Kerfuffle
930523c8e1
Fix convert-llama-ggmlv3-to-gguf.py vocab conversion ( #2698 )
...
When converting without metadata, the hex value for bytes entries weren't 0 padded to 2 digits.
2023-08-21 18:01:34 -06:00
Georgi Gerganov
c8dba409e6
py : remove obsolete script
2023-08-21 23:40:22 +03:00
Georgi Gerganov
6381d4e110
gguf : new file format with flexible meta data (beta) ( #2398 )
...
* gguf : first API pass
* gguf : read header + meta data
* gguf : read tensor info
* gguf : initial model loading - not tested
* gguf : add gguf_get_tensor_name()
* gguf : do not support passing existing ggml_context to gguf_init
* gguf : simplify gguf_get_val
* gguf : gguf.c is now part of ggml.c
* gguf : read / write sample models
* gguf : add comments
* refactor : reduce code duplication and better API (#2415 )
* gguf : expose the gguf_type enum through the API for now
* gguf : add array support
* gguf.py : some code style changes
* convert.py : start a new simplified implementation by removing old stuff
* convert.py : remove GGML vocab + other obsolete stuff
* GGUF : write tensor (#2426 )
* WIP: Write tensor
* GGUF : Support writing tensors in Python
* refactor : rm unused import and upd todos
* fix : fix errors upd writing example
* rm example.gguf
* gitignore *.gguf
* undo formatting
* gguf : add gguf_find_key (#2438 )
* gguf.cpp : find key example
* ggml.h : add gguf_find_key
* ggml.c : add gguf_find_key
* gguf : fix writing tensors
* gguf : do not hardcode tensor names to read
* gguf : write sample tensors to read
* gguf : add tokenization constants
* quick and dirty conversion example
* gguf : fix writing gguf arrays
* gguf : write tensors one by one and code reuse
* gguf : fix writing gguf arrays
* gguf : write tensors one by one
* gguf : write tensors one by one
* gguf : write tokenizer data
* gguf : upd gguf conversion script
* Update convert-llama-h5-to-gguf.py
* gguf : handle already encoded string
* ggml.h : get array str and f32
* ggml.c : get arr str and f32
* gguf.py : support any type
* Update convert-llama-h5-to-gguf.py
* gguf : fix set is not subscriptable
* gguf : update convert-llama-h5-to-gguf.py
* constants.py : add layer norm eps
* gguf.py : add layer norm eps and merges
* ggml.h : increase GGML_MAX_NAME to 64
* ggml.c : add gguf_get_arr_n
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Makefile : add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* gguf : support custom alignment value
* gguf : fix typo in function call
* gguf : mmap tensor data example
* fix : update convert-llama-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* convert-gptneox-h5-to-gguf.py : Special tokens
* gptneox-main.cpp : special tokens
* Update gptneox-main.cpp
* constants.py : special tokens
* gguf.py : accumulate kv and tensor info data + special tokens
* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens
* gguf : gguf counterpart of llama-util.h
* gguf-util.h : update note
* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
* convert-llama-h5-to-gguf.py : special tokens
* Delete gptneox-common.cpp
* Delete gptneox-common.h
* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer
* gptneox-main.cpp : gpt2 bpe tokenizer
* gpt2 bpe tokenizer (handles merges and unicode)
* Makefile : remove gptneox-common
* gguf.py : bytesarray for gpt2bpe tokenizer
* cmpnct_gpt2bpe.hpp : comments
* gguf.py : use custom alignment if present
* gguf : minor stuff
* Update gptneox-main.cpp
* map tensor names
* convert-gptneox-h5-to-gguf.py : map tensor names
* convert-llama-h5-to-gguf.py : map tensor names
* gptneox-main.cpp : map tensor names
* gguf : start implementing libllama in GGUF (WIP)
* gguf : start implementing libllama in GGUF (WIP)
* rm binary commited by mistake
* upd .gitignore
* gguf : calculate n_mult
* gguf : inference with 7B model working (WIP)
* gguf : rm deprecated function
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : add gguf_get_kv_type
* gguf : add gguf_get_kv_type
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver
* gguf : rm references to old file formats
* gguf : shorter name for member variable
* gguf : rm redundant method
* gguf : get rid of n_mult, read n_ff from file
* Update gguf_tensor_map.py
* Update gptneox-main.cpp
* gguf : rm references to old file magics
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : quantization is working
* gguf : roper closing of file
* gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice
* convert-llama-h5-to-gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : simplify nbytes
* convert-llama-h5-to-gguf.py : simplify nbytes
* gptneox-main.cpp : n_layer --> n_block
* constants.py : n_layer --> n_block
* gguf.py : n_layer --> n_block
* convert-gptneox-h5-to-gguf.py : n_layer --> n_block
* convert-llama-h5-to-gguf.py : n_layer --> n_block
* gptneox-main.cpp : n_layer --> n_block
* Update gguf_tensor_map.py
* convert-gptneox-h5-to-gguf.py : load model in parts to save memory
* convert-llama-h5-to-gguf.py : load model in parts to save memory
* convert : write more metadata for LLaMA
* convert : rm quantization version
* convert-gptneox-h5-to-gguf.py : add file_type key
* gptneox-main.cpp : add file_type key
* fix conflicts
* gguf : add todos and comments
* convert-gptneox-h5-to-gguf.py : tensor name map changes
* Create gguf_namemap.py : tensor name map changes
* Delete gguf_tensor_map.py
* gptneox-main.cpp : tensor name map changes
* convert-llama-h5-to-gguf.py : fixes
* gguf.py : dont add empty strings
* simple : minor style changes
* gguf : use UNIX line ending
* Create convert-llama-7b-pth-to-gguf.py
* llama : sync gguf-llama.cpp with latest llama.cpp (#2608 )
* llama : sync gguf-llama.cpp with latest llama.cpp
* minor : indentation + assert
* llama : refactor gguf_buffer and gguf_ctx_buffer
* llama : minor
* gitignore : add gptneox-main
* llama : tokenizer fixes (#2549 )
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* convert : update convert-new.py with tokenizer fixes (#2614 )
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* llama : sync gguf-llama with llama (#2613 )
* llama : sync gguf-llama with llama
* tests : fix build + warnings (test-tokenizer-1 still fails)
* tests : fix wstring_convert
* convert : fix layer names
* llama : sync gguf-llama.cpp
* convert : update HF converter to new tokenizer voodoo magics
* llama : update tokenizer style
* convert-llama-h5-to-gguf.py : add token types
* constants.py : add token types
* gguf.py : add token types
* convert-llama-7b-pth-to-gguf.py : add token types
* gguf-llama.cpp : fix n_head_kv
* convert-llama-h5-to-gguf.py : add 70b gqa support
* gguf.py : add tensor data layout
* convert-llama-h5-to-gguf.py : add tensor data layout
* convert-llama-7b-pth-to-gguf.py : add tensor data layout
* gptneox-main.cpp : add tensor data layout
* convert-llama-h5-to-gguf.py : clarify the reverse permute
* llama : refactor model loading code (#2620 )
* llama : style formatting + remove helper methods
* llama : fix quantization using gguf tool
* llama : simplify gguf_file_saver
* llama : fix method names
* llama : simplify write_header()
* llama : no need to pass full file loader to the file saver
just gguf_ctx
* llama : gguf_file_saver write I32
* llama : refactor tensor names (#2622 )
* gguf: update tensor names searched in quantization
* gguf : define tensor names as constants
* gguf : initial write API (not tested yet)
* gguf : write to file API (not tested)
* gguf : initial write API ready + example
* gguf : fix header write
* gguf : fixes + simplify example + add ggml_nbytes_pad()
* gguf : minor
* llama : replace gguf_file_saver with new gguf write API
* gguf : streaming support when writing files
* gguf : remove oboslete write methods
* gguf : remove obosolete gguf_get_arr_xxx API
* llama : simplify gguf_file_loader
* llama : move hparams and vocab from gguf_file_loader to llama_model_loader
* llama : merge gguf-util.h in llama.cpp
* llama : reorder definitions in .cpp to match .h
* llama : minor simplifications
* llama : refactor llama_model_loader (WIP)
wip : remove ggml_ctx from llama_model_loader
wip : merge gguf_file_loader in llama_model_loader
* llama : fix shape prints
* llama : fix Windows build + fix norm_rms_eps key
* llama : throw error on missing KV paris in model meta data
* llama : improve printing + log meta data
* llama : switch print order of meta data
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
* gguf : deduplicate (#2629 )
* gguf : better type names
* dedup : CPU + Metal is working
* ggml : fix warnings about unused results
* llama.cpp : fix line feed and compiler warning
* llama : fix strncpy warning + note token_to_str does not write null
* llama : restore the original load/save session implementation
Will migrate this to GGUF in the future
* convert-llama-h5-to-gguf.py : support alt ctx param name
* ggml : assert when using ggml_mul with non-F32 src1
* examples : dedup simple
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* gguf.py : merge all files in gguf.py
* convert-new.py : pick #2427 for HF 70B support
* examples/gguf : no need to keep q option for quantization any more
* llama.cpp : print actual model size
* llama.cpp : use ggml_elements()
* convert-new.py : output gguf (#2635 )
* convert-new.py : output gguf (WIP)
* convert-new.py : add gguf key-value pairs
* llama : add hparams.ctx_train + no longer print ftype
* convert-new.py : minor fixes
* convert-new.py : vocab-only option should work now
* llama : fix tokenizer to use llama_char_to_byte
* tests : add new ggml-vocab-llama.gguf
* convert-new.py : tensor name mapping
* convert-new.py : add map for skipping tensor serialization
* convert-new.py : convert script now works
* gguf.py : pick some of the refactoring from #2644
* convert-new.py : minor fixes
* convert.py : update to support GGUF output
* Revert "ci : disable CI temporary to not waste energy"
This reverts commit 7e82d25f40
.
* convert.py : n_head_kv optional and .gguf file extension
* convert.py : better always have n_head_kv and default it to n_head
* llama : sync with recent PRs on master
* editorconfig : ignore models folder
ggml-ci
* ci : update ".bin" to ".gguf" extension
ggml-ci
* llama : fix llama_model_loader memory leak
* gptneox : move as a WIP example
* llama : fix lambda capture
ggml-ci
* ggml : fix bug in gguf_set_kv
ggml-ci
* common.h : .bin --> .gguf
* quantize-stats.cpp : .bin --> .gguf
* convert.py : fix HF tensor permuting / unpacking
ggml-ci
* llama.cpp : typo
* llama : throw error if gguf fails to init from file
ggml-ci
* llama : fix tensor name grepping during quantization
ggml-ci
* gguf.py : write tensors in a single pass (#2644 )
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : style fixes in simple conversion script
* gguf : refactor gptneox conversion script
* gguf : rename h5 to hf (for HuggingFace)
* gguf : refactor pth to gguf conversion script
* gguf : rm file_type key and method
* gguf.py : fix vertical alignment
* gguf.py : indentation
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert-gptneox-hf-to-gguf.py : fixes
* gguf.py : gptneox mapping
* convert-llama-hf-to-gguf.py : fixes
* convert-llama-7b-pth-to-gguf.py : fixes
* ggml.h : reverse GGUF_MAGIC
* gguf.py : reverse GGUF_MAGIC
* test-tokenizer-0.cpp : fix warning
* llama.cpp : print kv general.name
* llama.cpp : get special token kv and linefeed token id
* llama : print number of tensors per type + print arch + style
* tests : update vocab file with new magic
* editorconfig : fix whitespaces
* llama : re-order functions
* llama : remove C++ API + reorganize common source in /common dir
* llama : minor API updates
* llama : avoid hardcoded special tokens
* llama : fix MPI build
ggml-ci
* llama : introduce enum llama_vocab_type + remove hardcoded string constants
* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested
* falcon-main.cpp : falcon inference example
* convert-falcon-hf-to-gguf.py : remove extra kv
* convert-gptneox-hf-to-gguf.py : remove extra kv
* convert-llama-7b-pth-to-gguf.py : remove extra kv
* convert-llama-hf-to-gguf.py : remove extra kv
* gguf.py : fix for falcon 40b
* falcon-main.cpp : fix for falcon 40b
* convert-falcon-hf-to-gguf.py : update ref
* convert-falcon-hf-to-gguf.py : add tensor data layout
* cmpnct_gpt2bpe.hpp : fixes
* falcon-main.cpp : fixes
* gptneox-main.cpp : fixes
* cmpnct_gpt2bpe.hpp : remove non-general stuff
* Update examples/server/README.md
Co-authored-by: slaren <slarengh@gmail.com>
* cmpnct_gpt2bpe.hpp : cleanup
* convert-llama-hf-to-gguf.py : special tokens
* convert-llama-7b-pth-to-gguf.py : special tokens
* convert-permute-debug.py : permute debug print
* convert-permute-debug-master.py : permute debug for master
* convert-permute-debug.py : change permute type of attn_q
* convert.py : 70b model working (change attn_q permute)
* Delete convert-permute-debug-master.py
* Delete convert-permute-debug.py
* convert-llama-hf-to-gguf.py : fix attn_q permute
* gguf.py : fix rope scale kv
* convert-llama-hf-to-gguf.py : rope scale and added tokens
* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens
* llama.cpp : use rope scale kv
* convert-llama-7b-pth-to-gguf.py : rope scale fix
* convert-llama-hf-to-gguf.py : rope scale fix
* py : fix whitespace
* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682 )
* First pass at converting GGMLv3 LLaMA models to GGUF
* Cleanups, better output during conversion
* Fix vocab space conversion logic
* More vocab conversion fixes
* Add description to converted GGUF files
* Improve help text, expand warning
* Allow specifying name and description for output GGUF
* Allow overriding vocab and hyperparams from original model metadata
* Use correct params override var name
* Fix wrong type size for Q8_K
Better handling of original style metadata
* Set default value for gguf add_tensor raw_shape KW arg
* llama : improve token type support (#2668 )
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* llama : add API for token type
ggml-ci
* tests : use new tokenizer type API (#2692 )
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* Improve commentary
* Use token type API in test-tokenizer-1.cpp
* py : cosmetics
* readme : add notice about new file format
ggml-ci
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-08-21 23:07:43 +03:00
Shouzheng Liu
dadbed99e6
metal : fix synchronization in new matrix multiplication kernel ( #2686 )
2023-08-21 13:59:29 +03:00
Kawrakow
cb1c0727bd
HellaSwag: split token evaluation into batches if needed ( #2681 )
...
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-08-21 11:11:31 +03:00
xaedes
8b4106ae33
also save latest finetune output with ITERATION="LATEST" and print where files are saved
...
saving with LATEST makes it easier to resume training from the latest checkpoint
the string "LATEST" can be configured with command line option "--fn-latest STR"
2023-08-21 02:39:46 +02:00
slaren
9e232f0234
ggml : move all type info to ggml_type_traits ( #2663 )
2023-08-20 22:17:53 +02:00
xaedes
27c24ffa1b
add option to save finetune output every N iterations
2023-08-20 20:16:46 +02:00
xaedes
d61ed6b431
mixing multiple LORA adapters is now possible
...
pass more than one '--lora FNAME' argument to apply more than one LORA.
use '--lora-scaled FNAME S' when you want to specify a user-defined scale for an adapter.
2023-08-20 18:48:35 +02:00
Kawrakow
5e9ff54a67
More efficient Hellaswag implementation ( #2677 )
...
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-08-20 16:44:46 +03:00
Georgi Gerganov
1f0bccb279
server : better default prompt ( #2646 )
2023-08-19 05:45:36 +08:00
Jhen-Jie Hong
f63564adfa
server : update xxd usage for older versions compatibility ( #2649 )
...
* server : update xxd usage for older versions compatibility
* remove unused $func
2023-08-19 05:41:32 +08:00
Adrian
2d8b76a110
Add link to clojure bindings to Readme. ( #2659 )
2023-08-18 21:39:22 +02:00
xaedes
37dfb544aa
resolve todo
...
allocator will only make it inplace when they are of the same type
2023-08-18 21:22:41 +02:00
xaedes
3e47890760
remove unnecessary src tensor from ggml_repeat & ggml_repeat_back
...
we don't need data of src[1] for computation, only to setup the correct output shape.
remove dependency on src[1], so that allocator can work more freely.
the computational graph is still completely determined, because the output shape is naturally included
2023-08-18 20:51:00 +02:00
xaedes
65b0561637
remove unnecessary src tensor from ggml_get_rows_back
...
we don't need data of src[2] for computation, only to setup the correct output shape.
remove dependency on src[2], so that allocator can work more freely.
the computational graph is still completely determined, because the output shape is naturally included.
this is similar to how ggml_reshape does it.
2023-08-18 20:25:42 +02:00
xaedes
6c98640035
bug fix: make sure finetune input gradient is allocated at begin and kept until end
2023-08-18 20:10:04 +02:00
xaedes
63cb374a99
change default finetune params lora_r and lora_alpha to match the n_rank parameters of 4
2023-08-18 19:08:15 +02:00
xaedes
7a63d429af
adjust maximal values to support finetuning 3B models
2023-08-18 17:32:31 +02:00
Georgi Gerganov
7af633aec3
readme : incoming BREAKING CHANGE
2023-08-18 17:48:31 +03:00
xaedes
113c90f1cc
improve optimization iteration prints
2023-08-18 16:24:42 +02:00
xaedes
a0c2752ba7
remove debug prints and function to compute tensor data hash
2023-08-18 16:24:13 +02:00
xaedes
011f47f972
remove trailing whitespace
2023-08-18 16:02:46 +02:00
xaedes
f358204a5f
avoid keeping in memory ALL of the gradients
...
The problem here stems from ggml_graph_reset. This function is called in the optimization function, before each graph computation, to reset the gradients to zero. This required a unique memory slot for each gradient: allocating memory from a previosly freed memory location might lead to non-zero input gradients.
During ggml_compute_backward the gradients are build stepwise by adding or substracting new values, starting from a OP_NONE tensor which needs to contain zero-values. This requires the graph reset.
To avoid this I now remember in ggml_build_backward_expand the original OP_NONE gradient tensors in a hash table, which is passed to ggml_compute_backward. There instead of using add (or sub or similar) I test whether the existing gradient to be changed is a zero-valued-tensor by looking up its existence in the hash table. When it is such a zero-tensor it will not be modified, but replaced by the value to be added, otherwise the regular add (not inplace, allocator will take care of this) will be used. This way none of those zero-tensor values will be necessary in the final backward graph and more importantly they won't need a unique memory slot, just to make them zero.
2023-08-18 16:01:43 +02:00
xaedes
a252111b45
fix bug in ggml_out_prod which resulted in wrong n_dims of result tensors
2023-08-18 15:03:57 +02:00
xaedes
44526cb261
make sure base model tensors data cannot be used in viewable operations
...
memory allocator would try to make lora application inplace on base model tensors.
since those are memory mapped this will result in memory access violations
2023-08-18 15:03:17 +02:00
slaren
097e121e2f
llama : add benchmark example ( #2626 )
...
* llama : add benchmark example
* add to examples CMakeLists.txt
* fix msvc build
* add missing include
* add Bessel's correction to stdev calculation
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* improve markdown formatting
* add missing include
* print warning is NDEBUG is not defined
* remove n_prompt and n_gen from the matrix, use each value separately instead
* better checks for non-optimized builds
* llama.cpp : fix MEM_REQ_SCRATCH0 reusing the value of n_ctx of the first call
* fix json formatting
* add sql output
* add basic cpu and gpu info (linx/cuda only)
* markdown: also show values that differ from the default
* markdown: add build id
* cleanup
* improve formatting
* formatting
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-08-18 12:44:58 +02:00
mdrokz
eaf98c2649
readme : add link to Rust bindings ( #2656 )
2023-08-18 13:17:58 +03:00
Georgi Gerganov
e9b12c332e
perplexity : more meaningful ETA number - 2 decimal points
2023-08-18 12:48:55 +03:00
Evan Jones
604b8bdfa6
Fix unicode in grammars ( fixes #2501 ) ( #2553 )
...
* Fix unicode in grammars (fixes #2501 )
* add more comments
* fix test-llama-grammar
2023-08-17 19:54:44 -04:00
staviq
10151bee2e
server : support for saving templates in browser LocalStorage ( #2486 )
...
* support for templates in browser LocalStorage
* sync accepted #2409 fix from upstream
* convert autosave invocation to useEffect
* Apply suggestions from code review
Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com>
* Regen index.html.cpp, suggested from code review
---------
Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com>
2023-08-18 07:34:01 +08:00
xaedes
0bb897c82a
bug fix: actually use result type passed to ggml_add_cast
2023-08-18 00:59:06 +02:00
Johannes Gäßler
0992a7b8b1
README: fix LLAMA_CUDA_MMV_Y documentation ( #2647 )
2023-08-17 23:57:59 +02:00
Henri Vasserman
6ddeefad9b
[Zig] Fixing Zig build and improvements ( #2554 )
...
* Fix zig after console.o was split
* Better include and flag management
* Change LTO to option
2023-08-17 23:11:18 +03:00
Kerfuffle
8dae7ce684
Add --cfg-negative-prompt-file option for examples ( #2591 )
...
Add --cfg-negative-prompt-file option for examples
2023-08-17 07:29:44 -06:00
Georgi Gerganov
a73ccf1aa3
llama : replace (permute + reshape + view_1d) with (view_3d) ( #2538 )
...
ggml-ci
2023-08-17 10:47:09 +03:00
drbh
7cf54e1f74
tests : adds simple llama grammar tests ( #2618 )
...
* adds simple llama grammar tests
* fix lint and add Makefile
* 0 terminate code_points
* avoid dangling pointers in candidate cleanup
* cleanup grammar at end of test
2023-08-17 10:41:01 +03:00
Shouzheng Liu
a872a2b28e
ggml-alloc : fix discrepency between measure&eval ( #2639 )
...
The GGML memory allocator consistently places a tensor within the
optimal-fit memory block, which is the smallest block capable of
accommodating the tensor's size. During the measurement phase, the final
block is generously sized, ensuring it never qualifies as the
optimal-fit block as long as there exists another block capable of
accommodating the tensor. Nevertheless, in the evaluation phase, the
last block is constrained in size and could potentially qualify as the
optimal-fit block. Consequently, there exists the possibility of a
tensor being allocated to a different region during evaluation, leading
to more memory fragmentation in our scratch buffer.
This recent commit guarantees uniform behavior of the allocator across
both the measurement and evaluation phases, eliminating discrepancies
between the two.
2023-08-17 10:35:53 +03:00
xaedes
714fec06ee
use ggml_add_cast in finetuning
...
lora-applied weights will now have data type F32, which improves gradients when finetuning quantized base models
2023-08-16 23:53:12 +02:00
xaedes
9198b24e4e
add ggml_add_cast API function
...
this function works like ggml_add, but accepts a data type for the resulting tensor.
only supported for quantized src0 input.
2023-08-16 23:50:46 +02:00
Kolen Cheung
0919a0f73d
cmake : install ggml-meta.metal if LLAMA_METAL ( #2449 )
2023-08-16 23:09:49 +03:00
Jhen-Jie Hong
ed53db86c3
metal : print error of load pipeline state ( #2564 )
...
* metal : print error of load pipeline state
* metal : return null if load pipeline failed
2023-08-16 23:09:03 +03:00
xaedes
f80e245d7b
add lora finetune support on quantized base model tensors
2023-08-16 22:08:44 +02:00
Shouzheng Liu
fc8ef549e5
metal : enable ggml-alloc ( #2627 )
...
* metal: enable ggml-alloc
Make ggml-alloc work with concurrently dispatch.
* style-fix
Co-authored-by: slaren <slarengh@gmail.com>
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-16 23:08:28 +03:00
Shouzheng Liu
bf83bff674
metal : matrix-matrix multiplication kernel ( #2615 )
...
* metal: matrix-matrix multiplication kernel
This commit removes MPS and uses custom matrix-matrix multiplication
kernels for all quantization types. This commit also adds grouped-query
attention to support llama2 70B.
* metal: fix performance degradation from gqa
Integers are slow on the GPU, and 64-bit divides are extremely slow.
In the context of GQA, we introduce a 64-bit divide that cannot be
optimized out by the compiler, which results in a decrease of ~8% in
inference performance. This commit fixes that issue by calculating a
part of the offset with a 32-bit divide. Naturally, this limits the
size of a single matrix to ~4GB. However, this limitation should
suffice for the near future.
* metal: fix bugs for GQA and perplexity test.
I mixed up ne02 and nb02 in previous commit.
2023-08-16 23:07:04 +03:00
xaedes
83a4ad7986
remove trailing whitespace
2023-08-16 22:05:41 +02:00
xaedes
83cb9ed4f5
implement ggml_compute_forward_out_prod_q_f32
2023-08-16 22:01:06 +02:00
xaedes
79ad888768
remove unused call to not existing llama_get_layer_from_model
2023-08-16 21:56:36 +02:00
xaedes
1151653b15
replace llama API functions to get model tensors by one function to get model tensor by name
...
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
2023-08-16 21:36:40 +02:00
xaedes
39a2d15461
avoid stack overflow resulting from big ggml_cgraph
...
replace stack allocation and ggml_build_forward by ggml_new_graph in combination with ggml_build_forward_expand
2023-08-16 16:42:25 +02:00