Compare commits

...
Sign in to create a new pull request.

36 commits

Author SHA1 Message Date
Georgi Gerganov
1ad42b1f1e
ggml : ggml_soft_max uses F16 mask 2024-01-31 20:33:59 +02:00
Georgi Gerganov
2ddc9bbef1
Merge branch 'master' into gg/flash-attn 2024-01-31 18:49:43 +02:00
Georgi Gerganov
3d03bcb7af
Merge branch 'master' into gg/flash-attn 2024-01-30 21:49:13 +02:00
Georgi Gerganov
78df5527e4
tests : ifdef 2024-01-30 21:46:49 +02:00
Georgi Gerganov
d073e4f933
metal : fix array initialization 2024-01-30 21:45:32 +02:00
Georgi Gerganov
5fcb9c1c5a
metal : faster inner loop for C == 32 2024-01-29 19:51:26 +02:00
Georgi Gerganov
c6c1132e5e
tests : more 2024-01-29 18:22:28 +02:00
Georgi Gerganov
abeaf0d90e
metal : disable buffer allocation logs 2024-01-29 18:12:24 +02:00
Georgi Gerganov
4794821a31
tests : add ATTN tests 2024-01-29 16:44:55 +02:00
Georgi Gerganov
1db22d7032
metal : support Q > 8 2024-01-28 23:16:20 +02:00
Georgi Gerganov
134c81c78d
metal : minor 2024-01-28 22:23:40 +02:00
Georgi Gerganov
0ad44baf33
Merge branch 'master' into gg/flash-attn 2024-01-28 21:53:51 +02:00
Georgi Gerganov
8612864108
ggml : fix f16 mad 2024-01-28 18:10:16 +02:00
Georgi Gerganov
3a428a1097
metal : improve precision 2024-01-28 17:47:22 +02:00
Georgi Gerganov
ecc466a460
metal : add tests, fix scaling, support C > 32 2024-01-28 16:06:18 +02:00
Georgi Gerganov
77f6976a87
metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
2024-01-28 15:30:24 +02:00
Georgi Gerganov
b3dd7d975f
Merge branch 'master' into gg/flash-attn 2024-01-28 10:54:11 +02:00
Georgi Gerganov
6fea843b24
metal : add parallel reduce version (disabled) 2024-01-25 18:09:30 +02:00
Georgi Gerganov
f9ca5dcbe8
llama : avoid ggml_cast, use F32 query 2024-01-25 17:46:07 +02:00
Georgi Gerganov
40ea8cd1ac
metal : fix comment 2024-01-25 16:31:39 +02:00
Georgi Gerganov
432ad04ffa
metal : scale and mask in matrix form 2024-01-25 15:47:52 +02:00
Georgi Gerganov
d917746ddb
metal : avoid redundant loads of the attention 2024-01-25 15:00:49 +02:00
Georgi Gerganov
1446a12b29
metal : efficient flash_attn_f16 implementation 2024-01-25 13:40:31 +02:00
Georgi Gerganov
17720fad66
metal : parallel reduce across heads 2024-01-21 23:01:46 +02:00
Georgi Gerganov
77d08f3272
metal : parallelize across KV size 2024-01-21 22:26:45 +02:00
Georgi Gerganov
a4b6341c7b
wip : template for rows per warp 2024-01-21 19:06:30 +02:00
Georgi Gerganov
f31955f5d1
wip : 4 rows per simd group 2024-01-21 18:01:28 +02:00
Georgi Gerganov
8cde449b8b
wip : 8 rows per simd group 2024-01-21 17:37:24 +02:00
Georgi Gerganov
b97325800a
metal : specialize for head size 2024-01-21 12:01:55 +02:00
Georgi Gerganov
52ae085750
metal : reduce branches 2024-01-21 11:59:09 +02:00
Georgi Gerganov
528da7515e
metal : f16 precision 2024-01-21 11:13:24 +02:00
Georgi Gerganov
1173f49c3b
metal : initial implementation 2024-01-21 10:15:02 +02:00
Georgi Gerganov
a9681febd6
ggml : online attention (CPU) 2024-01-20 16:45:41 +02:00
Georgi Gerganov
c3cdfffa88
Merge branch 'master' into gg/flash-attn 2024-01-20 10:12:07 +02:00
Georgi Gerganov
fa7ebcca99 ggml : fix GQA support in ggml_flash_attn_ext 2024-01-19 20:06:26 +02:00
Georgi Gerganov
a1c004ef2e
ggml : add ggml_flash_attn_ext API 2024-01-18 18:55:48 +02:00
8 changed files with 1197 additions and 196 deletions

View file

@ -104,7 +104,7 @@ int main(int argc, char ** argv) {
ctx_params.seed = 1234; ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_max; ctx_params.n_ctx = n_kv_max;
ctx_params.n_batch = 512; ctx_params.n_batch = 2048;
ctx_params.mul_mat_q = mmq; ctx_params.mul_mat_q = mmq;
ctx_params.n_threads = params.n_threads; ctx_params.n_threads = params.n_threads;

View file

@ -5917,7 +5917,7 @@ static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int
} }
template <bool vals_smem, int ncols_template, int block_size_template, bool need_check> template <bool vals_smem, int ncols_template, int block_size_template, bool need_check>
static __global__ void soft_max_f16(const float * x, const float * y, float * dst, const int ncols_par, const int nrows_y, const float scale) { static __global__ void soft_max_f16(const float * x, const half * y, float * dst, const int ncols_par, const int nrows_y, const float scale) {
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
const int ncols_data = ncols_template == 0 ? ncols_par : ncols_template; const int ncols_data = ncols_template == 0 ? ncols_par : ncols_template;
const int ncols_smem = GGML_PAD(ncols_data, 2*WARP_SIZE)/2; const int ncols_smem = GGML_PAD(ncols_data, 2*WARP_SIZE)/2;
@ -5952,12 +5952,12 @@ static __global__ void soft_max_f16(const float * x, const float * y, float * ds
if (need_check && col_data + 0 >= ncols_data) { if (need_check && col_data + 0 >= ncols_data) {
val.x = -INFINITY; val.x = -INFINITY;
} else { } else {
val.x = x[ix + 0]*scale + (y ? y[iy + 0] : 0.0f); val.x = x[ix + 0]*scale + (y ? __half2float(y[iy + 0]) : 0.0f);
} }
if (need_check && col_data + WARP_SIZE >= ncols_data) { if (need_check && col_data + WARP_SIZE >= ncols_data) {
val.y = -INFINITY; val.y = -INFINITY;
} else { } else {
val.y = x[ix + WARP_SIZE]*scale + (y ? y[iy + WARP_SIZE] : 0.0f); val.y = x[ix + WARP_SIZE]*scale + (y ? __half2float(y[iy + WARP_SIZE]) : 0.0f);
} }
if (!need_check || col_smem < (vals_smem ? ncols_smem : ncols_data)) { if (!need_check || col_smem < (vals_smem ? ncols_smem : ncols_data)) {
vals[col_smem] = val; vals[col_smem] = val;
@ -6047,7 +6047,7 @@ static __global__ void soft_max_f16(const float * x, const float * y, float * ds
} }
template <bool vals_smem, int ncols_template, int block_size_template> template <bool vals_smem, int ncols_template, int block_size_template>
static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols_par, const int nrows_y, const float scale) { static __global__ void soft_max_f32(const float * x, const half * y, float * dst, const int ncols_par, const int nrows_y, const float scale) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template; const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
const int tid = threadIdx.x; const int tid = threadIdx.x;
@ -6077,7 +6077,7 @@ static __global__ void soft_max_f32(const float * x, const float * y, float * ds
const int ix = rowx*ncols + col; const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col; const int iy = rowy*ncols + col;
const float val = x[ix]*scale + (y ? y[iy] : 0.0f); const float val = x[ix]*scale + (y ? __half2float(y[iy]) : 0.0f);
vals[col] = val; vals[col] = val;
max_val = max(max_val, val); max_val = max(max_val, val);
} }
@ -7585,7 +7585,7 @@ static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past); diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
} }
static void soft_max_f16_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) { static void soft_max_f16_cuda(const float * x, const half * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
int nth = WARP_SIZE; int nth = WARP_SIZE;
while (nth < ncols_x/2 && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2; while (nth < ncols_x/2 && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1); const dim3 block_dims(nth, 1, 1);
@ -7628,7 +7628,7 @@ static void soft_max_f16_cuda(const float * x, const float * y, float * dst, con
} }
} }
static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) { static void soft_max_f32_cuda(const float * x, const half * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
int nth = WARP_SIZE; int nth = WARP_SIZE;
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2; while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1); const dim3 block_dims(nth, 1, 1);
@ -9060,7 +9060,7 @@ static void ggml_cuda_op_soft_max(
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16); // src1 contains mask and it is optional
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t nrows_x = ggml_nrows(src0); const int64_t nrows_x = ggml_nrows(src0);
@ -9080,9 +9080,9 @@ static void ggml_cuda_op_soft_max(
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && CUDART_VERSION >= CUDART_HMAX #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && CUDART_VERSION >= CUDART_HMAX
if (use_f16_soft_max) { if (use_f16_soft_max) {
soft_max_f16_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream); soft_max_f16_cuda(src0_dd, src1 ? (const half *) src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
} else { } else {
soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream); soft_max_f32_cuda(src0_dd, src1 ? (const half *) src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
} }
(void) dst; (void) dst;

View file

@ -141,6 +141,12 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256,
GGML_METAL_KERNEL_TYPE_CPY_F32_F16, GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
GGML_METAL_KERNEL_TYPE_CPY_F32_F32, GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
@ -390,6 +396,9 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
id<MTLFunction> metal_function = [metal_library newFunctionWithName:@"kernel_"#name]; \ id<MTLFunction> metal_function = [metal_library newFunctionWithName:@"kernel_"#name]; \
kernel->pipeline = [ctx->device newComputePipelineStateWithFunction:metal_function error:&error]; \ kernel->pipeline = [ctx->device newComputePipelineStateWithFunction:metal_function error:&error]; \
[metal_function release]; \ [metal_function release]; \
GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \
(int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \
(int) kernel->pipeline.threadExecutionWidth); \
if (error) { \ if (error) { \
GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \ GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
[metal_library release]; \ [metal_library release]; \
@ -401,130 +410,136 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
// simd_sum and simd_max requires MTLGPUFamilyApple7 // simd_sum and simd_max requires MTLGPUFamilyApple7
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, ctx->support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, ctx->support_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, ctx->support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, true);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, true);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
} }
[metal_library release]; [metal_library release];
@ -640,6 +655,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_PAD: case GGML_OP_PAD:
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
case GGML_OP_FLASH_ATTN_EXT:
return true; return true;
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
@ -1171,6 +1187,8 @@ static bool ggml_metal_graph_compute(
} break; } break;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
{ {
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16);
int nth = 32; // SIMD width int nth = 32; // SIMD width
id<MTLComputePipelineState> pipeline = nil; id<MTLComputePipelineState> pipeline = nil;
@ -2178,6 +2196,110 @@ static bool ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_FLASH_ATTN_EXT:
{
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
GGML_ASSERT(ggml_are_same_shape(src1, src2));
GGML_ASSERT(src3);
size_t offs_src2 = 0;
size_t offs_src3 = 0;
GGML_ASSERT(src2);
id<MTLBuffer> id_src2 = ggml_metal_get_buffer(src2, &offs_src2);
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
GGML_ASSERT(!src3 || src3->type == GGML_TYPE_F16);
GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) &&
"the Flash-Attention Metal kernel requires the mask to be padded to 8 and larger than n_queries");
const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30);
const int64_t ne31 = src3 ? src3->ne[1] : 0;
const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32);
const int64_t ne33 = src3 ? src3->ne[3] : 0; GGML_UNUSED(ne33);
const uint64_t nb30 = src3 ? src3->nb[0] : 0; GGML_UNUSED(nb30);
const uint64_t nb31 = src3 ? src3->nb[1] : 0;
const uint64_t nb32 = src3 ? src3->nb[2] : 0; GGML_UNUSED(nb32);
const uint64_t nb33 = src3 ? src3->nb[3] : 0; GGML_UNUSED(nb33);
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
float scale;
memcpy(&scale, dst->op_params, sizeof(float));
id<MTLComputePipelineState> pipeline = nil;
switch (ne00) {
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break;
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80 ].pipeline; break;
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break;
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break;
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break;
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break;
default:
{
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
GGML_METAL_LOG_ERROR("add template specialization for this size\n");
GGML_ASSERT(false && "add template specialization for this size");
}
}
// TODO: extend if necessary
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:7];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:8];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:11];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:12];
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:14];
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:15];
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:16];
[encoder setBytes:&nb10 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:19];
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:20];
[encoder setBytes:&ne31 length:sizeof( int64_t) atIndex:21];
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:22];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:23];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:24];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:25];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:26];
[encoder setBytes:&scale length:sizeof( float) atIndex:27];
const int64_t nqptg = 8; // queries per threadgroup !! sync with kernel template arguments !!
const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
GGML_ASSERT(nqptg % 8 == 0);
GGML_ASSERT(ncpsg % 32 == 0);
// simdgroups per threadgroup (a.k.a. warps)
// for small batches use more simdgroups (needs more tests, to confirm if it's worth it)
const int64_t nsg = ne01 <= nqptg ? MAX(4, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32)) : 4;
const size_t smem = nqptg*(ne00 + nsg*(ncpsg + nqptg))*(sizeof(float)/2);
//printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength);
GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength);
[encoder setThreadgroupMemoryLength:smem atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
} break;
case GGML_OP_DUP: case GGML_OP_DUP:
case GGML_OP_CPY: case GGML_OP_CPY:
case GGML_OP_CONT: case GGML_OP_CONT:
@ -2379,10 +2501,13 @@ GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backe
UNUSED(buft); UNUSED(buft);
} }
static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device) { static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t size_aligned) {
#ifndef GGML_METAL_NDEBUG
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15) #if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
if (@available(macOS 10.12, iOS 16.0, *)) { if (@available(macOS 10.12, iOS 16.0, *)) {
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)", GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)",
__func__,
size_aligned / 1024.0 / 1024.0,
device.currentAllocatedSize / 1024.0 / 1024.0, device.currentAllocatedSize / 1024.0 / 1024.0,
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
@ -2392,10 +2517,15 @@ static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device) {
GGML_METAL_LOG_INFO("\n"); GGML_METAL_LOG_INFO("\n");
} }
} else { } else {
GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0); GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f)\n",
__func__,
size_aligned / 1024.0 / 1024.0,
device.currentAllocatedSize / 1024.0 / 1024.0);
} }
#endif
#endif #endif
UNUSED(device); UNUSED(device);
UNUSED(size_aligned);
} }
GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
@ -2429,8 +2559,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buff
return NULL; return NULL;
} }
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0); ggml_backend_metal_log_allocated_size(device, size_aligned);
ggml_backend_metal_log_allocated_size(device);
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size); return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
} }
@ -2517,7 +2646,7 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data,
return false; return false;
} }
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0); ggml_backend_metal_log_allocated_size(device, size_aligned);
++ctx->n_buffers; ++ctx->n_buffers;
} else { } else {
@ -2540,7 +2669,8 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data,
return false; return false;
} }
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, offs = %12ld", __func__, size_step_aligned / 1024.0 / 1024.0, i); ggml_backend_metal_log_allocated_size(device, size_step_aligned);
if (i + size_step < size) { if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n"); GGML_METAL_LOG_INFO("\n");
} }
@ -2549,8 +2679,6 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data,
} }
} }
ggml_backend_metal_log_allocated_size(device);
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size); return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size);
} }

View file

@ -349,9 +349,9 @@ kernel void kernel_sum_rows(
} }
kernel void kernel_soft_max( kernel void kernel_soft_max(
device const float * src0, device const char * src0,
device const float * src1, device const char * src1,
device float * dst, device char * dst,
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne01, constant int64_t & ne01,
constant int64_t & ne02, constant int64_t & ne02,
@ -366,9 +366,9 @@ kernel void kernel_soft_max(
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device const float * psrc0 = (device const float *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr; device const half * pmask = src1 != src0 ? (device const half *) src1 + i01*ne00 : nullptr;
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device float * pdst = (device float *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
// parallel max // parallel max
float lmax = -INFINITY; float lmax = -INFINITY;
@ -435,14 +435,14 @@ kernel void kernel_soft_max(
} }
kernel void kernel_soft_max_4( kernel void kernel_soft_max_4(
device const float * src0, device const char * src0,
device const float * src1, device const char * src1,
device float * dst, device char * dst,
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne01, constant int64_t & ne01,
constant int64_t & ne02, constant int64_t & ne02,
constant float & scale, constant float & scale,
threadgroup float * buf [[threadgroup(0)]], threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]], uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]], uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]], uint sgitg[[simdgroup_index_in_threadgroup]],
@ -452,15 +452,15 @@ kernel void kernel_soft_max_4(
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device const float4 * psrc4 = (device const float4 *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4;
device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr; device const half4 * pmask = src1 != src0 ? (device const half4 *) src1 + i01*ne00/4 : nullptr;
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device float4 * pdst4 = (device float4 *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4;
// parallel max // parallel max
float4 lmax4 = -INFINITY; float4 lmax4 = -INFINITY;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)); lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4) (pmask ? pmask[i00] : 0.0f));
} }
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
@ -486,7 +486,7 @@ kernel void kernel_soft_max_4(
// parallel sum // parallel sum
float4 lsum4 = 0.0f; float4 lsum4 = 0.0f;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val); const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4) (pmask ? pmask[i00] : 0.0f)) - max_val);
lsum4 += exp_psrc4; lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4; pdst4[i00] = exp_psrc4;
} }
@ -1984,6 +1984,401 @@ kernel void kernel_leaky_relu_f32(
dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope; dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
} }
typedef void (flash_attn_ext_f16_t)(
device const char * q,
device const char * k,
device const char * v,
device const char * mask,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne31,
constant uint64_t & nb31,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant float & scale,
threadgroup half * shared,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]);
// ref: https://arxiv.org/pdf/2307.08691.pdf
template<int64_t D, int64_t Q, int64_t C> // head size, queries per threadgroup, cache items per threadgroup
kernel void kernel_flash_attn_ext_f16(
device const char * q,
device const char * k,
device const char * v,
device const char * mask,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne31,
constant uint64_t & nb31,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant float & scale,
threadgroup half * shared [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const uint nsg = ntg.y; // number of simdgroups
const int64_t iq3 = tgpig[2];
const int64_t iq2 = tgpig[1];
const int64_t iq1 = tgpig[0]*Q;
const int64_t D4 = D/4;
const int64_t D8 = D/8;
const int64_t Q8 = Q/8;
const int64_t NW = N_SIMDWIDTH;
const int64_t SH = (C + Q); // shared memory per simdgroup in (half)
const int64_t T = D + nsg*SH; // shared memory size per query in (half)
const int64_t T4 = T/4; // shared memory size per query in (half4)
threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data
threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4
threadgroup half * ss = (threadgroup half *) (shared + sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix
// store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper)
simdgroup_half8x8 lo[Q8][D8];
// load heads from Q to shared memory
for (int64_t j = sgitg; j < Q; j += nsg) {
device const float4 * q4 = (device const float4 *) ((device const char *) q + ((iq1 + j)*nb01 + iq2*nb02 + iq3*nb03));
for (int64_t i = tiisg; i < D4; i += NW) {
if (iq1 + j < ne01) {
sq4[j*T4 + i] = (half4) q4[i];
} else {
sq4[j*T4 + i] = 0.0h;
}
}
}
// zero out lo
for (int64_t j = 0; j < Q8; ++j) {
for (int64_t i = 0; i < D8; ++i) {
lo[j][i] = make_filled_simdgroup_matrix<half, 8>(0.0h);
}
}
// zero out shared memory SH
for (int64_t j = 0; j < Q; ++j) {
for (int64_t i = tiisg; i < SH; i += NW) {
ss[j*T + i] = 0.0h;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
{
half S[Q] = { [0 ... Q-1] = 0.0h };
half M[Q] = { [0 ... Q-1] = -INFINITY };
// assume K and V are same shape
const int64_t ne22 = ne12;
const int64_t ne23 = ne13;
const uint64_t nb21 = nb11;
const uint64_t nb22 = nb12;
const uint64_t nb23 = nb13;
// broadcast
const int64_t rk2 = ne02/ne12;
const int64_t rk3 = ne03/ne13;
const int64_t rv2 = ne02/ne22;
const int64_t rv3 = ne03/ne23;
// k indices
const int64_t ik2 = iq2 / rk2;
const int64_t ik3 = iq3 / rk3;
// v indices
const int64_t iv2 = iq2 / rv2;
const int64_t iv3 = iq3 / rv3;
// load the queries from shared memory into local memory
simdgroup_half8x8 mq[Q8][D8];
for (int64_t j = 0; j < Q8; ++j) {
for (int64_t i = 0; i < D8; ++i) {
simdgroup_load(mq[j][i], sq + 8*j*T + i*8, T);
}
}
// pointer to the mask
device const half * mp = (device const half *) (mask + iq1*nb31);
// prepare diagonal scale matrix
simdgroup_half8x8 mscale(scale);
// loop over the KV cache
// each simdgroup handles blocks of Q rows and C columns
for (int64_t ic = C*sgitg; ic < ne11; ic += C*nsg) {
// Q*K^T
{
for (int cc = 0; cc < C/8; ++cc) {
simdgroup_half8x8 mqk[Q8];
for (int64_t j = 0; j < Q8; ++j) {
mqk[j] = make_filled_simdgroup_matrix<half, 8>(0.h);
}
device const half * pk = (device const half *) ((device const char *) k + ((ic + 8*cc)*nb11 + ik2*nb12 + ik3*nb13));
for (int64_t i = 0; i < D8; ++i) {
simdgroup_half8x8 mk;
simdgroup_load(mk, pk + i*8, nb11/sizeof(half), 0, true); // transpose
for (int64_t j = 0; j < Q8; ++j) {
simdgroup_multiply_accumulate(mqk[j], mq[j][i], mk, mqk[j]);
}
}
// mqk = mqk*scale + mask
for (int64_t j = 0; j < Q8; ++j) {
simdgroup_half8x8 mm;
simdgroup_load(mm, mp + 8*j*(nb31/sizeof(half)) + ic + 8*cc, nb31/sizeof(half), 0, false);
simdgroup_multiply_accumulate(mqk[j], mqk[j], mscale, mm);
simdgroup_store(mqk[j], ss + 8*j*T + 8*cc, T, 0, false);
}
}
}
// used to detect blocks full of -INF
half smax = -INFINITY;
// online softmax
if (C == 32) {
for (int64_t j = 0; j < Q; ++j) {
const int64_t p = tiisg;
const half m = M[j];
const half s = ss[j*T + p];
smax = simd_max(max(smax, s));
M[j] = simd_max(max(M[j], s));
const half ms = m == -INFINITY ? 0.0h : exp(m - M[j]);
const half vs = s == -INFINITY ? 0.0h : exp(s - M[j]);
S[j] = S[j]*ms + simd_sum(vs);
// create a QxQ diagonal matrix for rescaling the output
if (p == j) {
ss[j*T + C + j] = ms;
}
// the P matrix from the paper (Q rows, C columns)
ss[j*T + p] = vs;
}
} else {
for (int64_t j = 0; j < Q; ++j) {
const half m = M[j];
for (int64_t p = tiisg; p < C; p += NW) {
const half s = ss[j*T + p];
smax = simd_max(max(smax, s));
M[j] = simd_max(max(M[j], s));
}
const half ms = m == -INFINITY ? 0.0h : exp(m - M[j]);
S[j] = S[j]*ms;
// create a QxQ diagonal matrix for rescaling the output
if (tiisg == j) {
ss[j*T + C + j] = ms;
}
for (int64_t p = tiisg; p < C; p += NW) {
const half s = ss[j*T + p];
const half vs = s == -INFINITY ? 0.0h : exp(s - M[j]);
S[j] = S[j] + simd_sum(vs);
// the P matrix from the paper (Q rows, C columns)
ss[j*T + p] = vs;
}
}
}
// skip -INF blocks
if (smax == -INFINITY) {
continue;
}
// O = diag(ms)*O
for (int64_t j = 0; j < Q8; ++j) {
simdgroup_half8x8 mm;
simdgroup_load(mm, ss + 8*j*T + C + 8*j, T, 0, false);
for (int64_t i = 0; i < D8; ++i) {
simdgroup_multiply(lo[j][i], mm, lo[j][i]);
}
}
// O = O + (Q*K^T)*V
{
for (int cc = 0; cc < C/8; ++cc) {
device const half * pv = (device const half *) ((device const char *) v + ((ic + 8*cc)*nb21 + iv2*nb22 + iv3*nb23));
for (int64_t i = 0; i < D8; ++i) {
simdgroup_half8x8 mk;
simdgroup_load(mk, pv + i*8, nb21/sizeof(half), 0, false);
for (int64_t j = 0; j < Q8; ++j) {
simdgroup_half8x8 mv;
simdgroup_load(mv, ss + 8*j*T + 8*cc, T, 0, false);
simdgroup_multiply_accumulate(lo[j][i], mv, mk, lo[j][i]);
}
}
}
}
}
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
for (int64_t j = 0; j < Q; ++j) {
if (tiisg == 0) {
ss[j*T + 0] = S[j];
ss[j*T + 1] = M[j];
}
}
}
// reduce the warps sequentially
for (int64_t sg = 1; sg < nsg; ++sg) {
half S = { 0.0h };
half M = { -INFINITY };
threadgroup_barrier(mem_flags::mem_threadgroup);
// each simdgroup stores its output to shared memory, reusing sq
if (sgitg == sg) {
for (int64_t j = 0; j < Q8; ++j) {
for (int64_t i = 0; i < D8; ++i) {
simdgroup_store(lo[j][i], sq + 8*j*T + i*8, T, 0, false);
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// the first simdgroup accumulates the results from the other simdgroups
if (sgitg == 0) {
for (int64_t j = 0; j < Q; ++j) {
const half S0 = ss[j*T + 0];
const half S1 = ss[j*T + sg*SH + 0];
const half M0 = ss[j*T + 1];
const half M1 = ss[j*T + sg*SH + 1];
M = max(M0, M1);
const half ms0 = M0 == -INFINITY ? 0.0h : exp(M0 - M);
const half ms1 = M1 == -INFINITY ? 0.0h : exp(M1 - M);
S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[j*T + 0] = S;
ss[j*T + 1] = M;
ss[j*T + C + j ] = ms0;
ss[j*T + C + j + sg*SH] = ms1;
}
}
// O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
for (int64_t j = 0; j < Q8; ++j) {
simdgroup_half8x8 t;
simdgroup_half8x8 ms0;
simdgroup_half8x8 ms1;
simdgroup_load(ms0, ss + 8*j*T + C + 8*j, T, 0, false);
simdgroup_load(ms1, ss + 8*j*T + C + 8*j + sg*SH, T, 0, false);
for (int64_t i = 0; i < D8; ++i) {
simdgroup_load (t, sq + 8*j*T + i*8, T, 0, false);
simdgroup_multiply(t, ms1, t);
simdgroup_multiply_accumulate(lo[j][i], ms0, lo[j][i], t);
}
}
}
}
// store result to shared memory (reuse sq)
if (sgitg == 0) {
for (int64_t j = 0; j < Q8; ++j) {
for (int64_t i = 0; i < D8; ++i) {
simdgroup_store(lo[j][i], sq + 8*j*T + i*8, T, 0, false);
}
}
}
device float4 * dst4 = (device float4 *) dst;
// final rescale with 1/S and store to global memory
if (sgitg == 0) {
for (int64_t j = 0; j < Q && iq1 + j < ne01; ++j) {
const half S = ss[j*T + 0];
for (int64_t i = tiisg; i < D4; i += NW) {
dst4[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + i] = (float4) sq4[j*T4 + i]/S;
}
}
}
}
template [[host_name("kernel_flash_attn_ext_f16_h64" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<64, 8, 32>;
template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<80, 8, 32>;
template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<96, 8, 32>;
template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<112, 8, 32>;
template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<128, 8, 32>;
template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256, 8, 32>;
kernel void kernel_cpy_f16_f16( kernel void kernel_cpy_f16_f16(
device const half * src0, device const half * src0,
device half * dst, device half * dst,

333
ggml.c
View file

@ -865,7 +865,7 @@ do { \
#if defined(__F16C__) #if defined(__F16C__)
// the _mm256_cvt intrinsics require F16C // the _mm256_cvt intrinsics require F16C
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x))) #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0)) #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
#else #else
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) { static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
@ -1371,6 +1371,37 @@ inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float
#endif #endif
} }
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
}
#endif
}
// xs and vs are byte strides of x and v // xs and vs are byte strides of x and v
inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) { inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
@ -1455,6 +1486,35 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#endif #endif
} }
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
}
#endif
}
inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); } inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; } inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); } inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
@ -1701,6 +1761,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"LEAKY_RELU", "LEAKY_RELU",
"FLASH_ATTN", "FLASH_ATTN",
"FLASH_ATTN_EXT",
"FLASH_FF", "FLASH_FF",
"FLASH_ATTN_BACK", "FLASH_ATTN_BACK",
"WIN_PART", "WIN_PART",
@ -1725,7 +1786,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK", "CROSS_ENTROPY_LOSS_BACK",
}; };
static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72"); static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none", "none",
@ -1787,6 +1848,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"leaky_relu(x)", "leaky_relu(x)",
"flash_attn(x)", "flash_attn(x)",
"flash_attn_ext(x)",
"flash_ff(x)", "flash_ff(x)",
"flash_attn_back(x)", "flash_attn_back(x)",
"win_part(x)", "win_part(x)",
@ -1811,7 +1873,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)", "cross_entropy_loss_back(x,y)",
}; };
static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72"); static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -4188,6 +4250,8 @@ struct ggml_tensor * ggml_mul_mat(
void ggml_mul_mat_set_prec( void ggml_mul_mat_set_prec(
struct ggml_tensor * a, struct ggml_tensor * a,
enum ggml_prec prec) { enum ggml_prec prec) {
GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
const int32_t prec_i32 = (int32_t) prec; const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 0, prec_i32); ggml_set_op_params_i32(a, 0, prec_i32);
@ -5021,6 +5085,7 @@ static struct ggml_tensor * ggml_soft_max_impl(
bool inplace) { bool inplace) {
GGML_ASSERT(ggml_is_contiguous(a)); GGML_ASSERT(ggml_is_contiguous(a));
if (mask) { if (mask) {
GGML_ASSERT(mask->type == GGML_TYPE_F16);
GGML_ASSERT(ggml_is_contiguous(mask)); GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(mask->ne[2] == 1); GGML_ASSERT(mask->ne[2] == 1);
GGML_ASSERT(mask->ne[3] == 1); GGML_ASSERT(mask->ne[3] == 1);
@ -5775,6 +5840,59 @@ struct ggml_tensor * ggml_flash_attn(
return result; return result;
} }
// ggml_flash_attn_ext
struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale) {
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
if (mask) {
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(mask->ne[2] == 1);
GGML_ASSERT(mask->ne[3] == 1);
GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
"the Flash-Attention kernel requires the mask to be padded and larger than n_queries");
//GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
}
bool is_node = false;
if (q->grad || k->grad || v->grad) {
is_node = true;
}
// permute(0, 2, 1, 3)
int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, ne);
float params[] = { scale };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_FLASH_ATTN_EXT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
result->src[3] = mask;
return result;
}
void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec) {
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 1, prec_i32); // scale is on first pos
}
// ggml_flash_ff // ggml_flash_ff
struct ggml_tensor * ggml_flash_ff( struct ggml_tensor * ggml_flash_ff(
@ -11437,12 +11555,14 @@ static void ggml_compute_forward_soft_max_f32(
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
// broadcast the mask across rows // broadcast the mask across rows
float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL; ggml_fp16_t * mp = src1 ? (ggml_fp16_t *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
ggml_vec_cpy_f32 (nc, wp, sp); ggml_vec_cpy_f32 (nc, wp, sp);
ggml_vec_scale_f32(nc, wp, scale); ggml_vec_scale_f32(nc, wp, scale);
if (mp) { if (mp) {
ggml_vec_acc_f32(nc, wp, mp); for (int i = 0; i < nc; ++i) {
wp[i] += GGML_FP16_TO_FP32(mp[i]);
}
} }
#ifndef NDEBUG #ifndef NDEBUG
@ -13552,6 +13672,197 @@ static void ggml_compute_forward_flash_attn(
} }
} }
// ggml_compute_forward_flash_attn_ext
static void ggml_compute_forward_flash_attn_ext_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * mask,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne2 == N);
GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev0 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nev0 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t rk2 = neq2/nek2;
const int64_t rk3 = neq3/nek3;
const int64_t rv2 = neq2/nev2;
const int64_t rv3 = neq3/nev3;
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float scale = 1.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
// loop over n_batch and n_head
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
float S = 0.0f;
float M = -INFINITY;
float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
memset(V16, 0, D*sizeof(ggml_fp16_t));
const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
// k indices
const int ik3 = iq3 / rk3;
const int ik2 = iq2 / rk2;
// v indices
const int iv3 = iq3 / rv3;
const int iv2 = iq2 / rv2;
// online softmax / attention
// loop over n_kv and n_head_kv
// ref: https://arxiv.org/pdf/2112.05682.pdf
for (int64_t ic = 0; ic < nek1; ++ic) {
const float mv = mp ? GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
if (mv == -INFINITY) {
continue;
}
float s;
// convert Q to F16 in V32
{
const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
for (int64_t d = 0; d < D; ++d) {
Q16[d] = GGML_FP32_TO_FP16(pq[d]);
}
}
ggml_vec_dot_f16(D,
&s,
(ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
Q16);
s = s*scale + mv;
const float Mold = M;
float ms = 1.0f;
float vs = 1.0f;
if (s > M) {
M = s;
ms = expf(Mold - M);
// V = V*expf(Mold - M)
ggml_vec_scale_f16(D, V16, ms);
} else {
vs = expf(s - M);
}
const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
// V += v*expf(s - M)
ggml_vec_mad_f16(D, V16, v16, vs);
S = S*ms + vs;
}
// V /= S
for (int64_t d = 0; d < D; ++d) {
V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
}
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// original
//memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
// permute(0, 2, 1, 3)
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
}
}
static void ggml_compute_forward_flash_attn_ext(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * mask,
struct ggml_tensor * dst) {
switch (dst->op_params[1]) {
case GGML_PREC_DEFAULT:
{
ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
} break;
default:
{
// TODO: implement F32 precision
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_ff // ggml_compute_forward_flash_ff
static void ggml_compute_forward_flash_ff_f16( static void ggml_compute_forward_flash_ff_f16(
@ -15086,6 +15397,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
const bool masked = t != 0; const bool masked = t != 0;
ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor); ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
} break; } break;
case GGML_OP_FLASH_ATTN_EXT:
{
ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
} break;
case GGML_OP_FLASH_FF: case GGML_OP_FLASH_FF:
{ {
ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor); ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
@ -16082,6 +16397,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
} break; } break;
case GGML_OP_FLASH_ATTN: case GGML_OP_FLASH_ATTN:
case GGML_OP_FLASH_ATTN_EXT:
{ {
struct ggml_tensor * flash_grad = NULL; struct ggml_tensor * flash_grad = NULL;
if (src0->grad || src1->grad || tensor->src[2]->grad) { if (src0->grad || src1->grad || tensor->src[2]->grad) {
@ -16810,6 +17126,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
case GGML_OP_FLASH_ATTN: case GGML_OP_FLASH_ATTN:
case GGML_OP_FLASH_ATTN_EXT:
{ {
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
@ -17204,6 +17521,12 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
} }
} break; } break;
case GGML_OP_FLASH_ATTN_EXT:
{
const int64_t ne00 = node->src[0]->ne[0]; // D
cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
} break;
case GGML_OP_FLASH_FF: case GGML_OP_FLASH_FF:
{ {
if (node->src[1]->type == GGML_TYPE_F32) { if (node->src[1]->type == GGML_TYPE_F32) {

20
ggml.h
View file

@ -454,6 +454,7 @@ extern "C" {
GGML_OP_LEAKY_RELU, GGML_OP_LEAKY_RELU,
GGML_OP_FLASH_ATTN, GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_ATTN_EXT,
GGML_OP_FLASH_FF, GGML_OP_FLASH_FF,
GGML_OP_FLASH_ATTN_BACK, GGML_OP_FLASH_ATTN_BACK,
GGML_OP_WIN_PART, GGML_OP_WIN_PART,
@ -1645,6 +1646,25 @@ extern "C" {
struct ggml_tensor * v, struct ggml_tensor * v,
bool masked); bool masked);
#define GGML_KQ_MASK_PAD 32
// q: [n_embd, n_batch, n_head, 1]
// k: [n_embd, n_kv, n_head_kv, 1]
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale);
GGML_API void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec);
GGML_API struct ggml_tensor * ggml_flash_attn_back( GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * q, struct ggml_tensor * q,

View file

@ -102,6 +102,8 @@
#define LLAMA_MAX_NODES 8192 #define LLAMA_MAX_NODES 8192
#define LLAMA_MAX_EXPERTS 8 #define LLAMA_MAX_EXPERTS 8
#define LLAMA_FLASH_ATTN
// //
// logging // logging
// //
@ -4288,23 +4290,34 @@ static void llm_build_kv_store(
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
// compute the transposed [n_tokens, n_embd] V matrix
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens));
//struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
cb(v_cur_t, "v_cur_t", il);
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa, struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
(ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head); (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
cb(k_cache_view, "k_cache_view", il); cb(k_cache_view, "k_cache_view", il);
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
#if defined(LLAMA_FLASH_ATTN)
// NOTE: the V cache is not transposed when using FLASH attention !!
struct ggml_tensor * v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
(ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa))*kv_head);
cb(v_cache_view, "v_cache_view", il);
ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
GGML_UNUSED(n_ctx);
#else
// compute the transposed [n_tokens, n_embd] V matrix
//struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens));
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
cb(v_cur_t, "v_cur_t", il);
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa, struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
( n_ctx)*ggml_element_size(kv.v_l[il]), ( n_ctx)*ggml_element_size(kv.v_l[il]),
(kv_head)*ggml_element_size(kv.v_l[il])); (kv_head)*ggml_element_size(kv.v_l[il]));
cb(v_cache_view, "v_cache_view", il);
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view)); ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
#endif
} }
static struct ggml_tensor * llm_build_norm( static struct ggml_tensor * llm_build_norm(
@ -4465,6 +4478,28 @@ static struct ggml_tensor * llm_build_kqv(
0); 0);
cb(k, "k", il); cb(k, "k", il);
struct ggml_tensor * cur;
#if defined(LLAMA_FLASH_ATTN)
// split cached v into n_head heads (not transposed)
struct ggml_tensor * v =
ggml_view_3d(ctx, kv.v_l[il],
n_embd_head_v, n_kv, n_head_kv,
ggml_row_size(kv.v_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv.v_l[il]->type, n_embd_head_k),
0);
cb(v, "v", il);
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale);
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_DEFAULT);
//printf("q: %4d %4d %4d %4d\n", q->ne[0], q->ne[1], q->ne[2], q->ne[3]);
//printf("k: %4d %4d %4d %4d\n", k->ne[0], k->ne[1], k->ne[2], k->ne[3]);
//printf("v: %4d %4d %4d %4d\n", v->ne[0], v->ne[1], v->ne[2], v->ne[3]);
//printf("m: %4d %4d %4d %4d\n", kq_mask->ne[0], kq_mask->ne[1], kq_mask->ne[2], kq_mask->ne[3]);
//printf("r: %4d %4d %4d %4d\n", kqv->ne[0], kqv->ne[1], kqv->ne[2], kqv->ne[3]);
cur = ggml_reshape_2d(ctx, cur, n_embd_head_k*n_head, n_tokens);
#else
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
cb(kq, "kq", il); cb(kq, "kq", il);
@ -4497,7 +4532,7 @@ static struct ggml_tensor * llm_build_kqv(
cb(kq, "kq_soft_max_ext", il); cb(kq, "kq_soft_max_ext", il);
} }
// split cached v into n_head heads // split cached v into n_head heads (transposed)
struct ggml_tensor * v = struct ggml_tensor * v =
ggml_view_3d(ctx, kv.v_l[il], ggml_view_3d(ctx, kv.v_l[il],
n_kv, n_embd_head_v, n_head_kv, n_kv, n_embd_head_v, n_head_kv,
@ -4512,8 +4547,9 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
cb(kqv_merged, "kqv_merged", il); cb(kqv_merged, "kqv_merged", il);
struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens); cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
cb(cur, "kqv_merged_cont", il); cb(cur, "kqv_merged_cont", il);
#endif
ggml_build_forward_expand(graph, cur); ggml_build_forward_expand(graph, cur);
@ -4685,7 +4721,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
@ -4869,7 +4905,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
@ -4990,7 +5026,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
@ -5112,7 +5148,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
@ -5209,7 +5245,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
if (do_rope_shift) { if (do_rope_shift) {
@ -5412,7 +5448,7 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
@ -5502,7 +5538,7 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
inpL = llm_build_norm(ctx0, inpL, hparams, inpL = llm_build_norm(ctx0, inpL, hparams,
@ -5595,7 +5631,7 @@ struct llm_build_context {
cb(inpL, "inp_embd", -1); cb(inpL, "inp_embd", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
@ -5695,7 +5731,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
@ -5818,7 +5854,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
@ -5932,7 +5968,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
@ -6053,7 +6089,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
@ -6175,7 +6211,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
@ -6282,7 +6318,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
@ -6380,7 +6416,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
@ -6488,7 +6524,7 @@ struct llm_build_context {
cb(inp_pos, "inp_pos", -1); cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
@ -10214,7 +10250,10 @@ struct llama_context * llama_new_context_with_model(
const auto & hparams = model->hparams; const auto & hparams = model->hparams;
auto & cparams = ctx->cparams; auto & cparams = ctx->cparams;
cparams.n_batch = params.n_batch; // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
// this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
cparams.n_batch = std::max((uint32_t) GGML_KQ_MASK_PAD, params.n_batch);
cparams.n_threads = params.n_threads; cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch; cparams.n_threads_batch = params.n_threads_batch;
cparams.yarn_ext_factor = params.yarn_ext_factor; cparams.yarn_ext_factor = params.yarn_ext_factor;
@ -10340,8 +10379,7 @@ struct llama_context * llama_new_context_with_model(
} }
ctx->backends.push_back(ctx->backend_cpu); ctx->backends.push_back(ctx->backend_cpu);
if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, cparams.n_ctx, cparams.offload_kqv)) {
cparams.n_ctx, cparams.offload_kqv)) {
LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
llama_free(ctx); llama_free(ctx);
return nullptr; return nullptr;
@ -10395,6 +10433,9 @@ struct llama_context * llama_new_context_with_model(
ctx->buf_input = ggml_backend_alloc_ctx_tensors_from_buft(ctx->ctx_input, llama_default_buffer_type_cpu(true)); ctx->buf_input = ggml_backend_alloc_ctx_tensors_from_buft(ctx->ctx_input, llama_default_buffer_type_cpu(true));
// zero-out the input buffer to prevent NaNs in padded tensors
ggml_backend_buffer_clear(ctx->buf_input, 0);
LLAMA_LOG_INFO("%s: %10s input buffer size = %8.2f MiB\n", __func__, LLAMA_LOG_INFO("%s: %10s input buffer size = %8.2f MiB\n", __func__,
ggml_backend_buffer_name(ctx->buf_input), ggml_backend_buffer_name(ctx->buf_input),
ggml_backend_buffer_get_size(ctx->buf_input) / 1024.0 / 1024.0); ggml_backend_buffer_get_size(ctx->buf_input) / 1024.0 / 1024.0);

View file

@ -1101,7 +1101,7 @@ struct test_soft_max : public test_case {
ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * b = nullptr; ggml_tensor * b = nullptr;
if (mask) { b = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); } if (mask) { b = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, ne[0], ne[1]); }
ggml_tensor * out = ggml_soft_max_ext(ctx, a, b, scale); ggml_tensor * out = ggml_soft_max_ext(ctx, a, b, scale);
return out; return out;
} }
@ -1450,6 +1450,76 @@ struct test_leaky_relu : public test_case {
} }
}; };
// GGML_OP_FLASH_ATTN_EXT
struct test_flash_attn_ext : public test_case {
const int64_t hs; // head size
const int64_t nh; // num heads
const int64_t kv; // kv size
const int64_t nb; // batch size
std::string vars() override {
return VARS_TO_STR4(hs, nh, kv, nb);
}
double max_nmse_err() override {
return 5e-4;
}
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8)
: hs(hs), nh(nh), kv(kv), nb(nb) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1);
ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
ggml_tensor * mask = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, mask, 1.0f/sqrtf(hs));
return out;
}
};
// Attention
struct test_attn : public test_case {
const int64_t hs; // head size
const int64_t nh; // num heads
const int64_t kv; // kv size
const int64_t nb; // batch size
std::string op_desc(ggml_tensor * t) override {
return "ATTN";
GGML_UNUSED(t);
}
std::string vars() override {
return VARS_TO_STR4(hs, nh, kv, nb);
}
double max_nmse_err() override {
return 5e-4;
}
test_attn(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8)
: hs(hs), nh(nh), kv(kv), nb(nb) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1);
ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, hs, nh, 1); // transposed
ggml_tensor * mask = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, nb, 1, 1);
struct ggml_tensor * cur;
cur = ggml_mul_mat (ctx, k, q);
cur = ggml_soft_max_ext(ctx, cur, mask, 1.0f/sqrtf(hs));
cur = ggml_mul_mat (ctx, v, cur);
cur = ggml_permute (ctx, cur, 0, 2, 1, 3);
cur = ggml_cont_2d (ctx, cur, hs*nh, nb);
return cur;
}
};
// Mixtral MOE // Mixtral MOE
struct test_moe : public test_case { struct test_moe : public test_case {
const int n_experts; const int n_experts;
@ -1723,7 +1793,7 @@ struct test_llama : public test_llm {
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
@ -1845,7 +1915,7 @@ struct test_falcon : public test_llm {
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
@ -2129,6 +2199,30 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_pad()); test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_leaky_relu()); test_cases.emplace_back(new test_leaky_relu());
#if 0
for (int hs : { 64, 80, 96, 112, 128, 256, }) {
for (int nh : { 32, }) {
for (int kv : { 512, 1024, 2048, 4096, }) {
for (int nb : { 1, 2, 4, 8, 512, 1024, 2048, }) {
test_cases.emplace_back(new test_attn (hs, nh, kv, nb));
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb));
}
}
}
}
#else
for (int hs : { 128, }) {
for (int nh : { 32, }) {
for (int kv : { 512, 1024, }) {
for (int nb : { 1, 2, 4, 8, 512 }) {
test_cases.emplace_back(new test_attn (hs, nh, kv, nb));
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb));
}
}
}
}
#endif
#if !defined(__SANITIZE_THREAD__) #if !defined(__SANITIZE_THREAD__)
// FIXME: these tests use too much memory with thread sanitizer // FIXME: these tests use too much memory with thread sanitizer
test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 8*1024)); test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 8*1024));