Compare commits
33 commits
master
...
compilade/
Author | SHA1 | Date | |
---|---|---|---|
|
75b3a09602 | ||
|
8d61607656 | ||
|
7f3a619c98 | ||
|
cb6d9962c4 | ||
|
35cc5567c8 | ||
|
82b240406d | ||
|
69f772682e | ||
|
895004f3f8 | ||
|
3a0bf17d57 | ||
|
d911cd1f13 | ||
|
96b3d411e0 | ||
|
f034aa1bb1 | ||
|
04eec58112 | ||
|
45719a2472 | ||
|
5417089aeb | ||
|
a6dd6994a5 | ||
|
e9719576c4 | ||
|
560873f337 | ||
|
77b8f84ae7 | ||
|
79a278e922 | ||
|
dd3e62a703 | ||
|
8fbd59308b | ||
|
ec50944bf6 | ||
|
bfd2f21fb4 | ||
|
0996149911 | ||
|
961e293833 | ||
|
89dc3b254c | ||
|
9465ec6e12 | ||
|
638ad52f87 | ||
|
ef1e345c85 | ||
|
48b73b8498 | ||
|
7ef4254a92 | ||
|
bd807499f7 |
15 changed files with 937 additions and 35 deletions
|
@ -308,6 +308,20 @@ class Model:
|
|||
):
|
||||
data_qtype = gguf.GGMLQuantizationType.F32
|
||||
|
||||
if data_qtype is False and any(
|
||||
self.match_model_tensor_name(new_name, key, bid)
|
||||
for key in (
|
||||
gguf.MODEL_TENSOR.TOKEN_EMBD,
|
||||
gguf.MODEL_TENSOR.OUTPUT,
|
||||
)
|
||||
):
|
||||
if self.ftype in (
|
||||
gguf.LlamaFileType.MOSTLY_TQ1_0,
|
||||
gguf.LlamaFileType.MOSTLY_TQ2_0,
|
||||
):
|
||||
# TODO: use Q4_K and Q6_K
|
||||
data_qtype = gguf.GGMLQuantizationType.F16
|
||||
|
||||
# No override (data_qtype is False), or wants to be quantized (data_qtype is True)
|
||||
if isinstance(data_qtype, bool):
|
||||
if self.ftype == gguf.LlamaFileType.ALL_F32:
|
||||
|
@ -318,6 +332,10 @@ class Model:
|
|||
data_qtype = gguf.GGMLQuantizationType.BF16
|
||||
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
|
||||
data_qtype = gguf.GGMLQuantizationType.Q8_0
|
||||
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
|
||||
data_qtype = gguf.GGMLQuantizationType.TQ1_0
|
||||
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
|
||||
data_qtype = gguf.GGMLQuantizationType.TQ2_0
|
||||
else:
|
||||
raise ValueError(f"Unknown file type: {self.ftype.name}")
|
||||
|
||||
|
@ -1623,15 +1641,16 @@ class BitnetModel(Model):
|
|||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(1.0)
|
||||
|
||||
def weight_quant(self, weight):
|
||||
def weight_quant(self, weight: Tensor) -> Tensor:
|
||||
dtype = weight.dtype
|
||||
weight = weight.float()
|
||||
s = 1 / weight.abs().mean().clamp(min=1e-5)
|
||||
weight = (weight * s).round().clamp(-1, 1) / s
|
||||
scale = weight.abs().max().unsqueeze(0)
|
||||
weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
|
||||
weight = torch.sign(weight).type(dtype)
|
||||
return weight.type(dtype), scale.type(torch.float32)
|
||||
scale = weight.abs().mean().clamp(min=1e-5)
|
||||
iscale = 1 / scale
|
||||
# TODO: multiply by the scale directly instead of inverting it twice
|
||||
# (this is also unnecessarily doubly inverted upstream)
|
||||
# ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
|
||||
result = (weight * iscale).round().clamp(-1, 1) / iscale
|
||||
return result.type(dtype)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
@ -1646,11 +1665,9 @@ class BitnetModel(Model):
|
|||
gguf.MODEL_TENSOR.FFN_GATE,
|
||||
]):
|
||||
# transform weight into 1/0/-1 (in fp32)
|
||||
weight_torch, scale_torch = self.weight_quant(data_torch)
|
||||
yield (new_name, weight_torch)
|
||||
yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
|
||||
else:
|
||||
yield (new_name, data_torch)
|
||||
data_torch = self.weight_quant(data_torch)
|
||||
|
||||
yield (new_name, data_torch)
|
||||
|
||||
|
||||
@Model.register("GrokForCausalLM")
|
||||
|
@ -4011,8 +4028,8 @@ def parse_args() -> argparse.Namespace:
|
|||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
|
||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
|
||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bigendian", action="store_true",
|
||||
|
@ -4099,6 +4116,8 @@ def main() -> None:
|
|||
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
||||
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
||||
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
|
||||
"tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
|
||||
"tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
|
||||
"auto": gguf.LlamaFileType.GUESSED,
|
||||
}
|
||||
|
||||
|
|
|
@ -26,6 +26,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
||||
{ "TQ1_0", LLAMA_FTYPE_MOSTLY_TQ1_0, " 1.69 bpw ternarization", },
|
||||
{ "TQ2_0", LLAMA_FTYPE_MOSTLY_TQ2_0, " 2.06 bpw ternarization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
|
||||
{ "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },
|
||||
|
|
|
@ -395,6 +395,8 @@ extern "C" {
|
|||
GGML_TYPE_Q4_0_4_4 = 31,
|
||||
GGML_TYPE_Q4_0_4_8 = 32,
|
||||
GGML_TYPE_Q4_0_8_8 = 33,
|
||||
GGML_TYPE_TQ1_0 = 34,
|
||||
GGML_TYPE_TQ2_0 = 35,
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
|
|
|
@ -227,6 +227,25 @@ typedef struct {
|
|||
} block_q8_0x8;
|
||||
static_assert(sizeof(block_q8_0x8) == 8 * sizeof(ggml_half) + QK8_0 * 8, "wrong q8_0x8 block size/padding");
|
||||
|
||||
//
|
||||
// Ternary quantization
|
||||
//
|
||||
|
||||
// 1.6875 bpw
|
||||
typedef struct {
|
||||
uint8_t qs[(QK_K - 4 * QK_K / 64) / 5]; // 5 elements per byte (3^5 = 243 < 256)
|
||||
uint8_t qh[QK_K/64]; // 4 elements per byte
|
||||
ggml_half d;
|
||||
} block_tq1_0;
|
||||
static_assert(sizeof(block_tq1_0) == sizeof(ggml_half) + QK_K / 64 + (QK_K - 4 * QK_K / 64) / 5, "wrong tq1_0 block size/padding");
|
||||
|
||||
// 2.0625 bpw
|
||||
typedef struct {
|
||||
uint8_t qs[QK_K/4]; // 2 bits per element
|
||||
ggml_half d;
|
||||
} block_tq2_0;
|
||||
static_assert(sizeof(block_tq2_0) == sizeof(ggml_half) + QK_K / 4, "wrong tq2_0 block size/padding");
|
||||
|
||||
//
|
||||
// Super-block quantization structures
|
||||
//
|
||||
|
@ -361,6 +380,7 @@ typedef struct {
|
|||
} block_iq3_s;
|
||||
static_assert(sizeof(block_iq3_s) == sizeof(ggml_half) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding");
|
||||
|
||||
// 1.5625 bpw
|
||||
typedef struct {
|
||||
ggml_half d;
|
||||
uint8_t qs[QK_K/8];
|
||||
|
|
|
@ -175,7 +175,7 @@ typedef __fp16 ggml_fp16_internal_t;
|
|||
|
||||
// 32-bit ARM compatibility
|
||||
|
||||
// vaddvq_s16
|
||||
// vaddlvq_s16
|
||||
// vpaddq_s16
|
||||
// vpaddq_s32
|
||||
// vaddvq_s32
|
||||
|
@ -185,12 +185,9 @@ typedef __fp16 ggml_fp16_internal_t;
|
|||
// vzip1_u8
|
||||
// vzip2_u8
|
||||
|
||||
inline static int32_t vaddvq_s16(int16x8_t v) {
|
||||
return
|
||||
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
||||
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
||||
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
||||
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
||||
inline static int32_t vaddlvq_s16(int16x8_t v) {
|
||||
int32x4_t v0 = vreinterpretq_s32_s64(vpaddlq_s32(vpaddlq_s16(v)));
|
||||
return vgetq_lane_s32(v0, 0) + vgetq_lane_s32(v0, 2);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
|
|
|
@ -1630,7 +1630,7 @@ void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int6
|
|||
// ===================== Helper functions
|
||||
//
|
||||
static inline int nearest_int(float fval) {
|
||||
assert(fval <= 4194303.f);
|
||||
assert(fabsf(fval) <= 4194303.f);
|
||||
float val = fval + 12582912.f;
|
||||
int i; memcpy(&i, &val, sizeof(int));
|
||||
return (i & 0x007fffff) - 0x00400000;
|
||||
|
@ -3306,6 +3306,191 @@ size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nr
|
|||
return nrow * row_size;
|
||||
}
|
||||
|
||||
// ====================== Ternary (de)-quantization (BitNet b1.58 and TriLMs)
|
||||
|
||||
void quantize_row_tq1_0_ref(const float * restrict x, block_tq1_0 * restrict y, int64_t k) {
|
||||
assert(k % QK_K == 0);
|
||||
const int64_t nb = k / QK_K;
|
||||
|
||||
for (int64_t i = 0; i < nb; i++) {
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK_K; j++) {
|
||||
const float v = x[j];
|
||||
amax = MAX(amax, fabsf(v));
|
||||
}
|
||||
|
||||
const float d = amax;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
|
||||
// 5 elements per byte, along 32 bytes
|
||||
for (size_t j = 0; j < sizeof(y->qs) - sizeof(y->qs) % 32; j += 32) {
|
||||
for (size_t m = 0; m < 32; ++m) {
|
||||
uint8_t q = 0;
|
||||
for (size_t n = 0; n < 5; ++n) {
|
||||
int xi = lroundf(x[m + n*32] * id) + 1; // -1, 0, 1 -> 0, 1, 2
|
||||
q *= 3;
|
||||
q += xi;
|
||||
}
|
||||
// ceiling division (243 == pow(3, 5))
|
||||
q = ((uint16_t)q * 256 + (243 - 1)) / 243;
|
||||
y[i].qs[j + m] = q;
|
||||
}
|
||||
x += 5*32;
|
||||
}
|
||||
// along 16 bytes
|
||||
for (size_t j = sizeof(y->qs) - sizeof(y->qs) % 32; j < sizeof(y->qs); j += 16) {
|
||||
for (size_t m = 0; m < 16; ++m) {
|
||||
uint8_t q = 0;
|
||||
for (size_t n = 0; n < 5; ++n) {
|
||||
int xi = lroundf(x[m + n*16] * id) + 1; // -1, 0, 1 -> 0, 1, 2
|
||||
q *= 3;
|
||||
q += xi;
|
||||
}
|
||||
// ceiling division (243 == pow(3, 5))
|
||||
q = ((uint16_t)q * 256 + (243 - 1)) / 243;
|
||||
y[i].qs[j + m] = q;
|
||||
}
|
||||
x += 5*16;
|
||||
}
|
||||
// 4 elements per byte
|
||||
for (size_t j = 0; j < sizeof(y->qh); ++j) {
|
||||
uint8_t q = 0;
|
||||
for (size_t m = 0; m < 4; ++m) {
|
||||
// -1, 0, 1 -> 0, 1, 2
|
||||
int xi = lroundf(x[j + m*sizeof(y->qh)] * id) + 1;
|
||||
q *= 3;
|
||||
q += xi;
|
||||
}
|
||||
// shift the first value to the most significant trit
|
||||
q *= 3;
|
||||
// ceiling division (243 == pow(3, 5))
|
||||
q = ((uint16_t)q * 256 + (243 - 1)) / 243;
|
||||
y[i].qh[j] = q;
|
||||
}
|
||||
x += 4*sizeof(y->qh);
|
||||
}
|
||||
}
|
||||
|
||||
void quantize_row_tq2_0_ref(const float * restrict x, block_tq2_0 * restrict y, int64_t k) {
|
||||
assert(k % QK_K == 0);
|
||||
const int64_t nb = k / QK_K;
|
||||
|
||||
for (int64_t i = 0; i < nb; i++) {
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK_K; j++) {
|
||||
const float v = x[j];
|
||||
amax = MAX(amax, fabsf(v));
|
||||
}
|
||||
|
||||
const float d = amax;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
|
||||
for (size_t j = 0; j < sizeof(y->qs); j += 32) {
|
||||
for (size_t m = 0; m < 32; ++m) {
|
||||
uint8_t q = 0;
|
||||
for (size_t n = 0; n < 4; ++n) {
|
||||
// -1, 0, 1 -> 0, 1, 2
|
||||
int xi = lroundf(x[m + n*32] * id) + 1;
|
||||
q += (xi & 3) << (2*n);
|
||||
}
|
||||
y[i].qs[j + m] = q;
|
||||
}
|
||||
x += 4*32;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void quantize_row_tq1_0(const float * restrict x, void * restrict vy, int64_t k) {
|
||||
assert(k % QK_K == 0);
|
||||
block_tq1_0 * restrict y = vy;
|
||||
quantize_row_tq1_0_ref(x, y, k);
|
||||
}
|
||||
|
||||
void quantize_row_tq2_0(const float * restrict x, void * restrict vy, int64_t k) {
|
||||
assert(k % QK_K == 0);
|
||||
block_tq2_0 * restrict y = vy;
|
||||
quantize_row_tq2_0_ref(x, y, k);
|
||||
}
|
||||
|
||||
size_t quantize_tq1_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
||||
(void)quant_weights; // not used
|
||||
const size_t row_size = ggml_row_size(GGML_TYPE_TQ1_0, n_per_row);
|
||||
quantize_row_tq1_0(src, dst, (int64_t)nrow*n_per_row);
|
||||
return nrow * row_size;
|
||||
}
|
||||
|
||||
size_t quantize_tq2_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
||||
(void)quant_weights; // not used
|
||||
const size_t row_size = ggml_row_size(GGML_TYPE_TQ2_0, n_per_row);
|
||||
quantize_row_tq2_0(src, dst, (int64_t)nrow*n_per_row);
|
||||
return nrow * row_size;
|
||||
}
|
||||
|
||||
|
||||
void dequantize_row_tq1_0(const block_tq1_0 * restrict x, float * restrict y, int64_t k) {
|
||||
assert(k % QK_K == 0);
|
||||
const int64_t nb = k / QK_K;
|
||||
|
||||
const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
|
||||
|
||||
for (int64_t i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d);
|
||||
|
||||
for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
|
||||
for (size_t n = 0; n < 5; ++n) {
|
||||
for (size_t m = 0; m < 32; ++m) {
|
||||
uint8_t q = x[i].qs[j + m] * pow3[n];
|
||||
int16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
*y++ = (float) (xi - 1) * d;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
|
||||
for (size_t n = 0; n < 5; ++n) {
|
||||
for (size_t m = 0; m < 16; ++m) {
|
||||
uint8_t q = x[i].qs[j + m] * pow3[n];
|
||||
int16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
*y++ = (float) (xi - 1) * d;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t n = 0; n < 4; ++n) {
|
||||
for (size_t j = 0; j < sizeof(x->qh); ++j) {
|
||||
uint8_t q = x[i].qh[j] * pow3[n];
|
||||
int16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
*y++ = (float) (xi - 1) * d;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void dequantize_row_tq2_0(const block_tq2_0 * restrict x, float * restrict y, int64_t k) {
|
||||
assert(k % QK_K == 0);
|
||||
const int64_t nb = k / QK_K;
|
||||
|
||||
for (int64_t i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d);
|
||||
|
||||
for (size_t j = 0; j < sizeof(x->qs); j += 32) {
|
||||
for (size_t l = 0; l < 4; ++l) {
|
||||
for (size_t m = 0; m < 32; ++m) {
|
||||
int8_t q = (x[i].qs[j + m] >> (l*2)) & 3;
|
||||
*y++ = (float) (q - 1) * d;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ====================== "True" 2-bit (de)-quantization
|
||||
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) {
|
||||
|
@ -5470,6 +5655,501 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
|||
*s = sumf;
|
||||
}
|
||||
|
||||
void ggml_vec_dot_tq1_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
UNUSED(bx);
|
||||
UNUSED(by);
|
||||
UNUSED(bs);
|
||||
|
||||
const block_tq1_0 * restrict x = vx;
|
||||
const block_q8_K * restrict y = vy;
|
||||
|
||||
const int nb = n / QK_K;
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
float sumf = 0.0f;
|
||||
|
||||
uint8_t k_shift[16] = {1, 1, 1, 1, 3, 3, 3, 3, 9, 9, 9, 9, 27, 27, 27, 27};
|
||||
|
||||
const uint8x16_t shift = vld1q_u8(k_shift);
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
int32x4_t sumi0 = vdupq_n_s32(0);
|
||||
int32x4_t sumi1 = vdupq_n_s32(0);
|
||||
#else
|
||||
int16x8_t sumi0 = vdupq_n_s16(0);
|
||||
int16x8_t sumi1 = vdupq_n_s16(0);
|
||||
#endif
|
||||
|
||||
// first 32 bytes of 5 elements
|
||||
{
|
||||
uint8x16_t qx0 = vld1q_u8(x[i].qs + 0);
|
||||
uint8x16_t qx1 = vld1q_u8(x[i].qs + 16);
|
||||
uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(3));
|
||||
uint8x16_t qx3 = vmulq_u8(qx1, vdupq_n_u8(3));
|
||||
uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(9));
|
||||
uint8x16_t qx5 = vmulq_u8(qx1, vdupq_n_u8(9));
|
||||
uint8x16_t qx6 = vmulq_u8(qx0, vdupq_n_u8(27));
|
||||
uint8x16_t qx7 = vmulq_u8(qx1, vdupq_n_u8(27));
|
||||
uint8x16_t qx8 = vmulq_u8(qx0, vdupq_n_u8(81));
|
||||
uint8x16_t qx9 = vmulq_u8(qx1, vdupq_n_u8(81));
|
||||
|
||||
// multiply by 3 and keep the 2 bits above 8 bits
|
||||
int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
|
||||
int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
|
||||
int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
|
||||
int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
|
||||
int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
|
||||
int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
|
||||
int8x16_t sqx6 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx6, vshrq_n_u8(qx6, 1)), 6));
|
||||
int8x16_t sqx7 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx7, vshrq_n_u8(qx7, 1)), 6));
|
||||
int8x16_t sqx8 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx8, vshrq_n_u8(qx8, 1)), 6));
|
||||
int8x16_t sqx9 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx9, vshrq_n_u8(qx9, 1)), 6));
|
||||
|
||||
const int8x16_t qy0 = vld1q_s8(y[i].qs + 0);
|
||||
const int8x16_t qy1 = vld1q_s8(y[i].qs + 16);
|
||||
const int8x16_t qy2 = vld1q_s8(y[i].qs + 32);
|
||||
const int8x16_t qy3 = vld1q_s8(y[i].qs + 48);
|
||||
const int8x16_t qy4 = vld1q_s8(y[i].qs + 64);
|
||||
const int8x16_t qy5 = vld1q_s8(y[i].qs + 80);
|
||||
const int8x16_t qy6 = vld1q_s8(y[i].qs + 96);
|
||||
const int8x16_t qy7 = vld1q_s8(y[i].qs + 112);
|
||||
const int8x16_t qy8 = vld1q_s8(y[i].qs + 128);
|
||||
const int8x16_t qy9 = vld1q_s8(y[i].qs + 144);
|
||||
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
sumi0 = vdotq_s32(sumi0, sqx0, qy0);
|
||||
sumi1 = vdotq_s32(sumi1, sqx1, qy1);
|
||||
sumi0 = vdotq_s32(sumi0, sqx2, qy2);
|
||||
sumi1 = vdotq_s32(sumi1, sqx3, qy3);
|
||||
sumi0 = vdotq_s32(sumi0, sqx4, qy4);
|
||||
sumi1 = vdotq_s32(sumi1, sqx5, qy5);
|
||||
sumi0 = vdotq_s32(sumi0, sqx6, qy6);
|
||||
sumi1 = vdotq_s32(sumi1, sqx7, qy7);
|
||||
sumi0 = vdotq_s32(sumi0, sqx8, qy8);
|
||||
sumi1 = vdotq_s32(sumi1, sqx9, qy9);
|
||||
#else
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx8), vget_low_s8(qy8));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx8), vget_high_s8(qy8));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx9), vget_low_s8(qy9));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx9), vget_high_s8(qy9));
|
||||
#endif
|
||||
}
|
||||
|
||||
// last 16 bytes of 5-element, along with the 4 bytes of 4 elements
|
||||
{
|
||||
uint8x16_t qx0 = vld1q_u8(x[i].qs + 32);
|
||||
uint8x16_t qx1 = vmulq_u8(qx0, vdupq_n_u8(3));
|
||||
uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(9));
|
||||
uint8x16_t qx3 = vmulq_u8(qx0, vdupq_n_u8(27));
|
||||
uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(81));
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
|
||||
uint8x16_t qx5 = vreinterpretq_u8_u32(vdupq_n_u32(qh));
|
||||
qx5 = vmulq_u8(qx5, shift);
|
||||
|
||||
// multiply by 3 and keep the 2 bits above 8 bits
|
||||
int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
|
||||
int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
|
||||
int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
|
||||
int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
|
||||
int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
|
||||
int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
|
||||
|
||||
const int8x16_t qy0 = vld1q_s8(y[i].qs + 160);
|
||||
const int8x16_t qy1 = vld1q_s8(y[i].qs + 176);
|
||||
const int8x16_t qy2 = vld1q_s8(y[i].qs + 192);
|
||||
const int8x16_t qy3 = vld1q_s8(y[i].qs + 208);
|
||||
const int8x16_t qy4 = vld1q_s8(y[i].qs + 224);
|
||||
const int8x16_t qy5 = vld1q_s8(y[i].qs + 240);
|
||||
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
sumi0 = vdotq_s32(sumi0, sqx0, qy0);
|
||||
sumi1 = vdotq_s32(sumi1, sqx1, qy1);
|
||||
sumi0 = vdotq_s32(sumi0, sqx2, qy2);
|
||||
sumi1 = vdotq_s32(sumi1, sqx3, qy3);
|
||||
sumi0 = vdotq_s32(sumi0, sqx4, qy4);
|
||||
sumi1 = vdotq_s32(sumi1, sqx5, qy5);
|
||||
#else
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
|
||||
#endif
|
||||
}
|
||||
|
||||
const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
|
||||
const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
sumi0 = vaddq_s32(sumi0, sumi1);
|
||||
sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
|
||||
|
||||
sumf += d * (float) vaddvq_s32(sumi0);
|
||||
#else
|
||||
sumi0 = vaddq_s16(sumi0, sumi1);
|
||||
sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
|
||||
|
||||
sumf += d * (float) vaddlvq_s16(sumi0);
|
||||
#endif
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined(__AVX2__)
|
||||
__m256 sumf = _mm256_setzero_ps();
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
// 16-bit sums
|
||||
__m256i sumi0 = _mm256_setzero_si256();
|
||||
__m256i sumi1 = _mm256_setzero_si256();
|
||||
__m256i sumi2 = _mm256_setzero_si256();
|
||||
|
||||
// first 32 bytes of 5 elements
|
||||
{
|
||||
__m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs));
|
||||
// 8-bit multiplies with shifts, masks and adds
|
||||
__m256i qx1 = _mm256_add_epi8(qx0, _mm256_add_epi8(qx0, qx0)); // 1 * 3
|
||||
__m256i qx2 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx0, 3), _mm256_set1_epi8(-8)), qx0); // 1 * 9
|
||||
__m256i qx3 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx1, 3), _mm256_set1_epi8(-8)), qx1); // 3 * 9
|
||||
__m256i qx4 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx2, 3), _mm256_set1_epi8(-8)), qx2); // 9 * 9
|
||||
|
||||
// TODO: can _mm256_mulhi_epu16 be faster even if 16-bits?
|
||||
|
||||
// Cancel the +1 from avg so that it behaves like a halving add
|
||||
qx0 = _mm256_subs_epu8(qx0, _mm256_set1_epi8(1));
|
||||
qx1 = _mm256_subs_epu8(qx1, _mm256_set1_epi8(1));
|
||||
qx2 = _mm256_subs_epu8(qx2, _mm256_set1_epi8(1));
|
||||
qx3 = _mm256_subs_epu8(qx3, _mm256_set1_epi8(1));
|
||||
qx4 = _mm256_subs_epu8(qx4, _mm256_set1_epi8(1));
|
||||
// Multiply by 3 and get the top 2 bits
|
||||
qx0 = _mm256_avg_epu8(qx0, _mm256_avg_epu8(qx0, _mm256_setzero_si256()));
|
||||
qx1 = _mm256_avg_epu8(qx1, _mm256_avg_epu8(qx1, _mm256_setzero_si256()));
|
||||
qx2 = _mm256_avg_epu8(qx2, _mm256_avg_epu8(qx2, _mm256_setzero_si256()));
|
||||
qx3 = _mm256_avg_epu8(qx3, _mm256_avg_epu8(qx3, _mm256_setzero_si256()));
|
||||
qx4 = _mm256_avg_epu8(qx4, _mm256_avg_epu8(qx4, _mm256_setzero_si256()));
|
||||
qx0 = _mm256_and_si256(_mm256_srli_epi16(qx0, 6), _mm256_set1_epi8(3));
|
||||
qx1 = _mm256_and_si256(_mm256_srli_epi16(qx1, 6), _mm256_set1_epi8(3));
|
||||
qx2 = _mm256_and_si256(_mm256_srli_epi16(qx2, 6), _mm256_set1_epi8(3));
|
||||
qx3 = _mm256_and_si256(_mm256_srli_epi16(qx3, 6), _mm256_set1_epi8(3));
|
||||
qx4 = _mm256_and_si256(_mm256_srli_epi16(qx4, 6), _mm256_set1_epi8(3));
|
||||
|
||||
const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 0));
|
||||
const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 32));
|
||||
const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 64));
|
||||
const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 96));
|
||||
const __m256i qy4 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 128));
|
||||
|
||||
qx0 = _mm256_maddubs_epi16(qx0, qy0);
|
||||
qx1 = _mm256_maddubs_epi16(qx1, qy1);
|
||||
qx2 = _mm256_maddubs_epi16(qx2, qy2);
|
||||
qx3 = _mm256_maddubs_epi16(qx3, qy3);
|
||||
qx4 = _mm256_maddubs_epi16(qx4, qy4);
|
||||
|
||||
sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
|
||||
sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
|
||||
sumi2 = _mm256_add_epi16(sumi2, qx4);
|
||||
}
|
||||
|
||||
// last 16 bytes of 5-element, along with the 4 bytes of 4 elements
|
||||
{
|
||||
__m128i qx0 = _mm_loadu_si128((const __m128i *) (x[i].qs + 32));
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
|
||||
__m256i qx5_l = _mm256_cvtepu8_epi16(_mm_set1_epi32(qh));
|
||||
__m128i qx1 = _mm_add_epi8(qx0, _mm_add_epi8(qx0, qx0)); // 1 * 3
|
||||
__m128i qx2 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx0, 3), _mm_set1_epi8(-8)), qx0); // 1 * 9
|
||||
__m128i qx3 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx1, 3), _mm_set1_epi8(-8)), qx1); // 3 * 9
|
||||
__m128i qx4 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx2, 3), _mm_set1_epi8(-8)), qx2); // 9 * 9
|
||||
__m256i qx01 = MM256_SET_M128I(qx1, qx0);
|
||||
__m256i qx23 = MM256_SET_M128I(qx3, qx2);
|
||||
|
||||
// avx2 does not have 8-bit multiplies, so 16-bit it is.
|
||||
qx5_l = _mm256_mullo_epi16(qx5_l, _mm256_set_epi16(27, 27, 27, 27, 9, 9, 9, 9, 3, 3, 3, 3, 1, 1, 1, 1));
|
||||
qx5_l = _mm256_and_si256(qx5_l, _mm256_set1_epi16(0xFF));
|
||||
__m128i qx5 = _mm_packus_epi16(_mm256_castsi256_si128(qx5_l), _mm256_extracti128_si256(qx5_l, 1));
|
||||
|
||||
__m256i qx45 = MM256_SET_M128I(qx5, qx4);
|
||||
|
||||
// Cancel the +1 from avg so that it behaves like a halving add
|
||||
qx01 = _mm256_subs_epu8(qx01, _mm256_set1_epi8(1));
|
||||
qx23 = _mm256_subs_epu8(qx23, _mm256_set1_epi8(1));
|
||||
qx45 = _mm256_subs_epu8(qx45, _mm256_set1_epi8(1));
|
||||
// Multiply by 3 and get the top 2 bits
|
||||
qx01 = _mm256_avg_epu8(qx01, _mm256_avg_epu8(qx01, _mm256_setzero_si256()));
|
||||
qx23 = _mm256_avg_epu8(qx23, _mm256_avg_epu8(qx23, _mm256_setzero_si256()));
|
||||
qx45 = _mm256_avg_epu8(qx45, _mm256_avg_epu8(qx45, _mm256_setzero_si256()));
|
||||
qx01 = _mm256_and_si256(_mm256_srli_epi16(qx01, 6), _mm256_set1_epi8(3));
|
||||
qx23 = _mm256_and_si256(_mm256_srli_epi16(qx23, 6), _mm256_set1_epi8(3));
|
||||
qx45 = _mm256_and_si256(_mm256_srli_epi16(qx45, 6), _mm256_set1_epi8(3));
|
||||
|
||||
const __m256i qy01 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 160));
|
||||
const __m256i qy23 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 192));
|
||||
const __m256i qy45 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 224));
|
||||
|
||||
qx01 = _mm256_maddubs_epi16(qx01, qy01);
|
||||
qx23 = _mm256_maddubs_epi16(qx23, qy23);
|
||||
qx45 = _mm256_maddubs_epi16(qx45, qy45);
|
||||
|
||||
sumi0 = _mm256_add_epi16(sumi0, qx01);
|
||||
sumi1 = _mm256_add_epi16(sumi1, qx23);
|
||||
sumi2 = _mm256_add_epi16(sumi2, qx45);
|
||||
}
|
||||
|
||||
const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
|
||||
const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
|
||||
|
||||
sumi0 = _mm256_sub_epi16(sumi0, ysum);
|
||||
sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(sumi1, sumi2));
|
||||
sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
|
||||
|
||||
sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
|
||||
}
|
||||
|
||||
*s = hsum_float_8(sumf);
|
||||
|
||||
#else
|
||||
const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
|
||||
|
||||
float sumf = 0.0f;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
int sum = 0;
|
||||
|
||||
for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
|
||||
for (size_t l = 0; l < 5; ++l) {
|
||||
for (size_t m = 0; m < 32; ++m) {
|
||||
uint8_t q = x[i].qs[j + m] * pow3[l];
|
||||
uint16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
sum += (xi - 1) * y[i].qs[j*5 + l*32 + m];
|
||||
}
|
||||
}
|
||||
}
|
||||
for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
|
||||
for (size_t l = 0; l < 5; ++l) {
|
||||
for (size_t m = 0; m < 16; ++m) {
|
||||
uint8_t q = x[i].qs[j + m] * pow3[l];
|
||||
uint16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
sum += (xi - 1) * y[i].qs[j*5 + l*16 + m];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t l = 0; l < 4; ++l) {
|
||||
for (size_t j = 0; j < sizeof(x->qh); ++j) {
|
||||
uint8_t q = x[i].qh[j] * pow3[l];
|
||||
uint16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j];
|
||||
}
|
||||
}
|
||||
|
||||
sumf += (float) sum * (GGML_FP16_TO_FP32(x[i].d) * y[i].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_tq2_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
UNUSED(bx);
|
||||
UNUSED(by);
|
||||
UNUSED(bs);
|
||||
|
||||
const block_tq2_0 * restrict x = vx;
|
||||
const block_q8_K * restrict y = vy;
|
||||
|
||||
const int nb = n / QK_K;
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
float sumf = 0.0f;
|
||||
|
||||
const uint8x16_t m3 = vdupq_n_u8(3);
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
int32x4_t sumi0 = vdupq_n_s32(0);
|
||||
int32x4_t sumi1 = vdupq_n_s32(0);
|
||||
#else
|
||||
int16x8_t sumi0 = vdupq_n_s16(0);
|
||||
int16x8_t sumi1 = vdupq_n_s16(0);
|
||||
#endif
|
||||
|
||||
for (size_t j = 0; j < sizeof(x->qs); j += 32) {
|
||||
uint8x16_t qx0 = vld1q_u8(x[i].qs + j);
|
||||
uint8x16_t qx1 = vld1q_u8(x[i].qs + j + 16);
|
||||
uint8x16_t qx2 = vshrq_n_u8(qx0, 2);
|
||||
uint8x16_t qx3 = vshrq_n_u8(qx1, 2);
|
||||
uint8x16_t qx4 = vshrq_n_u8(qx0, 4);
|
||||
uint8x16_t qx5 = vshrq_n_u8(qx1, 4);
|
||||
uint8x16_t qx6 = vshrq_n_u8(qx0, 6);
|
||||
uint8x16_t qx7 = vshrq_n_u8(qx1, 6);
|
||||
|
||||
int8x16_t sqx0 = vreinterpretq_s8_u8(vandq_u8(qx0, m3));
|
||||
int8x16_t sqx1 = vreinterpretq_s8_u8(vandq_u8(qx1, m3));
|
||||
int8x16_t sqx2 = vreinterpretq_s8_u8(vandq_u8(qx2, m3));
|
||||
int8x16_t sqx3 = vreinterpretq_s8_u8(vandq_u8(qx3, m3));
|
||||
int8x16_t sqx4 = vreinterpretq_s8_u8(vandq_u8(qx4, m3));
|
||||
int8x16_t sqx5 = vreinterpretq_s8_u8(vandq_u8(qx5, m3));
|
||||
int8x16_t sqx6 = vreinterpretq_s8_u8(vandq_u8(qx6, m3));
|
||||
int8x16_t sqx7 = vreinterpretq_s8_u8(vandq_u8(qx7, m3));
|
||||
|
||||
const int8x16_t qy0 = vld1q_s8(y[i].qs + j*4 + 0);
|
||||
const int8x16_t qy1 = vld1q_s8(y[i].qs + j*4 + 16);
|
||||
const int8x16_t qy2 = vld1q_s8(y[i].qs + j*4 + 32);
|
||||
const int8x16_t qy3 = vld1q_s8(y[i].qs + j*4 + 48);
|
||||
const int8x16_t qy4 = vld1q_s8(y[i].qs + j*4 + 64);
|
||||
const int8x16_t qy5 = vld1q_s8(y[i].qs + j*4 + 80);
|
||||
const int8x16_t qy6 = vld1q_s8(y[i].qs + j*4 + 96);
|
||||
const int8x16_t qy7 = vld1q_s8(y[i].qs + j*4 + 112);
|
||||
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
sumi0 = vdotq_s32(sumi0, sqx0, qy0);
|
||||
sumi1 = vdotq_s32(sumi1, sqx1, qy1);
|
||||
sumi0 = vdotq_s32(sumi0, sqx2, qy2);
|
||||
sumi1 = vdotq_s32(sumi1, sqx3, qy3);
|
||||
sumi0 = vdotq_s32(sumi0, sqx4, qy4);
|
||||
sumi1 = vdotq_s32(sumi1, sqx5, qy5);
|
||||
sumi0 = vdotq_s32(sumi0, sqx6, qy6);
|
||||
sumi1 = vdotq_s32(sumi1, sqx7, qy7);
|
||||
#else
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
|
||||
sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
|
||||
sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
|
||||
#endif
|
||||
}
|
||||
|
||||
const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
|
||||
const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
sumi0 = vaddq_s32(sumi0, sumi1);
|
||||
sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
|
||||
|
||||
sumf += d * (float) vaddvq_s32(sumi0);
|
||||
#else
|
||||
sumi0 = vaddq_s16(sumi0, sumi1);
|
||||
sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
|
||||
|
||||
sumf += d * (float) vaddlvq_s16(sumi0);
|
||||
#endif
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined(__AVX2__)
|
||||
__m256 sumf = _mm256_setzero_ps();
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
// 16-bit sums, because 256*127 still fits
|
||||
__m256i sumi0 = _mm256_setzero_si256();
|
||||
__m256i sumi1 = _mm256_setzero_si256();
|
||||
|
||||
for (size_t j = 0; j < sizeof(x->qs); j += 32) {
|
||||
__m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs + j));
|
||||
__m256i qx1 = _mm256_srli_epi16(qx0, 2);
|
||||
__m256i qx2 = _mm256_srli_epi16(qx0, 4);
|
||||
__m256i qx3 = _mm256_srli_epi16(qx0, 6);
|
||||
|
||||
// 0, 1, 2 (should not be 3)
|
||||
qx0 = _mm256_and_si256(qx0, _mm256_set1_epi8(3));
|
||||
qx1 = _mm256_and_si256(qx1, _mm256_set1_epi8(3));
|
||||
qx2 = _mm256_and_si256(qx2, _mm256_set1_epi8(3));
|
||||
qx3 = _mm256_and_si256(qx3, _mm256_set1_epi8(3));
|
||||
|
||||
const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 0));
|
||||
const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 32));
|
||||
const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 64));
|
||||
const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 96));
|
||||
|
||||
qx0 = _mm256_maddubs_epi16(qx0, qy0);
|
||||
qx1 = _mm256_maddubs_epi16(qx1, qy1);
|
||||
qx2 = _mm256_maddubs_epi16(qx2, qy2);
|
||||
qx3 = _mm256_maddubs_epi16(qx3, qy3);
|
||||
|
||||
sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
|
||||
sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
|
||||
}
|
||||
|
||||
const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
|
||||
const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
|
||||
|
||||
sumi0 = _mm256_add_epi16(sumi0, sumi1);
|
||||
sumi0 = _mm256_sub_epi16(sumi0, ysum);
|
||||
sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
|
||||
|
||||
sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
|
||||
}
|
||||
|
||||
*s = hsum_float_8(sumf);
|
||||
|
||||
#else
|
||||
float sumf = 0.0f;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
int32_t sumi = 0;
|
||||
|
||||
for (size_t j = 0; j < sizeof(x->qs); j += 32) {
|
||||
for (size_t l = 0; l < 4; ++l) {
|
||||
for (size_t k = 0; k < 32; ++k) {
|
||||
sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
|
||||
sumf += (float) sumi * d;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
|
@ -14800,6 +15480,14 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
|
|||
}
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_TQ1_0:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_tq1_0, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_TQ2_0:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_tq2_0, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
|
||||
|
|
|
@ -26,6 +26,9 @@ void quantize_row_q5_K_ref(const float * GGML_RESTRICT x, block_q5_K * GGML_REST
|
|||
void quantize_row_q6_K_ref(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K_ref(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0_ref(const float * GGML_RESTRICT x, block_tq1_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0_ref(const float * GGML_RESTRICT x, block_tq2_0 * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq3_xxs_ref(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_nl_ref (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs_ref (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k);
|
||||
|
@ -46,6 +49,9 @@ void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
|
|||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
@ -67,6 +73,9 @@ void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRI
|
|||
void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void dequantize_row_tq1_0(const block_tq1_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_tq2_0(const block_tq2_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
@ -90,6 +99,9 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
|||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
@ -111,6 +123,9 @@ size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT ds
|
|||
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
size_t quantize_tq1_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_tq2_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
|
|
@ -1054,7 +1054,31 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
|||
.ncols = 8,
|
||||
.gemv = ggml_gemv_q4_0_8x8_q8_0,
|
||||
.gemm = ggml_gemm_q4_0_8x8_q8_0,
|
||||
}
|
||||
},
|
||||
[GGML_TYPE_TQ1_0] = {
|
||||
.type_name = "tq1_0",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_tq1_0),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_tq1_0,
|
||||
.from_float = quantize_row_tq1_0,
|
||||
.from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref,
|
||||
.vec_dot = ggml_vec_dot_tq1_0_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_TQ2_0] = {
|
||||
.type_name = "tq2_0",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_tq2_0),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_tq2_0,
|
||||
.from_float = quantize_row_tq2_0,
|
||||
.from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref,
|
||||
.vec_dot = ggml_vec_dot_tq2_0_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
.nrows = 1,
|
||||
},
|
||||
};
|
||||
|
||||
// For internal test use
|
||||
|
@ -9897,6 +9921,8 @@ static void ggml_compute_forward_add(
|
|||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_TQ1_0:
|
||||
case GGML_TYPE_TQ2_0:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
|
@ -10275,6 +10301,8 @@ static void ggml_compute_forward_add1(
|
|||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_TQ1_0:
|
||||
case GGML_TYPE_TQ2_0:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
|
@ -10403,6 +10431,8 @@ static void ggml_compute_forward_acc(
|
|||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_TQ1_0:
|
||||
case GGML_TYPE_TQ2_0:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
|
@ -13386,6 +13416,8 @@ static void ggml_compute_forward_out_prod(
|
|||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_TQ1_0:
|
||||
case GGML_TYPE_TQ2_0:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
|
@ -13574,6 +13606,8 @@ static void ggml_compute_forward_set(
|
|||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_TQ1_0:
|
||||
case GGML_TYPE_TQ2_0:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
|
@ -13836,6 +13870,8 @@ static void ggml_compute_forward_get_rows(
|
|||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_TQ1_0:
|
||||
case GGML_TYPE_TQ2_0:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
|
@ -14425,6 +14461,8 @@ static void ggml_compute_forward_clamp(
|
|||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_TQ1_0:
|
||||
case GGML_TYPE_TQ2_0:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
|
@ -21868,6 +21906,8 @@ size_t ggml_quantize_chunk(
|
|||
case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
|
|
|
@ -1291,6 +1291,8 @@ class GGMLQuantizationType(IntEnum):
|
|||
Q4_0_4_4 = 31
|
||||
Q4_0_4_8 = 32
|
||||
Q4_0_8_8 = 33
|
||||
TQ1_0 = 34
|
||||
TQ2_0 = 35
|
||||
|
||||
|
||||
# TODO: add GGMLFileType from ggml_ftype in ggml.h
|
||||
|
@ -1335,6 +1337,8 @@ class LlamaFileType(IntEnum):
|
|||
MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
|
||||
MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
|
||||
MOSTLY_Q4_0_8_8 = 35 # except 1d tensors
|
||||
MOSTLY_TQ1_0 = 36 # except 1d tensors
|
||||
MOSTLY_TQ2_0 = 37 # except 1d tensors
|
||||
|
||||
GUESSED = 1024 # not specified in the model file
|
||||
|
||||
|
@ -1411,6 +1415,8 @@ GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
|
|||
GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
|
||||
GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
|
||||
GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
|
||||
GGMLQuantizationType.TQ1_0: (256, 2 + 4 * 13),
|
||||
GGMLQuantizationType.TQ2_0: (256, 2 + 64),
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -574,6 +574,87 @@ class Q6_K(__Quant, qtype=GGMLQuantizationType.Q6_K):
|
|||
return (d * q).reshape((n_blocks, QK_K))
|
||||
|
||||
|
||||
class TQ1_0(__Quant, qtype=GGMLQuantizationType.TQ1_0):
|
||||
@classmethod
|
||||
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d = abs(blocks).max(axis=-1, keepdims=True)
|
||||
with np.errstate(divide="ignore"):
|
||||
id = np.where(d == 0, 0, 1 / d)
|
||||
qs = np_roundf(blocks * id)
|
||||
qs = (qs.astype(np.int8) + np.int8(1)).astype(np.uint8)
|
||||
|
||||
qs0, qs1, qh = qs[..., :(32 * 5)], qs[..., (32 * 5):(48 * 5)], qs[..., (48 * 5):]
|
||||
qs0 = qs0.reshape((n_blocks, -1, 5, 32)) * np.array([81, 27, 9, 3, 1], dtype=np.uint8).reshape((1, 1, 5, 1))
|
||||
qs0 = np.sum(qs0, axis=-2).reshape((n_blocks, -1))
|
||||
qs1 = qs1.reshape((n_blocks, -1, 5, 16)) * np.array([81, 27, 9, 3, 1], dtype=np.uint8).reshape((1, 1, 5, 1))
|
||||
qs1 = np.sum(qs1, axis=-2).reshape((n_blocks, -1))
|
||||
qh = qh.reshape((n_blocks, -1, 4, 4)) * np.array([81, 27, 9, 3], dtype=np.uint8).reshape((1, 1, 4, 1))
|
||||
qh = np.sum(qh, axis=-2).reshape((n_blocks, -1))
|
||||
qs = np.concatenate([qs0, qs1, qh], axis=-1)
|
||||
qs = (qs.astype(np.uint16) * 256 + (243 - 1)) // 243
|
||||
|
||||
qs = qs.astype(np.uint8)
|
||||
d = d.astype(np.float16).view(np.uint8)
|
||||
|
||||
return np.concatenate([qs, d], axis=-1)
|
||||
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
qs, rest = np.hsplit(blocks, [(QK_K - 4 * QK_K // 64) // 5])
|
||||
qh, d = np.hsplit(rest, [QK_K // 64])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
|
||||
qs0, qs1 = qs[..., :32], qs[..., 32:]
|
||||
qs0 = qs0.reshape((n_blocks, -1, 1, 32)) * np.array([1, 3, 9, 27, 81], dtype=np.uint8).reshape((1, 1, 5, 1))
|
||||
qs0 = qs0.reshape((n_blocks, -1))
|
||||
qs1 = qs1.reshape((n_blocks, -1, 1, 16)) * np.array([1, 3, 9, 27, 81], dtype=np.uint8).reshape((1, 1, 5, 1))
|
||||
qs1 = qs1.reshape((n_blocks, -1))
|
||||
qh = qh.reshape((n_blocks, -1, 1, 4)) * np.array([1, 3, 9, 27], dtype=np.uint8).reshape((1, 1, 4, 1))
|
||||
qh = qh.reshape((n_blocks, -1))
|
||||
qs = np.concatenate([qs0, qs1, qh], axis=-1)
|
||||
qs = ((qs.astype(np.uint16) * 3) >> 8).astype(np.int8) - np.int8(1)
|
||||
|
||||
return (d * qs.astype(np.float32))
|
||||
|
||||
|
||||
class TQ2_0(__Quant, qtype=GGMLQuantizationType.TQ2_0):
|
||||
@classmethod
|
||||
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d = abs(blocks).max(axis=-1, keepdims=True)
|
||||
with np.errstate(divide="ignore"):
|
||||
id = np.where(d == 0, 0, 1 / d)
|
||||
qs = np_roundf(blocks * id)
|
||||
qs = (qs.astype(np.int8) + np.int8(1)).astype(np.uint8)
|
||||
|
||||
qs = qs.reshape((n_blocks, -1, 4, 32)) << np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
|
||||
qs = qs[..., 0, :] | qs[..., 1, :] | qs[..., 2, :] | qs[..., 3, :]
|
||||
qs = qs.reshape((n_blocks, -1))
|
||||
|
||||
d = d.astype(np.float16).view(np.uint8)
|
||||
|
||||
return np.concatenate([qs, d], axis=-1)
|
||||
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
qs, d = np.hsplit(blocks, [QK_K // 4])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
|
||||
qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
|
||||
qs = (qs & 0x03).reshape((n_blocks, -1)).astype(np.int8) - np.int8(1)
|
||||
|
||||
return (d * qs.astype(np.float32))
|
||||
|
||||
|
||||
class IQ2_XXS(__Quant, qtype=GGMLQuantizationType.IQ2_XXS):
|
||||
ksigns: bytes = (
|
||||
b"\x00\x81\x82\x03\x84\x05\x06\x87\x88\x09\x0a\x8b\x0c\x8d\x8e\x0f"
|
||||
|
|
|
@ -66,6 +66,7 @@ class GGMLQuants:
|
|||
for t in (
|
||||
"q4_0", "q4_1", "q5_0", "q5_1", "q8_0",
|
||||
"q2_K", "q3_K", "q4_K", "q5_K", "q6_K",
|
||||
"tq1_0", "tq2_0",
|
||||
"iq2_xxs", "iq2_xs", "iq2_s", "iq3_xxs", "iq3_s", "iq1_s", "iq1_m",
|
||||
"iq4_nl", "iq4_xs",
|
||||
):
|
||||
|
|
|
@ -167,6 +167,8 @@ extern "C" {
|
|||
LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
|
||||
|
||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
};
|
||||
|
|
|
@ -4444,6 +4444,8 @@ struct llama_model_loader {
|
|||
case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
|
||||
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
|
||||
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
|
||||
case GGML_TYPE_TQ1_0: ftype = LLAMA_FTYPE_MOSTLY_TQ1_0; break;
|
||||
case GGML_TYPE_TQ2_0: ftype = LLAMA_FTYPE_MOSTLY_TQ2_0; break;
|
||||
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
|
||||
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
|
||||
case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
|
||||
|
@ -5137,6 +5139,8 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
|
|||
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
|
||||
case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary";
|
||||
case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
|
||||
|
@ -8118,23 +8122,23 @@ static bool llm_load_tensors(
|
|||
layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
|
||||
|
||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||||
layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1});
|
||||
layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||||
layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1});
|
||||
layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||||
layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1});
|
||||
layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||
layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1});
|
||||
layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
|
||||
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1});
|
||||
layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||||
layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1});
|
||||
layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1});
|
||||
layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_T5:
|
||||
|
@ -14177,7 +14181,9 @@ struct llm_build_context {
|
|||
{
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||
Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
|
||||
if (model.layers[il].wq_scale) {
|
||||
Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
|
||||
}
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
|
@ -14186,7 +14192,9 @@ struct llm_build_context {
|
|||
|
||||
// B1.K
|
||||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||
Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
|
||||
if (model.layers[il].wk_scale) {
|
||||
Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
|
||||
}
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
|
@ -14195,7 +14203,9 @@ struct llm_build_context {
|
|||
|
||||
// B1.V
|
||||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||
Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
|
||||
if (model.layers[il].wv_scale) {
|
||||
Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
|
||||
}
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
|
@ -14226,7 +14236,9 @@ struct llm_build_context {
|
|||
cb(cur, "attn_sub_norm", il);
|
||||
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
|
||||
cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
|
||||
if (model.layers[il].wo_scale) {
|
||||
cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
|
||||
}
|
||||
if (model.layers[il].bo) {
|
||||
cur = ggml_add(ctx0, cur, model.layers[il].bo);
|
||||
}
|
||||
|
@ -14263,7 +14275,9 @@ struct llm_build_context {
|
|||
cb(cur, "ffn_sub_norm", il);
|
||||
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_down, cur);
|
||||
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
|
||||
if (model.layers[il].ffn_down_scale) {
|
||||
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
|
||||
}
|
||||
cb(cur, "ffn_down", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
|
@ -16933,6 +16947,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
new_type == GGML_TYPE_Q4_0_8_8) {
|
||||
new_type = GGML_TYPE_Q4_0;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
}
|
||||
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||||
|
@ -17132,6 +17149,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
}
|
||||
if (convert_incompatible_tensor) {
|
||||
switch (new_type) {
|
||||
case GGML_TYPE_TQ1_0:
|
||||
case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
|
@ -17237,6 +17256,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
|
||||
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
|
||||
case LLAMA_FTYPE_MOSTLY_TQ1_0: default_type = GGML_TYPE_TQ1_0; break;
|
||||
case LLAMA_FTYPE_MOSTLY_TQ2_0: default_type = GGML_TYPE_TQ2_0; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
|
||||
|
|
|
@ -2200,6 +2200,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
|
||||
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
|
@ -2219,6 +2220,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
|
||||
GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
|
|
|
@ -15,11 +15,13 @@
|
|||
|
||||
constexpr float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_TERNARY = 0.01f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS = 0.0050f;
|
||||
constexpr float MAX_DOT_PRODUCT_ERROR = 0.02f;
|
||||
constexpr float MAX_DOT_PRODUCT_ERROR_LOWBIT = 0.04f;
|
||||
constexpr float MAX_DOT_PRODUCT_ERROR_TERNARY = 0.15f;
|
||||
|
||||
static const char* RESULT_STR[] = {"ok", "FAILED"};
|
||||
|
||||
|
@ -144,6 +146,8 @@ int main(int argc, char * argv[]) {
|
|||
if (qfns.from_float && qfns.to_float) {
|
||||
const float total_error = total_quantization_error(qfns, test_size, test_data.data());
|
||||
const float max_quantization_error =
|
||||
type == GGML_TYPE_TQ1_0 ? MAX_QUANTIZATION_TOTAL_ERROR_TERNARY :
|
||||
type == GGML_TYPE_TQ2_0 ? MAX_QUANTIZATION_TOTAL_ERROR_TERNARY :
|
||||
type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
|
||||
type == GGML_TYPE_IQ2_S ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
|
||||
type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
|
||||
|
@ -166,6 +170,8 @@ int main(int argc, char * argv[]) {
|
|||
const float max_allowed_error = type == GGML_TYPE_Q2_K || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS ||
|
||||
type == GGML_TYPE_IQ3_XXS || type == GGML_TYPE_IQ3_S || type == GGML_TYPE_IQ2_S
|
||||
? MAX_DOT_PRODUCT_ERROR_LOWBIT
|
||||
: type == GGML_TYPE_TQ1_0 || type == GGML_TYPE_TQ2_0
|
||||
? MAX_DOT_PRODUCT_ERROR_TERNARY
|
||||
: MAX_DOT_PRODUCT_ERROR;
|
||||
failed = !(vec_dot_error < max_allowed_error);
|
||||
num_failed += failed;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue