Commit graph

1805 commits

Author SHA1 Message Date
Iwan Kawrakow
cda30038e4 Modified RoPE with linear scaling
When the context size is greater than the maximum context size
during training, scale the position given to RoPE with
trainign context / n_ctx.
2023-06-27 15:00:22 +03:00
Concedo
9527a783ea fix rope inplace 2023-06-27 19:44:33 +08:00
Concedo
282376c85a Merge branch 'master' into concedo_experimental
# Conflicts:
#	CMakeLists.txt
#	Makefile
#	README.md
#	tests/test-quantize-perf.cpp
2023-06-27 19:15:27 +08:00
Howard Su
0be54f75a6
baby-llama : fix build after ggml_rope change (#2016) 2023-06-27 08:07:13 +03:00
YellowRoseCx
8afa800fb6 Expose low_vram for CUDA
Enabling --lowvram instructs the program to not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires CUDA
2023-06-26 16:47:22 -05:00
Georgi Gerganov
181e8d9755
llama : fix rope usage after ChatGLM change 2023-06-27 00:37:33 +03:00
Georgi Gerganov
d9779021bd
ggml : add support for ChatGLM RoPE 2023-06-27 00:06:51 +03:00
Roman Parykin
d38e451578
readme : add Scala 3 bindings repo (#2010) 2023-06-26 22:47:59 +03:00
David Yang
eaa6ca5a61
ggml : increase max tensor name + clean up compiler warnings in train-text (#1988)
* Clean up compiler warnings in train-text

Some brackets to disambiguate order of operations

* Increase GGML_MAX_NAME

Avoiding strncpy danger in train-text-from-scratch and reducing potential future name length issues
2023-06-26 22:45:32 +03:00
Gustavo Rocha Dias
aa777abbb7
readme : LD_LIBRARY_PATH complement for some Android devices when building with CLBlast inside Termux (#2007)
* docs - Alternative way to build at Android, with CLBlast.

* doc - LD_LIBRARY_PATH complement for some Android devices when building with CLBlast inside Termux.

* doc- fix typo
2023-06-26 22:34:45 +03:00
Georgi Gerganov
c824d2e368
ggml : avoid conv 2d kernel round up 2023-06-26 21:03:59 +03:00
zrm
b853d45601
ggml : add NUMA support (#1556)
* detect NUMA systems and pin work threads to nodes (linux)

* disable mmap prefetch/readahead for NUMA systems

* avoid sending finalize op to thread pool if it does nothing

* silence robot

* fix args

* make --numa a param

* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement

* lower synchronization overhead

* statically allocate

* move numa state to g_state

* add description for --numa

* ggml : minor style changes

* ggml : minor style + try fix sanitizer build

* llama : allow to initialize backend with NUMA support

* llama : avoid ggml include in llama-util.h

* ggml : style / formatting

* ggml : fix handling of ops with n_threads > n_tasks > 1

* server : utilize numa parameter

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-26 20:57:59 +03:00
Georgi Gerganov
9225baef71
k-quants : fix indentation 2023-06-26 20:10:52 +03:00
katsu560
a84ab1da8d
tests : fix quantize perf (#1990)
* fix test quantize perf

* avoid the global state
2023-06-26 19:47:02 +03:00
katsu560
5743ca8092
k-quants : add AVX support to dot functions (#1916)
* k_quants : add AVX support

* k_quants : apply review comments
2023-06-26 19:46:07 +03:00
Georgi Gerganov
412c60e473
readme : add link to new k-quants for visibility 2023-06-26 19:45:09 +03:00
Kawrakow
6769e944c7
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights

* k_quants: WIP super-blocks with 64 weights

Q6_K scalar and AVX2 works

* k_quants: WIP super-blocks with 64 weights

Q4_K scalar and AVX2 works

* k_quants: WIP super-blocks with 64 weights

Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)

* k_quants: WIP super-blocks with 64 weights

Q3_K scalar and AVX2 works.

* k_quants: WIP super-blocks with 64 weights

Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar

* k_quants: WIP super-blocks with 64 weights

Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,

* k_quants: WIP super-blocks with 64 weights

Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.

* k_quants: WIP super-blocks with 64 weights

Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.

* k_quants: WIP super-blocks with 64 weights

Q3_K working on CUDA.

* k_quants: WIP super-blocks with 64 weights

Q5_K working on CUDA, and with this CUDA is done.

* k_quants: WIP super-blocks with 64 weights

Q6_K working on ARM_NEON

* k_quants: WIP super-blocks with 64 weights

Q4_K working on ARM_NEON, but quite a bit slower than 256 weights

* k_quants: WIP super-blocks with 64 weights

Q2_K working on ARM_NEON, but quite a bit slower than 256 weights

* k_quants: WIP super-blocks with 64 weights

Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.

* k_quants: WIP super-blocks with 64 weights

Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.

With that, we have full support for ARM_NEON, although
performance is not quite there.

* k_quants: WIP super-blocks with 64 weights

Slightly more efficient Q3_K and Q5_K

* k_quants: WIP super-blocks with 64 weights

Another small improvement for Q3_K and Q5_K on ARM_NEON

* k_quants: WIP super-blocks with 64 weights

Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.

* k_quants: WIP super-blocks with 64 weights

* We are able to pass preprocessor macros to the Metal
  compiler
* Q6_K works and is actually slightly more efficient than
  the QK_K = 256 version (25.2 ms vs 25.8 ms)

* k_quants: WIP super-blocks with 64 weights

Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).

* k_quants: WIP super-blocks with 64 weights

Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).

* k_quants: WIP super-blocks with 64 weights

Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).

* k_quants: WIP super-blocks with 64 weights

Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).

* k_quants: call them _K, not _k, also on Metal

* k_quants: correctly define QK_K in llama.cpp

* Fixed bug in q4_K quantization added with the 64-block addition

* Simplify via lambda

* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64

Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.

* k_quants: switch Q4_K to 4-bit scales when QK_K = 64

 Here the loss in accuracy is greater than for Q3_K,
 but the Q4_K points still move further to the left on
 the perplexity vs size curve.

* k_quants: forgot to add the Metal changes in last commit

* k_quants: change Q5_K to be type 0 when QK_K = 64

Still needs AVX2 implementation

* k_quants: AVX2 implementation for new 64-weight Q5_K

* k_quants: 10% faster ARM_NEON Q5_K dot product

* k_quants: fixed issue caused by merging with master

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 19:43:07 +03:00
Howard Su
cbebf61ca7
Fix assert when free invalid cuda pointer (#2005)
Fix assert via initializing extra structure always.
CUDA error 1 at C:\GPT\llama.cpp\ggml-cuda.cu:2536: invalid argument
2023-06-26 23:15:47 +08:00
Concedo
1fdf9d1131 desc 2023-06-26 16:58:59 +08:00
Concedo
e4c9aea840 Merge branch 'master' into concedo_experimental
# Conflicts:
#	README.md
2023-06-26 10:35:47 +08:00
Georgi Gerganov
447ccbe8c3
readme : add new roadmap + manifesto 2023-06-25 16:08:12 +03:00
Georgi Gerganov
bd34cdde38
ggml : sync latest ggml (custom operators) 2023-06-25 14:25:08 +03:00
Concedo
d2034ced7b Merge branch 'master' into concedo_experimental
# Conflicts:
#	README.md
#	build.zig
#	flake.nix
#	tests/test-grad0.c
#	tests/test-sampling.cpp
#	tests/test-tokenizer-0.cpp
2023-06-25 17:01:15 +08:00
anon998
c2a08f87b8
fix server sampling: top k sampler first (#1977)
Co-authored-by: anon <anon@example.org>
2023-06-25 10:48:36 +02:00
Georgi Gerganov
66a2555ba6
readme : add Azure CI discussion link 2023-06-25 09:07:03 +03:00
sjinzh
e65ca7e14a
zig : upgrade build system support (#1981)
* upgrade zig build system support

* zig : add new line at the end of the file

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-25 08:45:44 +03:00
Robyn
5ec8dd5a3c
#1869 Fix null reference errors when training from scratch with CUDA (#1907)
* #1869 Fix null reference errors when training from scratch with CUDA build

Calling ggml_compute_forward when node->src0 was null was causing train-text-from-scratch.exe to terminate unexpectedly.

* ggml : do not dereference src0 if NULL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-24 20:10:29 +02:00
Georgi Gerganov
65bdd52a86
tests : sync test-grad0 from ggml 2023-06-24 19:40:18 +03:00
Rowan Hart
fdd1860911
flake : fix ggml-metal.metal path and run nixfmt (#1974) 2023-06-24 14:07:08 +03:00
AN Long
c943d823c1
convert : fix invalid params in write_vocab_only (#1975) 2023-06-24 14:02:06 +03:00
slaren
f2c754e1c3
ggml : improve ggml_graph_dump_dot, add ggml_format_name (#1978)
* Improve ggml_graph_dump_dot, add ggml_format_name

* add more automatic names to view ops

* fix name of copies
2023-06-24 13:57:18 +03:00
Georgi Gerganov
11da1a85cd
readme : fix whitespaces 2023-06-24 13:38:18 +03:00
Alberto
235b610d65
readme : fixed termux instructions (#1973) 2023-06-24 13:32:13 +03:00
Alex Renda
b061ba9e2a
llama : fix top-p sampling to match the canonical definition (#1953)
* Fix top-p sampling to match the standard definition (smallest set that has probability mass at least p, not largest set with probability mass less than p)

* top-p: correct gt to gte

* add test for correct top-p behavior
2023-06-24 13:15:01 +03:00
Didzis Gosko
527b6fba1d
llama : make model stateless and context stateful (llama_state) (#1797)
* llama : make model stateless and context stateful

* llama : minor cleanup

* llama : update internal API declaration

* Apply suggestions from code review

fix style

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Missing model memory release

* Fix style

* Add deprecated warning for public API function llama_init_from_file

* Update public API use cases: move away from deprecated llama_init_from_file

* Deprecate public API function llama_apply_lora_from_file

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-24 11:47:58 +03:00
Concedo
8342fe81b1 revert the wstring tokenization. coherency was affected 2023-06-24 12:58:49 +08:00
Concedo
6da38b0d40 up ver 2023-06-24 12:30:38 +08:00
Concedo
0485fa65a2 wstring convert for mpt 2023-06-24 11:43:42 +08:00
Concedo
6d718525c4 Merge branch 'optimize_quants_upstream' into concedo_experimental 2023-06-23 23:56:31 +08:00
Concedo
f7b096374d fixed string too long CI issue 2023-06-23 23:56:22 +08:00
Concedo
490cf395f8 better alloc error 2023-06-23 22:51:51 +08:00
Concedo
ece453ed09 Merge branch 'master' into concedo_experimental
# Conflicts:
#	CMakeLists.txt
#	README.md
2023-06-23 22:46:54 +08:00
Concedo
f39a746089 bug fixes for openblas 2023-06-23 22:45:22 +08:00
Concedo
43c2891afa option to not use scratch 2023-06-23 19:01:36 +08:00
Concedo
d5e4cf7ffe handle ctx manip 2023-06-23 19:01:15 +08:00
Concedo
df9135e3a9 fixing memory bugs 2023-06-23 18:41:23 +08:00
eiery
d7b7484f74
Add OpenLLaMA instructions to the README (#1954)
* add openllama to readme
2023-06-23 10:38:01 +02:00
Erik Scholz
7487137227
rework convert.py to read hyper-parameters from config.json (#1958)
* Read hyper-parameters from HuggingFace-transformer config.json, if they exist, and fall back to guessing, like before otherwise.
  This allows converting open_llama 3B and other non-standard model designs.
2023-06-22 14:20:47 +02:00
Concedo
0eedccaf06 Merge branch 'master' into optimize_quants_upstream 2023-06-22 17:59:58 +08:00
Concedo
e6ddb15c3a cleanup 2023-06-22 10:38:27 +08:00