
yl[l+4] = y[l+16];
|
||||
yh[l+0] = y[l+32];
|
||||
yh[l+4] = y[l+48];
|
||||
}
|
||||
|
||||
device const half * dh = &x[i].d;
|
||||
device const uint8_t * q = x[i].qs + il;
|
||||
device const uint8_t * h = x[i].qh + in;
|
||||
device const int8_t * s = x[i].scales;
|
||||
|
||||
for (int row = 0; row < 2; ++row) {
|
||||
|
||||
const float d = dh[0];
|
||||
|
||||
float2 acc = {0.f, 0.f};
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t hl = h[l] >> iq;
|
||||
acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
|
||||
+ yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
|
||||
acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
|
||||
+ yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
|
||||
}
|
||||
sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
|
||||
|
||||
q += step;
|
||||
h += step;
|
||||
s += step;
|
||||
dh += step/2;
|
||||
|
||||
}
|
||||
|
||||
y += 8 * QK_K;
|
||||
}
|
||||
#endif
|
||||
|
||||
for (int row = 0; row < 2; ++row) {
|
||||
const float tot = simd_sum(sumf[row]);
|
||||
|
@ -4279,7 +4043,6 @@ void kernel_mul_mv_q6_K_f32_impl(
|
|||
|
||||
float sumf = 0;
|
||||
|
||||
#if QK_K == 256
|
||||
const int tid = tiisg/2;
|
||||
const int ix = tiisg%2;
|
||||
const int ip = tid/8; // 0 or 1
|
||||
|
@ -4315,30 +4078,6 @@ void kernel_mul_mv_q6_K_f32_impl(
|
|||
|
||||
}
|
||||
|
||||
#else
|
||||
const int ix = tiisg/4;
|
||||
const int il = 4*(tiisg%4);
|
||||
|
||||
for (int i = ix; i < nb; i += 8) {
|
||||
device const float * y = yy + i * QK_K + il;
|
||||
device const uint8_t * ql = x[i].ql + il;
|
||||
device const uint8_t * qh = x[i].qh + il;
|
||||
device const int8_t * s = x[i].scales;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
float4 sums = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
|
||||
sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
|
||||
sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
|
||||
sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
|
||||
}
|
||||
sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
const float tot = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
|
||||
|
@ -5172,9 +4911,7 @@ void kernel_mul_mv_iq1_m_f32_impl(
|
|||
|
||||
device const float * y4 = y + 32 * ix;
|
||||
|
||||
#if QK_K != 64
|
||||
iq1m_scale_t scale;
|
||||
#endif
|
||||
|
||||
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
||||
|
||||
|
@ -5195,10 +4932,7 @@ void kernel_mul_mv_iq1_m_f32_impl(
|
|||
device const uint16_t * sc = (device const uint16_t *)xr->scales;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
#if QK_K != 64
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
#endif
|
||||
|
||||
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
||||
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
|
||||
|
@ -5214,14 +4948,9 @@ void kernel_mul_mv_iq1_m_f32_impl(
|
|||
}
|
||||
const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||
const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||
#if QK_K == 64
|
||||
const float d = (float) *((device const half *)(sc - 1));
|
||||
sumf[row] += d * ((sum[0] + delta1) * (2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1) +
|
||||
(sum[1] + delta2) * (2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1));
|
||||
#else
|
||||
|
||||
sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) +
|
||||
(sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1));
|
||||
#endif
|
||||
|
||||
sc += nb*sizeof(block_iq1_m)/2;
|
||||
qs += nb*sizeof(block_iq1_m);
|
||||
|
@ -5333,7 +5062,6 @@ void kernel_mul_mv_iq4_nl_f32_impl(
|
|||
}
|
||||
}
|
||||
|
||||
#if QK_K != 64
|
||||
void kernel_mul_mv_iq4_xs_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
|
@ -5428,7 +5156,6 @@ void kernel_mul_mv_iq4_xs_f32_impl(
|
|||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
[[host_name("kernel_mul_mv_iq1_s_f32")]]
|
||||
kernel void kernel_mul_mv_iq1_s_f32(
|
||||
|
@ -5541,11 +5268,7 @@ kernel void kernel_mul_mv_iq4_xs_f32(
|
|||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
#if QK_K == 64
|
||||
kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
#else
|
||||
kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
#endif
|
||||
}
|
||||
|
||||
//============================= templates and their specializations =============================
|
||||
|
@ -5671,10 +5394,9 @@ void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg
|
|||
float dl, ml;
|
||||
uint8_t sc = xb->scales[il];
|
||||
|
||||
#if QK_K == 256
|
||||
q = q + 32*(il/8) + 16*(il&1);
|
||||
il = (il/2)%4;
|
||||
#endif
|
||||
|
||||
half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
||||
uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
|
||||
|
@ -5690,7 +5412,6 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
|
|||
device const uint8_t * h = (device const uint8_t *)xb->hmask;
|
||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||
|
||||
#if QK_K == 256
|
||||
q = q + 32 * (il/8) + 16 * (il&1);
|
||||
h = h + 16 * (il&1);
|
||||
uint8_t m = 1 << (il/2);
|
||||
|
@ -5711,17 +5432,6 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
|
|||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
|
||||
}
|
||||
#else
|
||||
float kcoef = il&1 ? 1.f/16.f : 1.f;
|
||||
uint16_t kmask = il&1 ? 0xF0 : 0x0F;
|
||||
float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
|
||||
float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
||||
uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
uint8_t m = 1<<(il*2);
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
|
||||
|
@ -5733,7 +5443,6 @@ template <typename type4x4>
|
|||
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
|
||||
device const uchar * q = xb->qs;
|
||||
|
||||
#if QK_K == 256
|
||||
short is = (il/4) * 2;
|
||||
q = q + (il/4) * 32 + 16 * (il&1);
|
||||
il = il & 3;
|
||||
|
@ -5742,16 +5451,7 @@ void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg
|
|||
const float min = xb->dmin;
|
||||
const float dl = d * sc[0];
|
||||
const float ml = min * sc[1];
|
||||
#else
|
||||
(void) get_scale_min_k4_just2;
|
||||
|
||||
q = q + 16 * (il&1);
|
||||
device const uint8_t * s = xb->scales;
|
||||
device const half2 * dh = (device const half2 *)xb->d;
|
||||
const float2 d = (float2)dh[0];
|
||||
const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
|
||||
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
|
||||
#endif
|
||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
|
||||
|
@ -5763,7 +5463,6 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
|||
device const uint8_t * q = xb->qs;
|
||||
device const uint8_t * qh = xb->qh;
|
||||
|
||||
#if QK_K == 256
|
||||
short is = (il/4) * 2;
|
||||
q = q + 32 * (il/4) + 16 * (il&1);
|
||||
qh = qh + 16 * (il&1);
|
||||
|
@ -5780,17 +5479,6 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
|||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
|
||||
}
|
||||
#else
|
||||
q = q + 16 * (il&1);
|
||||
device const int8_t * s = xb->scales;
|
||||
const float dl = xb->d * s[il];
|
||||
uint8_t m = 1<<(il*2);
|
||||
const float coef = il<2 ? 1.f : 1.f/16.f;
|
||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
|
@ -5800,15 +5488,11 @@ void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg
|
|||
device const uint8_t * qh = (device const uint8_t *)xb->qh;
|
||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||
|
||||
#if QK_K == 256
|
||||
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
||||
qh = qh + 32*(il/8) + 16*(il&1);
|
||||
float sc = scales[(il%2) + 2 * ((il/2))];
|
||||
il = (il/2) & 3;
|
||||
#else
|
||||
ql = ql + 16 * (il&1);
|
||||
float sc = scales[il];
|
||||
#endif
|
||||
|
||||
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
||||
const float coef = il>1 ? 1.f/16.f : 1.f;
|
||||
|
@ -5965,20 +5649,15 @@ void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 &
|
|||
const int ib32 = il/2;
|
||||
il = il%2;
|
||||
device const uint16_t * sc = (device const uint16_t *)xb->scales;
|
||||
#if QK_K == 64
|
||||
const float d = xb->d;
|
||||
#else
|
||||
|
||||
iq1m_scale_t scale;
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
const float d = scale.f16;
|
||||
#endif
|
||||
|
||||
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
|
||||
device const uint8_t * qh = xb->qh + 2*ib32 + il;
|
||||
#if QK_K == 64
|
||||
const float dl = d * (2*((sc[ib32/2] >> (8*(ib32%2)+4*il)) & 0xf) + 1);
|
||||
#else
|
||||
|
||||
const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
|
||||
#endif
|
||||
const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||
const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
||||
|
@ -6008,9 +5687,6 @@ void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4
|
|||
|
||||
template <typename type4x4>
|
||||
void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) {
|
||||
#if QK_K == 64
|
||||
dequantize_iq4_nl(xb, il, reg);
|
||||
#else
|
||||
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
||||
const int ib32 = il/2;
|
||||
il = il%2;
|
||||
|
@ -6027,7 +5703,6 @@ void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4
|
|||
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
|
||||
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
|
||||
|
@ -6532,11 +6207,7 @@ kernel void kernel_mul_mm_id(
|
|||
sgitg);
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
#define QK_NL 16
|
||||
#else
|
||||
#define QK_NL 4
|
||||
#endif
|
||||
|
||||
//
|
||||
// get rows
|
||||
|
@ -6576,11 +6247,7 @@ template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_t kernel_get_r
|
|||
template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||
template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_t kernel_get_rows<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
||||
template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||
#if QK_K == 64
|
||||
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, 2, dequantize_iq4_xs>;
|
||||
#else
|
||||
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
||||
#endif
|
||||
|
||||
//
|
||||
// matrix-matrix multiplication
|
||||
|
@ -6608,11 +6275,7 @@ template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_m
|
|||
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||
template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
||||
template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||
#if QK_K == 64
|
||||
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_xs>;
|
||||
#else
|
||||
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
||||
#endif
|
||||
|
||||
//
|
||||
// indirect matrix-matrix multiplication
|
||||
|
@ -6640,11 +6303,7 @@ template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel
|
|||
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||
template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
||||
template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||
#if QK_K == 64
|
||||
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, 2, dequantize_iq4_xs>;
|
||||
#else
|
||||
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
||||
#endif
|
||||
|
||||
//
|
||||
// matrix-vector multiplication
|
||||
|
@ -6853,7 +6512,5 @@ template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t
|
|||
template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_s_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_s_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl>>;
|
||||
#if QK_K != 64
|
||||
template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>;
|
||||
#endif
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
#include "ggml.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-opencl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
|
|
2758
ggml-quants.c
2758
ggml-quants.c
File diff suppressed because it is too large
Load diff
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue