This change makes it possible to use flags like `--grammar` when using
the `llava-cli` program. The rest is just code cleanup deleting a long
standing TODO comment.
This change also ensures that logging information is emitted to stderr
which helps the `llava-cli` command be more friendly to shell scripts.
See Mozilla-Ocho/llamafile@1cd334f
The server currently schedules tasks using a sleep(5ms) busy loop. This
adds unnecessary latency since most sleep implementations do a round up
to the system scheduling quantum (usually 10ms). Other libc sleep impls
spin for smaller time intervals which results in the server's busy loop
consuming all available cpu. Having the explicit notify() / wait() code
also helps aid in the readability of the server code.
See mozilla-Ocho/llamafile@711344b
* fixed mul-mat error for old GPUs
* style fixes
* add mul mat src1 f16 test cases, fix more cases
ggml-ci
---------
Co-authored-by: bssrdf <bssrdf@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
The default values for tfs_z and typical_p were being set to zero, which
caused the token candidates array to get shrunk down to one element thus
preventing any sampling. Note this only applies to OpenAI API compatible
HTTP server requests.
The solution is to use the default values that OpenAI documents, as well
as ensuring we use the llama.cpp defaults for the rest. I've tested this
change still ensures deterministic output by default. If a "temperature"
greater than 0 is explicitly passed, then output is unique each time. If
"seed" is specified in addition to "temperature" then the output becomes
deterministic once more.
See mozilla-Ocho/llamafile#117
See mozilla-Ocho/llamafile@9e4bf29
* cuda : fix vmm pool with multi GPU
* hip
* use recommended granularity instead of minimum
* better error checking
* fix mixtral
* use cudaMemcpy3DPeerAsync
* use cuda_pool_alloc in ggml_cuda_op_mul_mat
* consolidate error checking in ggml_cuda_set_device
* remove unnecessary inlines
ggml-ci
* style fixes
* only use vmm for the main device
* fix scratch buffer size, re-enable vmm pool for all devices
* remove unnecessary check id != g_main_device
* Add logit_bias to the OpenAI api
* Cleanup and refactor, test in swagger.
---------
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Downgrade CUDA to 11.4
This helps the binary be smaller and adds K80 support, the manual compiles we did already had this.
* Update kcpp-build-release-win-cuda.yaml
* Update kcpp-build-release-win-cuda.yaml
* Update kcpp-build-release-win-cuda.yaml
* Update kcpp-build-release-win-cuda.yaml
* Update kcpp-build-release-win-cuda.yaml
* Update kcpp-build-release-win-cuda.yaml
* Restore concedo_experimental
* cuda : improve cuda pool efficiency using virtual memory
* fix mixtral
* fix cmake build
* check for vmm support, disable for hip
ggml-ci
* fix hip build
* clarify granularity
* move all caps to g_device_caps
* refactor error checking
* add cuda_pool_alloc, refactor most pool allocations
ggml-ci
* fix hip build
* CUBLAS_TF32_TENSOR_OP_MATH is not a macro
* more hip crap
* llama : fix msvc warnings
* ggml : fix msvc warnings
* minor
* minor
* cuda : fallback to CPU on host buffer alloc fail
* Update ggml-cuda.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Update ggml-cuda.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* ensure allocations are always aligned
* act_size -> actual_size
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Check the full vocab for grammar only if necessary
* Fix missing logit restoration step (?)
Does this matter, actually?
* Fix whitespace / formatting
* Adjust comment
* Didn't mean to push test gbnf
* Split sampling into the helper function (?)
And also revert the changes made to the header
* common : fix final newline
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>