Compare commits

...
Sign in to create a new pull request.

5 commits

Author SHA1 Message Date
Georgi Gerganov
f9968f661d
ggml : update comments [no ci] 2024-09-11 13:16:39 +03:00
Georgi Gerganov
119e0bc9ae
ggml : remove ggml_cplan + rework ggml_cgraph
ggml-ci
2024-09-11 13:05:10 +03:00
Georgi Gerganov
ee154457dd
ggml : fix compiler warnings
ggml-ci
2024-09-11 13:03:18 +03:00
Georgi Gerganov
92a96865cd
ggml : add ggml-impl.h to backends 2024-09-11 10:07:21 +03:00
Georgi Gerganov
c8a3f291fe
ggml : hide ggml_object, ggml_cgraph, ggml_hash_set
ggml-ci
2024-09-10 16:42:16 +03:00
23 changed files with 413 additions and 299 deletions

View file

@ -17,17 +17,6 @@ constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
constexpr float rms_norm_eps = 5e-6f; constexpr float rms_norm_eps = 5e-6f;
#endif #endif
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
plan.work_data = buf.data();
}
ggml_graph_compute(graph, &plan);
}
static struct ggml_tensor * randomize_tensor( static struct ggml_tensor * randomize_tensor(
struct ggml_tensor * tensor, int ndims, const int64_t ne[], float fmin, float fmax struct ggml_tensor * tensor, int ndims, const int64_t ne[], float fmin, float fmax
) { ) {
@ -1514,8 +1503,6 @@ int main(int argc, char ** argv) {
int n_tokens = model.hparams.n_ctx; int n_tokens = model.hparams.n_ctx;
int n_vocab = model.hparams.n_vocab; int n_vocab = model.hparams.n_vocab;
std::vector<uint8_t> work_buffer;
for (int ex=0; ex<n_examples; ++ex) { for (int ex=0; ex<n_examples; ++ex) {
struct ggml_init_params params = { struct ggml_init_params params = {
/*.mem_size =*/ compute_size, /*.mem_size =*/ compute_size,
@ -1542,7 +1529,10 @@ int main(int argc, char ** argv) {
struct ggml_tensor * e = square_error_loss(ctx0, targets, logits); struct ggml_tensor * e = square_error_loss(ctx0, targets, logits);
ggml_build_forward_expand(gf, e); ggml_build_forward_expand(gf, e);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1); ggml_graph_prepare(gf, 1, nullptr);
ggml_graph_work_init(gf, nullptr);
ggml_graph_compute(gf);
ggml_graph_work_free(gf);
float error_before_opt = ggml_get_f32_1d(e, 0); float error_before_opt = ggml_get_f32_1d(e, 0);
@ -1553,7 +1543,10 @@ int main(int argc, char ** argv) {
ggml_opt(ctx0, opt_params_lbfgs, e); ggml_opt(ctx0, opt_params_lbfgs, e);
// //
ggml_build_forward_expand(gf, e); ggml_build_forward_expand(gf, e);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1); ggml_graph_prepare(gf, 1, nullptr);
ggml_graph_work_init(gf, nullptr);
ggml_graph_compute(gf);
ggml_graph_work_free(gf);
float error_after_opt = ggml_get_f32_1d(e, 0); float error_after_opt = ggml_get_f32_1d(e, 0);
@ -1607,7 +1600,10 @@ int main(int argc, char ** argv) {
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, gf, tokens_input, sample_ctx, n_past); struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, gf, tokens_input, sample_ctx, n_past);
ggml_build_forward_expand(gf, logits); ggml_build_forward_expand(gf, logits);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1); ggml_graph_prepare(gf, 1, nullptr);
ggml_graph_work_init(gf, nullptr);
ggml_graph_compute(gf);
ggml_graph_work_free(gf);
struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx); struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx); struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);

View file

@ -20,17 +20,6 @@
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
plan.work_data = buf.data();
}
ggml_graph_compute(graph, &plan);
}
static float tensor_sum_elements(const ggml_tensor * tensor) { static float tensor_sum_elements(const ggml_tensor * tensor) {
double sum = 0; double sum = 0;
if (tensor->type == GGML_TYPE_F32) { if (tensor->type == GGML_TYPE_F32) {
@ -179,11 +168,10 @@ int main(int argc, char ** argv) {
TENSOR_DUMP(m11); TENSOR_DUMP(m11);
TENSOR_DUMP(m2); TENSOR_DUMP(m2);
std::vector<uint8_t> work_buffer; ggml_graph_prepare(gf, benchmark_params.n_threads, nullptr);
ggml_graph_work_init(gf, nullptr);
ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads); TENSOR_DUMP(ggml_graph_node(gf, 0));
TENSOR_DUMP(gf->nodes[0]);
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype)); printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
@ -224,7 +212,7 @@ int main(int argc, char ** argv) {
// Let's use the F32 result from above as a reference for the quantized multiplication // Let's use the F32 result from above as a reference for the quantized multiplication
float sum_of_F32_reference = tensor_sum_elements(gf->nodes[0]); float sum_of_F32_reference = tensor_sum_elements(ggml_graph_node(gf, 0));
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n"); printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
printf("=====================================================================================\n"); printf("=====================================================================================\n");
@ -234,7 +222,7 @@ int main(int argc, char ** argv) {
long long int start = ggml_time_us(); long long int start = ggml_time_us();
//printf("Running ggml_graph_compute\n"); //printf("Running ggml_graph_compute\n");
ggml_graph_compute_helper(work_buffer, gf31, benchmark_params.n_threads); ggml_graph_compute(gf31);
long long int stop = ggml_time_us(); long long int stop = ggml_time_us();
long long int usec = stop-start; long long int usec = stop-start;
@ -252,7 +240,7 @@ int main(int argc, char ** argv) {
// Check that the matrix multiplication result is in the right ballpark // Check that the matrix multiplication result is in the right ballpark
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different // We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
float sum_of_Q4_result = tensor_sum_elements(gf31->nodes[0]); float sum_of_Q4_result = tensor_sum_elements(ggml_graph_node(gf31, 0));
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference); float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6 float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
@ -267,8 +255,11 @@ int main(int argc, char ** argv) {
} }
// Running a different graph computation to make sure we override the CPU cache lines // Running a different graph computation to make sure we override the CPU cache lines
ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads); ggml_graph_compute(gf32);
} }
ggml_graph_work_free(gf);
printf("\n"); printf("\n");
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations)); printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
printf("=====================================================================================\n"); printf("=====================================================================================\n");

View file

@ -226,8 +226,8 @@ static ggml_status compute_piter(
result.eigenvectors.resize(params.n_batch); result.eigenvectors.resize(params.n_batch);
result.distances.resize(params.n_batch); result.distances.resize(params.n_batch);
// get output nodes // get output nodes
for (int i = 0; i < gf->n_nodes; ++i) { for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
auto node = gf->nodes[i]; auto node = ggml_graph_node(gf, i);
int iter = -1; int iter = -1;
// find b_tensor (without copying data from device) // find b_tensor (without copying data from device)
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) { if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {

View file

@ -370,7 +370,7 @@ struct lora_merge_ctx {
// write data to output file // write data to output file
{ {
auto result = gf->nodes[gf->n_nodes - 1]; auto * result = ggml_graph_node(gf, -1);
size_t len = ggml_nbytes(result); size_t len = ggml_nbytes(result);
if (read_buf.size() < len) { if (read_buf.size() < len) {
read_buf.resize(len); read_buf.resize(len);

View file

@ -2449,7 +2449,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
ggml_backend_graph_compute(ctx->backend, gf); ggml_backend_graph_compute(ctx->backend, gf);
// the last node is the embedding tensor // the last node is the embedding tensor
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1]; struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
// copy the embeddings to the location passed by the user // copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings)); ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));

View file

@ -183,8 +183,10 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0); struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false); // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
ggml_build_forward_expand(gf, flatten); ggml_build_forward_expand(gf, flatten);
ggml_graph_compute_with_ctx(model.ctx, gf, 1); ggml_graph_prepare(gf, 1, nullptr);
struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1]; ggml_graph_work_init(gf, model.ctx);
ggml_graph_compute(gf);
struct ggml_tensor* result = ggml_graph_node(gf, -1);
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
// append without newline tokens (default behavior in llava_arch when not using unpad ): // append without newline tokens (default behavior in llava_arch when not using unpad ):

View file

@ -358,6 +358,7 @@ extern "C" {
struct ggml_object; struct ggml_object;
struct ggml_context; struct ggml_context;
struct ggml_cgraph;
// NOTE: always add types at the end of the enum to keep backward compatibility // NOTE: always add types at the end of the enum to keep backward compatibility
enum ggml_type { enum ggml_type {
@ -575,20 +576,6 @@ extern "C" {
GGML_TENSOR_FLAG_PARAM = 4, GGML_TENSOR_FLAG_PARAM = 4,
}; };
// ggml object
struct ggml_object {
size_t offs;
size_t size;
struct ggml_object * next;
enum ggml_object_type type;
char padding[4];
};
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
// n-dimensional tensor // n-dimensional tensor
struct ggml_tensor { struct ggml_tensor {
enum ggml_type type; enum ggml_type type;
@ -657,49 +644,6 @@ extern "C" {
typedef struct ggml_threadpool * ggml_threadpool_t; typedef struct ggml_threadpool * ggml_threadpool_t;
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
struct ggml_cplan {
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
int n_threads;
struct ggml_threadpool * threadpool;
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
enum ggml_cgraph_eval_order {
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
GGML_CGRAPH_EVAL_ORDER_COUNT
};
typedef uint32_t ggml_bitset_t;
struct ggml_hash_set {
size_t size;
ggml_bitset_t * used; // whether or not the keys are in use i.e. set
struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i)
};
// computation graph
struct ggml_cgraph {
int size;
int n_nodes;
int n_leafs;
struct ggml_tensor ** nodes;
struct ggml_tensor ** grads;
struct ggml_tensor ** leafs;
struct ggml_hash_set visited_hash_set;
enum ggml_cgraph_eval_order order;
};
// scratch buffer // scratch buffer
struct ggml_scratch { struct ggml_scratch {
size_t offs; size_t offs;
@ -2017,8 +1961,6 @@ extern "C" {
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata); typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata); typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
#define GGML_N_TASKS_MAX -1
GGML_API struct ggml_tensor * ggml_map_custom1( GGML_API struct ggml_tensor * ggml_map_custom1(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
@ -2088,42 +2030,92 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * tensor); struct ggml_tensor * tensor);
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
// graph allocation in a context
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads); GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph); GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst); GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph); GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API size_t ggml_graph_overhead(void); GGML_API size_t ggml_graph_overhead(void);
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads); GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
// TODO: move these declarations above before the ggml_graph API and reorder the implementation order in ggml.c
// (unless the code has been moved to a separate source file)
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads); GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params *p, int n_threads); GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params *p0, const struct ggml_threadpool_params *p1); GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
GGML_API struct ggml_threadpool* ggml_threadpool_new (struct ggml_threadpool_params * params); GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool); GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool); GGML_API int ggml_threadpool_get_n_threads (struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool); GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool); GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
// ggml_graph_plan() has to be called before ggml_graph_compute() // =================================================================================================
// when plan.work_size > 0, caller must allocate memory for plan.work_data // CPU-only API for ggml_cgraph
GGML_API struct ggml_cplan ggml_graph_plan( //
const struct ggml_cgraph * cgraph, // TODO: move to the CPU backend
// NOTE: avoid using, will be removed
//
// loops through the graph and determines:
//
// - work size needed for CPU computation
// - number of threads to start
//
GGML_API enum ggml_status ggml_graph_prepare(
struct ggml_cgraph * cgraph,
int n_threads, /* = GGML_DEFAULT_N_THREADS */ int n_threads, /* = GGML_DEFAULT_N_THREADS */
struct ggml_threadpool * threadpool /* = NULL */ ); struct ggml_threadpool * threadpool /* = NULL */ );
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context // get the estimated work size for the graph from ggml_graph_prepare()
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data GGML_API size_t ggml_graph_work_size(const struct ggml_cgraph * cgraph);
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
// if ctx is NULL, the work buffer will be dynamically allocated. in this case, call ggml_graph_work_free() to free the buffer
// otherwise, the work buffer will be allocated in the context. no need to free it
GGML_API enum ggml_status ggml_graph_work_init(struct ggml_cgraph * cgraph, struct ggml_context * ctx);
GGML_API void ggml_graph_work_free(struct ggml_cgraph * cgraph);
// note: call ggml_graph_prepare() and ggml_graph_work_init() first
//
// sample usages:
//
// - no dynamic allocations:
//
// ... prepare ggml_context ctx ...
//
// ggml_graph_prepare (cgraph, n_threads, threadpool);
// ggml_graph_work_init(cgraph, ctx);
//
// ggml_graph_compute (cgraph); // can call many times
//
// // no need to call ggml_graph_work_free() because it is allocated in ctx
//
// - dynamic allocations:
//
// ggml_graph_prepare (cgraph, n_threads, threadpool);
// ggml_graph_work_init(cgraph, NULL); // will allocate memory
//
// ggml_graph_compute (cgraph); // can call many times
//
// ggml_graph_work_free(cgraph);
//
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph);
// end of CPU-only API
// =================================================================================================
GGML_API void ggml_graph_set_abort_callback(struct ggml_cgraph * cgraph, ggml_abort_callback abort_callback, void * abort_data);
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name); GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
@ -2146,6 +2138,7 @@ extern "C" {
struct ggml_cgraph * gb_tmp, struct ggml_cgraph * gb_tmp,
struct ggml_tensor * * checkpoints, struct ggml_tensor * * checkpoints,
int n_checkpoints); int n_checkpoints);
// //
// optimization // optimization
// //

View file

@ -752,7 +752,8 @@ GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_
} }
struct ggml_backend_plan_cpu { struct ggml_backend_plan_cpu {
struct ggml_cplan cplan; // TODO: move member from ggml_cgraph here when the public CPU-only API is removed
struct ggml_cgraph cgraph; struct ggml_cgraph cgraph;
}; };
@ -761,19 +762,19 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
cpu_plan->cgraph = *cgraph; // FIXME: deep copy cpu_plan->cgraph = *cgraph; // FIXME: deep copy
ggml_graph_prepare(&cpu_plan->cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
if (cpu_plan->cplan.work_size > 0) { if (cpu_plan->cgraph.work_size > 0) {
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); cpu_plan->cgraph.work_data = malloc(cpu_plan->cgraph.work_size);
if (cpu_plan->cplan.work_data == NULL) { if (cpu_plan->cgraph.work_data == NULL) {
free(cpu_plan); free(cpu_plan);
return NULL; return NULL;
} }
} }
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback; cpu_plan->cgraph.abort_callback = cpu_ctx->abort_callback;
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data; cpu_plan->cgraph.abort_callback_data = cpu_ctx->abort_callback_data;
return cpu_plan; return cpu_plan;
} }
@ -781,7 +782,7 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
free(cpu_plan->cplan.work_data); free(cpu_plan->cgraph.work_data);
free(cpu_plan); free(cpu_plan);
GGML_UNUSED(backend); GGML_UNUSED(backend);
@ -790,7 +791,7 @@ GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, g
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); return ggml_graph_compute(&cpu_plan->cgraph);
GGML_UNUSED(backend); GGML_UNUSED(backend);
} }
@ -798,23 +799,24 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backe
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool); ggml_graph_prepare(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
if (cpu_ctx->work_size < cplan.work_size) { if (cpu_ctx->work_size < cgraph->work_size) {
free(cpu_ctx->work_data); free(cpu_ctx->work_data);
cpu_ctx->work_data = malloc(cplan.work_size); cpu_ctx->work_data = malloc(cgraph->work_size);
if (cpu_ctx->work_data == NULL) { if (cpu_ctx->work_data == NULL) {
cpu_ctx->work_size = 0; cpu_ctx->work_size = 0;
return GGML_STATUS_ALLOC_FAILED; return GGML_STATUS_ALLOC_FAILED;
} }
cpu_ctx->work_size = cplan.work_size; cpu_ctx->work_size = cgraph->work_size;
} }
cplan.work_data = cpu_ctx->work_data; cgraph->work_data = cpu_ctx->work_data;
cgraph->work_own = false; // always freed by ggml_backend_cpu_graph_plan_free
cplan.abort_callback = cpu_ctx->abort_callback; cgraph->abort_callback = cpu_ctx->abort_callback;
cplan.abort_callback_data = cpu_ctx->abort_callback_data; cgraph->abort_callback_data = cpu_ctx->abort_callback_data;
return ggml_graph_compute(cgraph, &cplan); return ggml_graph_compute(cgraph);
} }
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {

View file

@ -1,3 +1,4 @@
#include "ggml-impl.h"
#include "ggml-blas.h" #include "ggml-blas.h"
#include "ggml-backend-impl.h" #include "ggml-backend-impl.h"

View file

@ -30,6 +30,7 @@
#include <cstring> #include <cstring>
#include <mutex> #include <mutex>
#include "ggml-impl.h"
#include "ggml-backend-impl.h" #include "ggml-backend-impl.h"
#include "ggml-cann/aclnn_ops.h" #include "ggml-cann/aclnn_ops.h"
#include "ggml-cann/common.h" #include "ggml-cann/common.h"

View file

@ -1,5 +1,5 @@
#include "ggml-cuda.h" #include "ggml-cuda.h"
#include "ggml.h" #include "ggml-impl.h"
#include "ggml-backend-impl.h" #include "ggml-backend-impl.h"
#include "ggml-cuda/common.cuh" #include "ggml-cuda/common.cuh"

View file

@ -629,8 +629,16 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif #endif
enum ggml_cgraph_eval_order {
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
GGML_CGRAPH_EVAL_ORDER_COUNT
};
// bitset // bitset
typedef uint32_t ggml_bitset_t;
static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated"); static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated");
#define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8) #define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8)
#define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1) #define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1)
@ -656,6 +664,12 @@ static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) {
#define GGML_HASHSET_FULL ((size_t)-1) #define GGML_HASHSET_FULL ((size_t)-1)
#define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2) #define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2)
struct ggml_hash_set {
size_t size;
ggml_bitset_t * used; // whether or not the keys are in use i.e. set
struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i)
};
struct ggml_hash_set ggml_hash_set_new(size_t size); struct ggml_hash_set ggml_hash_set_new(size_t size);
void ggml_hash_set_free(struct ggml_hash_set * hash_set); void ggml_hash_set_free(struct ggml_hash_set * hash_set);
@ -745,6 +759,37 @@ static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct g
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
// computation graph
struct ggml_cgraph {
int size;
int n_nodes;
int n_leafs;
struct ggml_tensor ** nodes;
struct ggml_tensor ** grads;
struct ggml_tensor ** leafs;
struct ggml_hash_set visited_hash_set;
enum ggml_cgraph_eval_order order;
// TODO: after the CPU-only API is removed, we can move the members below to ggml_backend_plan_cpu
bool work_own;
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
int n_threads;
struct ggml_threadpool * threadpool;
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View file

@ -1,4 +1,4 @@
#include "ggml.h" #include "ggml-impl.h"
#include "ggml-backend.h" #include "ggml-backend.h"
#include "ggml-backend-impl.h" #include "ggml-backend-impl.h"
#include "ggml-kompute.h" #include "ggml-kompute.h"

View file

@ -1,7 +1,7 @@
#import "ggml-metal.h" #import "ggml-metal.h"
#import "ggml-impl.h"
#import "ggml-backend-impl.h" #import "ggml-backend-impl.h"
#import "ggml.h"
#import <Foundation/Foundation.h> #import <Foundation/Foundation.h>

View file

@ -1,5 +1,5 @@
#include "ggml-rpc.h" #include "ggml-rpc.h"
#include "ggml.h" #include "ggml-impl.h"
#include "ggml-backend-impl.h" #include "ggml-backend-impl.h"
#include <cinttypes> #include <cinttypes>

View file

@ -33,7 +33,7 @@
#include <sycl/half_type.hpp> #include <sycl/half_type.hpp>
#include "ggml-sycl.h" #include "ggml-sycl.h"
#include "ggml.h" #include "ggml-impl.h"
#include "ggml-backend-impl.h" #include "ggml-backend-impl.h"
#include "ggml-sycl/backend.hpp" #include "ggml-sycl/backend.hpp"

View file

@ -21,7 +21,7 @@
#include <memory> #include <memory>
#include <mutex> #include <mutex>
#include "ggml.h" #include "ggml-impl.h"
#include "ggml-backend-impl.h" #include "ggml-backend-impl.h"
#include "ggml-vulkan-shaders.hpp" #include "ggml-vulkan-shaders.hpp"

View file

@ -287,6 +287,7 @@ void ggml_abort(const char * file, int line, const char * fmt, ...) {
#define GGML_DEBUG 0 #define GGML_DEBUG 0
#define GGML_GELU_FP16 #define GGML_GELU_FP16
#define GGML_GELU_QUICK_FP16 #define GGML_GELU_QUICK_FP16
#define GGML_N_TASKS_MAX (-1)
#define GGML_SOFT_MAX_UNROLL 4 #define GGML_SOFT_MAX_UNROLL 4
#define GGML_VEC_DOT_UNROLL 2 #define GGML_VEC_DOT_UNROLL 2
@ -1124,17 +1125,17 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
{ \ { \
int offset = GGML_F32_ARR >> 1; \ int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \ for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \ (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \ } \
offset >>= 1; \ offset >>= 1; \
for (int i = 0; i < offset; ++i) { \ for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \ (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \ } \
offset >>= 1; \ offset >>= 1; \
for (int i = 0; i < offset; ++i) { \ for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \ (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \ } \
res = GGML_F32x4_REDUCE_ONE(x[0]); \ (res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
} }
#define GGML_F32_VEC GGML_F32x4 #define GGML_F32_VEC GGML_F32x4
@ -1165,26 +1166,26 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
do { \ do { \
int offset = GGML_F16_ARR >> 1; \ int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \ for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \ (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \ } \
offset >>= 1; \ offset >>= 1; \
for (int i = 0; i < offset; ++i) { \ for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \ (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \ } \
offset >>= 1; \ offset >>= 1; \
for (int i = 0; i < offset; ++i) { \ for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \ (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \ } \
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \ const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \ const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \ (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
} while (0) } while (0)
#define GGML_F16_VEC GGML_F16x8 #define GGML_F16_VEC GGML_F16x8
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1 #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p) #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i]) #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA #define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD #define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL #define GGML_F16_VEC_MUL GGML_F16x8_MUL
@ -1893,6 +1894,23 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR) #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
#endif #endif
//
// ggml object
//
struct ggml_object {
size_t offs;
size_t size;
struct ggml_object * next;
enum ggml_object_type type;
char padding[4];
};
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
// //
// ggml context // ggml context
// //
@ -1983,7 +2001,6 @@ struct ggml_threadpool {
ggml_cond_t cond; // cond.var for waiting for new work ggml_cond_t cond; // cond.var for waiting for new work
struct ggml_cgraph * cgraph; struct ggml_cgraph * cgraph;
struct ggml_cplan * cplan;
// synchronization primitives // synchronization primitives
atomic_int n_graph; // incremented when there is work to be done (i.e each graph) atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
@ -19077,8 +19094,15 @@ struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t siz
/*.nodes =*/ nodes_ptr, /*.nodes =*/ nodes_ptr,
/*.grads =*/ grads_ptr, /*.grads =*/ grads_ptr,
/*.leafs =*/ leafs_ptr, /*.leafs =*/ leafs_ptr,
/*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr }, /*.visited_hash_set =*/ { hash_size, hash_used, hash_keys_ptr },
/*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
/*.work_own =*/ false,
/*.work_size =*/ 0,
/*.work_data =*/ NULL,
/*.n_threads =*/ GGML_DEFAULT_N_THREADS,
/*.threadpool =*/ NULL,
/*.abort_callback =*/ NULL,
/*.abort_callback_data =*/ NULL,
}; };
ggml_hash_set_reset(&cgraph->visited_hash_set); ggml_hash_set_reset(&cgraph->visited_hash_set);
@ -19100,6 +19124,13 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1)
/*.leafs =*/ NULL, /*.leafs =*/ NULL,
/*.hash_table =*/ { 0, NULL, NULL }, /*.hash_table =*/ { 0, NULL, NULL },
/*.order =*/ cgraph0->order, /*.order =*/ cgraph0->order,
/*.work_own =*/ false,
/*.work_size =*/ 0,
/*.work_data =*/ NULL,
/*.n_threads =*/ GGML_DEFAULT_N_THREADS,
/*.threadpool =*/ NULL,
/*.abort_callback =*/ NULL,
/*.abort_callback_data =*/ NULL,
}; };
return cgraph; return cgraph;
@ -19161,6 +19192,33 @@ void ggml_graph_clear(struct ggml_cgraph * cgraph) {
ggml_hash_set_reset(&cgraph->visited_hash_set); ggml_hash_set_reset(&cgraph->visited_hash_set);
} }
int ggml_graph_size(struct ggml_cgraph * cgraph) {
return cgraph->size;
}
struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
if (i < 0) {
GGML_ASSERT(cgraph->n_nodes + i >= 0);
return cgraph->nodes[cgraph->n_nodes + i];
}
GGML_ASSERT(i < cgraph->n_nodes);
return cgraph->nodes[i];
}
struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
return cgraph->nodes;
}
int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
return cgraph->n_nodes;
}
void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
cgraph->nodes[cgraph->n_nodes] = tensor;
cgraph->n_nodes++;
}
// Android's libc implementation "bionic" does not support setting affinity // Android's libc implementation "bionic" does not support setting affinity
#if defined(__gnu_linux__) #if defined(__gnu_linux__)
static void set_numa_thread_affinity(int thread_n) { static void set_numa_thread_affinity(int thread_n) {
@ -19708,11 +19766,10 @@ void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
#endif #endif
} }
struct ggml_cplan ggml_graph_plan( enum ggml_status ggml_graph_prepare(
const struct ggml_cgraph * cgraph, struct ggml_cgraph * cgraph,
int n_threads, int n_threads,
struct ggml_threadpool * threadpool) { struct ggml_threadpool * threadpool) {
if (threadpool == NULL) { if (threadpool == NULL) {
GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads); GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
} }
@ -19722,9 +19779,6 @@ struct ggml_cplan ggml_graph_plan(
size_t work_size = 0; size_t work_size = 0;
struct ggml_cplan cplan;
memset(&cplan, 0, sizeof(struct ggml_cplan));
int max_tasks = 1; int max_tasks = 1;
// thread scheduling for the different operations + work buffer size estimation // thread scheduling for the different operations + work buffer size estimation
@ -19876,28 +19930,63 @@ struct ggml_cplan ggml_graph_plan(
work_size += CACHE_LINE_SIZE*(n_threads); work_size += CACHE_LINE_SIZE*(n_threads);
} }
cplan.threadpool = threadpool; cgraph->threadpool = threadpool;
cplan.n_threads = MIN(max_tasks, n_threads); cgraph->n_threads = MIN(max_tasks, n_threads);
cplan.work_size = work_size; cgraph->work_size = work_size;
cplan.work_data = NULL;
return cplan; ggml_graph_work_free(cgraph);
return GGML_STATUS_SUCCESS;
}
size_t ggml_graph_work_size(const struct ggml_cgraph * cgraph) {
return cgraph->work_size;
}
enum ggml_status ggml_graph_work_init(struct ggml_cgraph * cgraph, struct ggml_context * ctx) {
GGML_ASSERT(cgraph->n_threads > 0 && "call ggml_graph_prepare first");
ggml_graph_work_free(cgraph);
if (cgraph->work_size > 0) {
if (ctx == NULL) {
cgraph->work_data = GGML_ALIGNED_MALLOC(cgraph->work_size);
if (cgraph->work_data == NULL) {
return GGML_STATUS_ALLOC_FAILED;
}
cgraph->work_own = true;
} else {
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cgraph->work_size);
cgraph->work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
cgraph->work_own = false;
}
}
return GGML_STATUS_SUCCESS;
}
void ggml_graph_work_free(struct ggml_cgraph * cgraph) {
if (cgraph->work_data && cgraph->work_own) {
GGML_ALIGNED_FREE(cgraph->work_data);
cgraph->work_data = NULL;
}
} }
static thread_ret_t ggml_graph_compute_thread(void * data) { static thread_ret_t ggml_graph_compute_thread(void * data) {
struct ggml_compute_state * state = (struct ggml_compute_state *) data; struct ggml_compute_state * state = (struct ggml_compute_state *) data;
const struct ggml_cgraph * cgraph = state->threadpool->cgraph; const struct ggml_cgraph * cgraph = state->threadpool->cgraph;
const struct ggml_cplan * cplan = state->threadpool->cplan;
set_numa_thread_affinity(state->ith); set_numa_thread_affinity(state->ith);
struct ggml_compute_params params = { struct ggml_compute_params params = {
/*.ith =*/ state->ith, /*.ith =*/ state->ith,
/*.nth =*/ state->threadpool->n_threads_cur, /*.nth =*/ state->threadpool->n_threads_cur,
/*.wsize =*/ cplan->work_size, /*.wsize =*/ cgraph->work_size,
/*.wdata =*/ cplan->work_data, /*.wdata =*/ cgraph->work_data,
/*.threadpool=*/ state->threadpool, /*.threadpool =*/ state->threadpool,
}; };
for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) { for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
@ -19905,7 +19994,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
ggml_compute_forward(&params, node); ggml_compute_forward(&params, node);
if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) { if (state->ith == 0 && cgraph->abort_callback && cgraph->abort_callback(cgraph->abort_callback_data)) {
state->threadpool->ec = GGML_STATUS_ABORTED; state->threadpool->ec = GGML_STATUS_ABORTED;
} }
@ -20059,14 +20148,12 @@ bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, cons
static struct ggml_threadpool * ggml_threadpool_new_impl( static struct ggml_threadpool * ggml_threadpool_new_impl(
struct ggml_threadpool_params * tpp, struct ggml_threadpool_params * tpp,
struct ggml_cgraph * cgraph, struct ggml_cgraph * cgraph) {
struct ggml_cplan * cplan) {
struct ggml_threadpool * threadpool = struct ggml_threadpool * threadpool =
GGML_ALIGNED_MALLOC(sizeof(struct ggml_threadpool)); GGML_ALIGNED_MALLOC(sizeof(struct ggml_threadpool));
{ {
threadpool->cgraph = cgraph; threadpool->cgraph = cgraph;
threadpool->cplan = cplan;
threadpool->n_graph = 0; threadpool->n_graph = 0;
threadpool->n_barrier = 0; threadpool->n_barrier = 0;
threadpool->n_barrier_passed = 0; threadpool->n_barrier_passed = 0;
@ -20124,16 +20211,15 @@ static struct ggml_threadpool * ggml_threadpool_new_impl(
} }
struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) { struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
return ggml_threadpool_new_impl(tpp, NULL, NULL); return ggml_threadpool_new_impl(tpp, NULL);
} }
enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph) {
GGML_ASSERT(cplan); GGML_ASSERT((cgraph->n_threads > 0 ) && "call ggml_graph_prepare first");
GGML_ASSERT(cplan->n_threads > 0); GGML_ASSERT((cgraph->work_size == 0 || cgraph->work_data != NULL) && "call ggml_graph_work_init first");
GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
int n_threads = cplan->n_threads; int n_threads = cgraph->n_threads;
struct ggml_threadpool * threadpool = cplan->threadpool; struct ggml_threadpool * threadpool = cgraph->threadpool;
bool disposable_threadpool = false; bool disposable_threadpool = false;
@ -20142,19 +20228,18 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
disposable_threadpool = true; disposable_threadpool = true;
struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads); struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan); threadpool = ggml_threadpool_new_impl(&ttp, cgraph);
} else { } else {
// Reset some of the parameters that need resetting // Reset some of the parameters that need resetting
// No worker threads should be accessing the parameters below at this stage // No worker threads should be accessing the parameters below at this stage
threadpool->cgraph = cgraph; threadpool->cgraph = cgraph;
threadpool->cplan = cplan;
threadpool->n_threads_cur = n_threads; threadpool->n_threads_cur = n_threads;
threadpool->current_chunk = 0; threadpool->current_chunk = 0;
threadpool->ec = GGML_STATUS_SUCCESS; threadpool->ec = GGML_STATUS_SUCCESS;
} }
if (n_threads > threadpool->n_threads_max) { if (n_threads > threadpool->n_threads_max) {
GGML_PRINT("WARNING: cplan is requesting more threads than the threadpool contains. Expect a bad time!\n"); GGML_PRINT("WARNING: cgraph is requesting more threads than the threadpool contains. Expect a bad time!\n");
} }
#ifdef GGML_USE_OPENMP #ifdef GGML_USE_OPENMP
@ -20193,14 +20278,9 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
return ret; return ret;
} }
enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) { void ggml_graph_set_abort_callback(struct ggml_cgraph * cgraph, ggml_abort_callback abort_callback, void * abort_data) {
struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL); cgraph->abort_callback = abort_callback;
cgraph->abort_callback_data = abort_data;
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
return ggml_graph_compute(cgraph, &cplan);
} }
struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) { struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
@ -21010,9 +21090,8 @@ static enum ggml_opt_result ggml_opt_adam(
float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL); ggml_graph_prepare (gb, params.n_threads, NULL);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); ggml_graph_work_init(gb, ctx);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
bool cancel = false; bool cancel = false;
@ -21028,7 +21107,7 @@ static enum ggml_opt_result ggml_opt_adam(
} }
// ggml_graph_reset (gf); // ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f); ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan); ggml_graph_compute(gb);
ggml_opt_acc_grad(np, ps, g, accum_norm); ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0); fx += ggml_get_f32_1d(f, 0);
} }
@ -21119,7 +21198,7 @@ static enum ggml_opt_result ggml_opt_adam(
} }
// ggml_graph_reset (gf); // ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f); ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan); ggml_graph_compute(gb);
ggml_opt_acc_grad(np, ps, g, accum_norm); ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0); fx += ggml_get_f32_1d(f, 0);
} }
@ -21204,7 +21283,6 @@ static enum ggml_opt_result linesearch_backtracking(
const float * xp, const float * xp,
struct ggml_tensor * f, struct ggml_tensor * f,
struct ggml_cgraph * gb, struct ggml_cgraph * gb,
struct ggml_cplan * cplan,
const int np, const int np,
struct ggml_tensor * ps[], struct ggml_tensor * ps[],
bool * cancel, bool * cancel,
@ -21261,7 +21339,7 @@ static enum ggml_opt_result linesearch_backtracking(
} }
// ggml_graph_reset (gf); // ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f); ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, cplan); ggml_graph_compute(gb);
ggml_opt_acc_grad(np, ps, g, accum_norm); ggml_opt_acc_grad(np, ps, g, accum_norm);
*fx += ggml_get_f32_1d(f, 0); *fx += ggml_get_f32_1d(f, 0);
} }
@ -21357,9 +21435,8 @@ static enum ggml_opt_result ggml_opt_lbfgs(
opt->iter = iter; opt->iter = iter;
} }
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL); ggml_graph_prepare (gb, params.n_threads, NULL);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); ggml_graph_work_init(gb, ctx);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
float * x = opt->lbfgs.x->data; // current parameters float * x = opt->lbfgs.x->data; // current parameters
float * xp = opt->lbfgs.xp->data; // previous parameters float * xp = opt->lbfgs.xp->data; // previous parameters
@ -21404,7 +21481,7 @@ static enum ggml_opt_result ggml_opt_lbfgs(
} }
// ggml_graph_reset (gf); // ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f); ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan); ggml_graph_compute(gb);
ggml_opt_acc_grad(np, ps, g, accum_norm); ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0); fx += ggml_get_f32_1d(f, 0);
} }
@ -21470,7 +21547,7 @@ static enum ggml_opt_result ggml_opt_lbfgs(
// to determine if the optimization should be cancelled // to determine if the optimization should be cancelled
// this is a simple change, but not doing this atm, since I don't have a nice // this is a simple change, but not doing this atm, since I don't have a nice
// way to test and don't want to break something with so many changes lined up // way to test and don't want to break something with so many changes lined up
ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data); ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, np, ps, &cancel, callback, callback_data);
if (cancel) { if (cancel) {
return GGML_OPT_RESULT_CANCEL; return GGML_OPT_RESULT_CANCEL;
} }

View file

@ -9877,8 +9877,8 @@ struct llm_build_context {
struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) { struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
// find result_norm tensor for input // find result_norm tensor for input
struct ggml_tensor * inp = nullptr; struct ggml_tensor * inp = nullptr;
for (int i = gf->n_nodes - 1; i >= 0; --i) { for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
inp = gf->nodes[i]; inp = ggml_graph_node(gf, i);
if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) { if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
break; break;
} else { } else {
@ -16205,8 +16205,8 @@ static int llama_decode_internal(
ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false); ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);
// the output is always the last tensor in the graph // the output is always the last tensor in the graph
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; struct ggml_tensor * res = ggml_graph_node(gf, -1);
struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2]; struct ggml_tensor * embd = ggml_graph_node(gf, -2);
if (lctx.n_outputs == 0) { if (lctx.n_outputs == 0) {
// no output // no output
@ -16215,9 +16215,9 @@ static int llama_decode_internal(
} else if (cparams.embeddings) { } else if (cparams.embeddings) {
res = nullptr; // do not extract logits for embedding case res = nullptr; // do not extract logits for embedding case
embd = nullptr; embd = nullptr;
for (int i = gf->n_nodes - 1; i >= 0; --i) { for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
if (strcmp(gf->nodes[i]->name, "result_embd_pooled") == 0) { if (strcmp(ggml_graph_node(gf, i)->name, "result_embd_pooled") == 0) {
embd = gf->nodes[i]; embd = ggml_graph_node(gf, i);
break; break;
} }
} }
@ -16432,15 +16432,15 @@ static int llama_encode_internal(
// there are two cases here // there are two cases here
if (llama_model_has_decoder(&lctx.model)) { if (llama_model_has_decoder(&lctx.model)) {
// first case is an encoder-decoder T5 model where embeddings are passed to decoder // first case is an encoder-decoder T5 model where embeddings are passed to decoder
embd = gf->nodes[gf->n_nodes - 1]; embd = ggml_graph_node(gf, -1);
GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor"); GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor");
} else { } else {
// second case is an encoder-only T5 model // second case is an encoder-only T5 model
if (cparams.embeddings) { if (cparams.embeddings) {
// only output embeddings if required // only output embeddings if required
embd = gf->nodes[gf->n_nodes - 1]; embd = ggml_graph_node(gf, -1);
if (strcmp(embd->name, "result_embd_pooled") != 0) { if (strcmp(embd->name, "result_embd_pooled") != 0) {
embd = gf->nodes[gf->n_nodes - 2]; embd = ggml_graph_node(gf, -2);
} }
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor"); GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
} }
@ -18488,7 +18488,7 @@ struct llama_context * llama_new_context_with_model(
// note: the number of splits during measure is higher than during inference due to the kv shift // note: the number of splits during measure is higher than during inference due to the kv shift
int n_splits = ggml_backend_sched_get_n_splits(ctx->sched); int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes); LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, ggml_graph_n_nodes(gf));
LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits); LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
} }
} }

View file

@ -519,7 +519,7 @@ struct test_case {
// add sentinels as graph nodes so that they are checked in the callback // add sentinels as graph nodes so that they are checked in the callback
for (ggml_tensor * sentinel : sentinels) { for (ggml_tensor * sentinel : sentinels) {
gf->nodes[gf->n_nodes++] = sentinel; ggml_graph_add_node(gf, sentinel);
} }
// randomize tensors // randomize tensors
@ -679,9 +679,9 @@ struct test_case {
// duplicate the op // duplicate the op
size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1; int n_runs = std::min((size_t) ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
for (int i = 1; i < n_runs; i++) { for (int i = 1; i < n_runs; i++) {
gf->nodes[gf->n_nodes++] = out; ggml_graph_add_node(gf, out);
} }
// calculate memory // calculate memory
@ -696,11 +696,11 @@ struct test_case {
} }
return size; return size;
}; };
for (int i = 0; i < gf->n_nodes; i++) { for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) { if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
continue; continue;
} }
mem += tensor_op_size(gf->nodes[i]); mem += tensor_op_size(ggml_graph_node(gf, i));
} }
// run // run
@ -804,7 +804,7 @@ struct test_case {
ggml_graph_cpy(gf, gb); ggml_graph_cpy(gf, gb);
ggml_build_backward_expand(ctx, gf, gb, false); ggml_build_backward_expand(ctx, gf, gb, false);
if (expect.size() != 1 || expect[0] != 0.0f) { if (expect.size() != 1 || expect[0] != 0.0f) {
GGML_ASSERT(gb->n_nodes > gf->n_nodes); GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || t->grad->op != GGML_OP_NONE); GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || t->grad->op != GGML_OP_NONE);
} }

View file

@ -242,12 +242,16 @@ static bool check_gradient(
ggml_graph_cpy(gf, gb); ggml_graph_cpy(gf, gb);
ggml_build_backward_expand(ctx0, gf, gb, false); ggml_build_backward_expand(ctx0, gf, gb, false);
ggml_graph_compute_with_ctx(ctx0, gf, n_threads); ggml_graph_prepare(gf, n_threads, nullptr);
ggml_graph_work_init(gf, ctx0);
ggml_graph_compute(gf);
ggml_graph_reset (gf); ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f); ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute_with_ctx(ctx0, gb, n_threads); ggml_graph_prepare(gb, n_threads, nullptr);
ggml_graph_work_init(gb, ctx0);
ggml_graph_compute(gb);
// ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot"); // ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot");
// ggml_graph_dump_dot(gb, gf, "test-grad0-backward.dot"); // ggml_graph_dump_dot(gb, gf, "test-grad0-backward.dot");
@ -262,13 +266,17 @@ static bool check_gradient(
const float xp = x0 + eps; const float xp = x0 + eps;
ggml_set_f32_1d(x[i], k, xp); ggml_set_f32_1d(x[i], k, xp);
ggml_graph_compute_with_ctx(ctx0, gf, n_threads); ggml_graph_prepare(gf, n_threads, nullptr);
ggml_graph_work_init(gf, ctx0);
ggml_graph_compute(gf);
const double f0 = ggml_get_f32_1d(f, 0); const double f0 = ggml_get_f32_1d(f, 0);
ggml_set_f32_1d(x[i], k, xm); ggml_set_f32_1d(x[i], k, xm);
ggml_graph_compute_with_ctx(ctx0, gf, n_threads); ggml_graph_prepare(gf, n_threads, nullptr);
ggml_graph_work_init(gf, ctx0);
ggml_graph_compute(gf);
const double f1 = ggml_get_f32_1d(f, 0); const double f1 = ggml_get_f32_1d(f, 0);
const double g0 = (f0 - f1)/(2.0*(double) eps); const double g0 = (f0 - f1)/(2.0*(double) eps);
@ -301,7 +309,9 @@ static bool check_gradient(
ggml_graph_reset (gf); ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f); ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute_with_ctx(ctx0, gb, n_threads); ggml_graph_prepare(gb, n_threads, nullptr);
ggml_graph_work_init(gb, ctx0);
ggml_graph_compute(gb);
const double g1 = ggml_get_f32_1d(x[i]->grad, k); const double g1 = ggml_get_f32_1d(x[i]->grad, k);

View file

@ -113,7 +113,10 @@ int main(void) {
ggml_build_forward_expand(ge, e); ggml_build_forward_expand(ge, e);
ggml_graph_reset(ge); ggml_graph_reset(ge);
ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1); ggml_graph_prepare(ge, 1, nullptr);
ggml_graph_work_init(ge, nullptr);
ggml_graph_compute(ge);
ggml_graph_work_free(ge);
const float fe = ggml_get_f32_1d(e, 0); const float fe = ggml_get_f32_1d(e, 0);
printf("%s: e = %.4f\n", __func__, fe); printf("%s: e = %.4f\n", __func__, fe);
@ -124,7 +127,10 @@ int main(void) {
ggml_graph_reset(ge); ggml_graph_reset(ge);
ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1); ggml_graph_prepare(ge, 1, nullptr);
ggml_graph_work_init(ge, nullptr);
ggml_graph_compute(ge);
ggml_graph_work_free(ge);
const float fe_opt = ggml_get_f32_1d(e, 0); const float fe_opt = ggml_get_f32_1d(e, 0);
printf("%s: original e = %.4f\n", __func__, fe); printf("%s: original e = %.4f\n", __func__, fe);

View file

@ -112,17 +112,6 @@ static struct ggml_tensor * get_random_tensor_f32(
return result; return result;
} }
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
plan.work_data = buf.data();
}
ggml_graph_compute(graph, &plan);
}
int main(int /*argc*/, const char ** /*argv*/) { int main(int /*argc*/, const char ** /*argv*/) {
struct ggml_init_params params = { struct ggml_init_params params = {
/* .mem_size = */ 128*1024*1024, /* .mem_size = */ 128*1024*1024,
@ -130,8 +119,6 @@ int main(int /*argc*/, const char ** /*argv*/) {
/* .no_alloc = */ false, /* .no_alloc = */ false,
}; };
std::vector<uint8_t> work_buffer;
struct ggml_context * ctx0 = ggml_init(params); struct ggml_context * ctx0 = ggml_init(params);
struct ggml_tensor * x; struct ggml_tensor * x;
@ -175,7 +162,10 @@ int main(int /*argc*/, const char ** /*argv*/) {
ggml_build_forward_expand(gf, r1); ggml_build_forward_expand(gf, r1);
ggml_build_forward_expand(gf, r2); ggml_build_forward_expand(gf, r2);
ggml_graph_compute_helper(work_buffer, gf, 4); ggml_graph_prepare(gf, 4, nullptr);
ggml_graph_work_init(gf, nullptr);
ggml_graph_compute(gf);
ggml_graph_work_free(gf);
// check that r1 and r2 are the same // check that r1 and r2 are the same
{ {