Compare commits
26 commits
master
...
gguf-write
Author | SHA1 | Date | |
---|---|---|---|
|
511055722e | ||
|
0c43a3b7d8 | ||
|
8e62d2b214 | ||
|
62f4926bde | ||
|
9411250564 | ||
|
bb54d1700e | ||
|
464192b9be | ||
|
d2bb3ac10b | ||
|
68f53485e4 | ||
|
158be8f7f4 | ||
|
d2b6ca13ad | ||
|
d89533dff6 | ||
|
c85d3178b3 | ||
|
d8491fc7e3 | ||
|
5628ec7163 | ||
|
e46870f5af | ||
|
d313c0fa33 | ||
|
cb871fa022 | ||
|
860c9c63ce | ||
|
78b226a959 | ||
|
d91b985d2d | ||
|
8d6acfec12 | ||
|
6873148771 | ||
|
7e82d25f40 | ||
|
bae6b125f6 | ||
|
4d698495ea |
14 changed files with 2234 additions and 946 deletions
185
.github/ISSUE_TEMPLATE/custom.md
vendored
185
.github/ISSUE_TEMPLATE/custom.md
vendored
|
@ -1,185 +0,0 @@
|
|||
---
|
||||
name: Issue and enhancement template
|
||||
about: Used to report issues and request enhancements for llama.cpp
|
||||
title: "[User] Insert summary of your issue or enhancement.."
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
# Prerequisites
|
||||
|
||||
Please answer the following questions for yourself before submitting an issue.
|
||||
|
||||
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
|
||||
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
|
||||
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
|
||||
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
|
||||
|
||||
# Expected Behavior
|
||||
|
||||
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do.
|
||||
|
||||
# Current Behavior
|
||||
|
||||
Please provide a detailed written description of what `llama.cpp` did, instead.
|
||||
|
||||
# Environment and Context
|
||||
|
||||
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
|
||||
|
||||
* Physical (or virtual) hardware you are using, e.g. for Linux:
|
||||
|
||||
`$ lscpu`
|
||||
|
||||
* Operating System, e.g. for Linux:
|
||||
|
||||
`$ uname -a`
|
||||
|
||||
* SDK version, e.g. for Linux:
|
||||
|
||||
```
|
||||
$ python3 --version
|
||||
$ make --version
|
||||
$ g++ --version
|
||||
```
|
||||
|
||||
# Failure Information (for bugs)
|
||||
|
||||
Please help provide information about the failure if this is a bug. If it is not a bug, please remove the rest of this template.
|
||||
|
||||
# Steps to Reproduce
|
||||
|
||||
Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.
|
||||
|
||||
1. step 1
|
||||
2. step 2
|
||||
3. step 3
|
||||
4. etc.
|
||||
|
||||
# Failure Logs
|
||||
|
||||
Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.
|
||||
|
||||
Also, please try to **avoid using screenshots** if at all possible. Instead, copy/paste the console output and use [Github's markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to cleanly format your logs for easy readability.
|
||||
|
||||
Example environment info:
|
||||
```
|
||||
llama.cpp$ git log | head -1
|
||||
commit 2af23d30434a677c6416812eea52ccc0af65119c
|
||||
|
||||
llama.cpp$ lscpu | egrep "AMD|Flags"
|
||||
Vendor ID: AuthenticAMD
|
||||
Model name: AMD Ryzen Threadripper 1950X 16-Core Processor
|
||||
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev
|
||||
Virtualization: AMD-V
|
||||
|
||||
llama.cpp$ python3 --version
|
||||
Python 3.10.9
|
||||
|
||||
llama.cpp$ pip list | egrep "torch|numpy|sentencepiece"
|
||||
numpy 1.24.2
|
||||
numpydoc 1.5.0
|
||||
sentencepiece 0.1.97
|
||||
torch 1.13.1
|
||||
torchvision 0.14.1
|
||||
|
||||
llama.cpp$ make --version | head -1
|
||||
GNU Make 4.3
|
||||
|
||||
$ md5sum ./models/65B/ggml-model-q4_0.bin
|
||||
dbdd682cce80e2d6e93cefc7449df487 ./models/65B/ggml-model-q4_0.bin
|
||||
```
|
||||
|
||||
Example run with the Linux command [perf](https://www.brendangregg.com/perf.html)
|
||||
```
|
||||
llama.cpp$ perf stat ./main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p "Please close your issue when it has been answered."
|
||||
main: seed = 1679149377
|
||||
llama_model_load: loading model from './models/65B/ggml-model-q4_0.bin' - please wait ...
|
||||
llama_model_load: n_vocab = 32000
|
||||
llama_model_load: n_ctx = 512
|
||||
llama_model_load: n_embd = 8192
|
||||
llama_model_load: n_mult = 256
|
||||
llama_model_load: n_head = 64
|
||||
llama_model_load: n_layer = 80
|
||||
llama_model_load: n_rot = 128
|
||||
llama_model_load: f16 = 2
|
||||
llama_model_load: n_ff = 22016
|
||||
llama_model_load: n_parts = 8
|
||||
llama_model_load: ggml ctx size = 41477.73 MB
|
||||
llama_model_load: memory_size = 2560.00 MB, n_mem = 40960
|
||||
llama_model_load: loading model part 1/8 from './models/65B/ggml-model-q4_0.bin'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 2/8 from './models/65B/ggml-model-q4_0.bin.1'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 3/8 from './models/65B/ggml-model-q4_0.bin.2'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 4/8 from './models/65B/ggml-model-q4_0.bin.3'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 5/8 from './models/65B/ggml-model-q4_0.bin.4'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 6/8 from './models/65B/ggml-model-q4_0.bin.5'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 7/8 from './models/65B/ggml-model-q4_0.bin.6'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.7'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
|
||||
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
|
||||
|
||||
main: prompt: 'Please close your issue when it has been answered.'
|
||||
main: number of tokens in prompt = 11
|
||||
1 -> ''
|
||||
12148 -> 'Please'
|
||||
3802 -> ' close'
|
||||
596 -> ' your'
|
||||
2228 -> ' issue'
|
||||
746 -> ' when'
|
||||
372 -> ' it'
|
||||
756 -> ' has'
|
||||
1063 -> ' been'
|
||||
7699 -> ' answered'
|
||||
29889 -> '.'
|
||||
|
||||
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000
|
||||
|
||||
|
||||
Please close your issue when it has been answered.
|
||||
@duncan-donut: I'm trying to figure out what kind of "support" you need for this script and why, exactly? Is there a question about how the code works that hasn't already been addressed in one or more comments below this ticket, or are we talking something else entirely like some sorta bugfixing job because your server setup is different from mine??
|
||||
I can understand if your site needs to be running smoothly and you need help with a fix of sorts but there should really be nothing wrong here that the code itself could not handle. And given that I'm getting reports about how it works perfectly well on some other servers, what exactly are we talking? A detailed report will do wonders in helping us get this resolved for ya quickly so please take your time and describe the issue(s) you see as clearly & concisely as possible!!
|
||||
@duncan-donut: I'm not sure if you have access to cPanel but you could try these instructions. It is worth a shot! Let me know how it goes (or what error message, exactly!) when/if ya give that code a go? [end of text]
|
||||
|
||||
|
||||
main: mem per token = 71159620 bytes
|
||||
main: load time = 19309.95 ms
|
||||
main: sample time = 168.62 ms
|
||||
main: predict time = 223895.61 ms / 888.47 ms per token
|
||||
main: total time = 246406.42 ms
|
||||
|
||||
Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':
|
||||
|
||||
3636882.89 msec task-clock # 14.677 CPUs utilized
|
||||
13509 context-switches # 3.714 /sec
|
||||
2436 cpu-migrations # 0.670 /sec
|
||||
10476679 page-faults # 2.881 K/sec
|
||||
13133115082869 cycles # 3.611 GHz (16.77%)
|
||||
29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%)
|
||||
10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%)
|
||||
23479217109614 instructions # 1.79 insn per cycle
|
||||
# 0.44 stalled cycles per insn (16.76%)
|
||||
2353072268027 branches # 647.002 M/sec (16.77%)
|
||||
1998682780 branch-misses # 0.08% of all branches (16.76%)
|
||||
|
||||
247.802177522 seconds time elapsed
|
||||
|
||||
3618.573072000 seconds user
|
||||
18.491698000 seconds sys
|
||||
```
|
632
.github/workflows/build.yml
vendored
632
.github/workflows/build.yml
vendored
|
@ -1,632 +0,0 @@
|
|||
name: CI
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
inputs:
|
||||
create_release:
|
||||
description: 'Create new release'
|
||||
required: true
|
||||
type: boolean
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
|
||||
|
||||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
GGML_NLOOP: 3
|
||||
GGML_NITER: 1
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
jobs:
|
||||
ubuntu-focal-make:
|
||||
runs-on: ubuntu-20.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential gcc-8
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
run: |
|
||||
CC=gcc-8 make
|
||||
|
||||
ubuntu-latest-cmake:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose --timeout 900
|
||||
|
||||
ubuntu-latest-cmake-sanitizer:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
build_type: [Debug, Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }}
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose --timeout 900
|
||||
|
||||
ubuntu-latest-cmake-mpi:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
mpi_library: [mpich, libopenmpi-dev]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ${{ matrix.mpi_library }}
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_MPI=ON ..
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose
|
||||
|
||||
macOS-latest-make:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
run: |
|
||||
make
|
||||
|
||||
macOS-latest-cmake:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF ..
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose --timeout 900
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
OPENCL_VERSION: 2023.04.17
|
||||
CLBLAST_VERSION: 1.6.0
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'noavx'
|
||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF'
|
||||
- build: 'avx2'
|
||||
defines: '-DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'clblast'
|
||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
|
||||
- build: 'openblas'
|
||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Download OpenCL SDK
|
||||
id: get_opencl
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/opencl.zip -L "https://github.com/KhronosGroup/OpenCL-SDK/releases/download/v${env:OPENCL_VERSION}/OpenCL-SDK-v${env:OPENCL_VERSION}-Win-x64.zip"
|
||||
mkdir $env:RUNNER_TEMP/opencl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/opencl.zip --strip-components=1 -C $env:RUNNER_TEMP/opencl
|
||||
|
||||
- name: Download CLBlast
|
||||
id: get_clblast
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/clblast.7z -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-windows-x64.7z"
|
||||
curl.exe -o $env:RUNNER_TEMP/CLBlast.LICENSE.txt -L "https://github.com/CNugteren/CLBlast/raw/${env:CLBLAST_VERSION}/LICENSE"
|
||||
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/clblast.7z
|
||||
rename-item $env:RUNNER_TEMP/CLBlast-${env:CLBLAST_VERSION}-windows-x64 clblast
|
||||
foreach ($f in (gci -Recurse -Path "$env:RUNNER_TEMP/clblast" -Filter '*.cmake')) {
|
||||
$txt = Get-Content -Path $f -Raw
|
||||
$txt.Replace('C:/vcpkg/packages/opencl_x64-windows/', "$($env:RUNNER_TEMP.Replace('\','/'))/opencl/") | Set-Content -Path $f -Encoding UTF8
|
||||
}
|
||||
|
||||
- name: Download OpenBLAS
|
||||
id: get_openblas
|
||||
if: ${{ matrix.build == 'openblas' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/openblas.zip -L "https://github.com/xianyi/OpenBLAS/releases/download/v${env:OPENBLAS_VERSION}/OpenBLAS-${env:OPENBLAS_VERSION}-x64.zip"
|
||||
curl.exe -o $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt -L "https://github.com/xianyi/OpenBLAS/raw/v${env:OPENBLAS_VERSION}/LICENSE"
|
||||
mkdir $env:RUNNER_TEMP/openblas
|
||||
tar.exe -xvf $env:RUNNER_TEMP/openblas.zip -C $env:RUNNER_TEMP/openblas
|
||||
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
|
||||
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
|
||||
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
|
||||
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. ${{ matrix.defines }}
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Add clblast.dll
|
||||
id: add_clblast_dll
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
run: |
|
||||
cp $env:RUNNER_TEMP/clblast/lib/clblast.dll ./build/bin/Release
|
||||
cp $env:RUNNER_TEMP/CLBlast.LICENSE.txt ./build/bin/Release/CLBlast-${env:CLBLAST_VERSION}.txt
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
id: add_libopenblas_dll
|
||||
if: ${{ matrix.build == 'openblas' }}
|
||||
run: |
|
||||
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
|
||||
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
|
||||
|
||||
- name: Check AVX512F support
|
||||
id: check_avx512f
|
||||
if: ${{ matrix.build == 'avx512' }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
cd build
|
||||
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
|
||||
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
|
||||
$cl = $(join-path $msvc 'bin\Hostx64\x64\cl.exe')
|
||||
echo 'int main(void){unsigned int a[4];__cpuid(a,7);return !(a[1]&65536);}' >> avx512f.c
|
||||
& $cl /O2 /GS- /kernel avx512f.c /link /nodefaultlib /entry:main
|
||||
.\avx512f.exe && echo "AVX512F: YES" && ( echo HAS_AVX512F=1 >> $env:GITHUB_ENV ) || echo "AVX512F: NO"
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # Test AVX-512 only when possible
|
||||
run: |
|
||||
cd build
|
||||
ctest -C Release --verbose --timeout 900
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
||||
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
|
||||
windows-latest-cmake-cublas:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.1.0', '11.7.1']
|
||||
build: ['cublas']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- uses: Jimver/cuda-toolkit@v0.2.10
|
||||
id: cuda-toolkit
|
||||
with:
|
||||
cuda: ${{ matrix.cuda }}
|
||||
# TODO(green-sky): _dev seems to fail, and non dev are not enought
|
||||
#sub-packages: '["nvcc", "cudart", "cublas", "cudart_dev", "cublas_dev"]'
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ matrix.cuda == '12.1.0' }}
|
||||
# TODO(green-sky): paths are cuda 12 specific
|
||||
run: |
|
||||
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
|
||||
mkdir '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_12.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_12.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_12.dll" '.\build\bin\cudart\'
|
||||
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\*
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ matrix.cuda == '11.7.1' }}
|
||||
# TODO(green-sky): paths are cuda 11 specific
|
||||
run: |
|
||||
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
|
||||
mkdir '.\build\bin\cudart\'
|
||||
ls "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin"
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_110.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_11.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_11.dll" '.\build\bin\cudart\'
|
||||
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\*
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
needs:
|
||||
- ubuntu-focal-make
|
||||
- ubuntu-latest-cmake
|
||||
- macOS-latest-make
|
||||
- macOS-latest-cmake
|
||||
- windows-latest-cmake
|
||||
- windows-latest-cmake-cublas
|
||||
|
||||
steps:
|
||||
- name: Download artifacts
|
||||
id: download-artifact
|
||||
uses: actions/download-artifact@v3
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Create release
|
||||
id: create_release
|
||||
uses: anzz1/action-create-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
tag_name: ${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}
|
||||
|
||||
- name: Upload release
|
||||
id: upload_release
|
||||
uses: actions/github-script@v3
|
||||
with:
|
||||
github-token: ${{secrets.GITHUB_TOKEN}}
|
||||
script: |
|
||||
const path = require('path');
|
||||
const fs = require('fs');
|
||||
const release_id = '${{ steps.create_release.outputs.id }}';
|
||||
for (let file of await fs.readdirSync('./artifact')) {
|
||||
if (path.extname(file) === '.zip') {
|
||||
console.log('uploadReleaseAsset', file);
|
||||
await github.repos.uploadReleaseAsset({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
release_id: release_id,
|
||||
name: file,
|
||||
data: await fs.readFileSync(`./artifact/${file}`)
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
# ubuntu-latest-gcc:
|
||||
# runs-on: ubuntu-latest
|
||||
#
|
||||
# strategy:
|
||||
# matrix:
|
||||
# build: [Debug, Release]
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
# sudo apt-get update
|
||||
# sudo apt-get install build-essential
|
||||
# sudo apt-get install cmake
|
||||
#
|
||||
# - name: Configure
|
||||
# run: cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
#
|
||||
# - name: Build
|
||||
# run: |
|
||||
# make
|
||||
#
|
||||
# ubuntu-latest-clang:
|
||||
# runs-on: ubuntu-latest
|
||||
#
|
||||
# strategy:
|
||||
# matrix:
|
||||
# build: [Debug, Release]
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
# sudo apt-get update
|
||||
# sudo apt-get install build-essential
|
||||
# sudo apt-get install cmake
|
||||
#
|
||||
# - name: Configure
|
||||
# run: cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
|
||||
#
|
||||
# - name: Build
|
||||
# run: |
|
||||
# make
|
||||
#
|
||||
# ubuntu-latest-gcc-sanitized:
|
||||
# runs-on: ubuntu-latest
|
||||
#
|
||||
# strategy:
|
||||
# matrix:
|
||||
# sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
# sudo apt-get update
|
||||
# sudo apt-get install build-essential
|
||||
# sudo apt-get install cmake
|
||||
#
|
||||
# - name: Configure
|
||||
# run: cmake . -DCMAKE_BUILD_TYPE=Debug -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON
|
||||
#
|
||||
# - name: Build
|
||||
# run: |
|
||||
# make
|
||||
#
|
||||
# windows:
|
||||
# runs-on: windows-latest
|
||||
#
|
||||
# strategy:
|
||||
# matrix:
|
||||
# build: [Release]
|
||||
# arch: [Win32, x64]
|
||||
# include:
|
||||
# - arch: Win32
|
||||
# s2arc: x86
|
||||
# - arch: x64
|
||||
# s2arc: x64
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
#
|
||||
# - name: Add msbuild to PATH
|
||||
# uses: microsoft/setup-msbuild@v1
|
||||
#
|
||||
# - name: Configure
|
||||
# run: >
|
||||
# cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
# -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
#
|
||||
# - name: Build
|
||||
# run: |
|
||||
# cd ./build
|
||||
# msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
#
|
||||
# - name: Upload binaries
|
||||
# uses: actions/upload-artifact@v1
|
||||
# with:
|
||||
# name: llama-bin-${{ matrix.arch }}
|
||||
# path: build/bin/${{ matrix.build }}
|
||||
#
|
||||
# windows-blas:
|
||||
# runs-on: windows-latest
|
||||
#
|
||||
# strategy:
|
||||
# matrix:
|
||||
# build: [Release]
|
||||
# arch: [Win32, x64]
|
||||
# blas: [ON]
|
||||
# include:
|
||||
# - arch: Win32
|
||||
# obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
|
||||
# s2arc: x86
|
||||
# - arch: x64
|
||||
# obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
|
||||
# s2arc: x64
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
#
|
||||
# - name: Add msbuild to PATH
|
||||
# uses: microsoft/setup-msbuild@v1
|
||||
#
|
||||
# - name: Fetch OpenBLAS
|
||||
# if: matrix.blas == 'ON'
|
||||
# run: |
|
||||
# C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
|
||||
# 7z x blas.zip -oblas -y
|
||||
# copy blas/include/cblas.h .
|
||||
# copy blas/include/openblas_config.h .
|
||||
# echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
|
||||
#
|
||||
# - name: Configure
|
||||
# run: >
|
||||
# cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
# -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
# -DLLAMA_SUPPORT_OPENBLAS=${{ matrix.blas }}
|
||||
# -DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
|
||||
#
|
||||
# - name: Build
|
||||
# run: |
|
||||
# cd ./build
|
||||
# msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
#
|
||||
# - name: Copy libopenblas.dll
|
||||
# if: matrix.blas == 'ON'
|
||||
# run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
|
||||
#
|
||||
# - name: Upload binaries
|
||||
# if: matrix.blas == 'ON'
|
||||
# uses: actions/upload-artifact@v1
|
||||
# with:
|
||||
# name: llama-blas-bin-${{ matrix.arch }}
|
||||
# path: build/bin/${{ matrix.build }}
|
||||
#
|
||||
# emscripten:
|
||||
# runs-on: ubuntu-latest
|
||||
#
|
||||
# strategy:
|
||||
# matrix:
|
||||
# build: [Release]
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
# wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
|
||||
# tar -xvf master.tar.gz
|
||||
# emsdk-master/emsdk update
|
||||
# emsdk-master/emsdk install latest
|
||||
# emsdk-master/emsdk activate latest
|
||||
#
|
||||
# - name: Configure
|
||||
# run: echo "tmp"
|
||||
#
|
||||
# - name: Build
|
||||
# run: |
|
||||
# pushd emsdk-master
|
||||
# source ./emsdk_env.sh
|
||||
# popd
|
||||
# emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
# make
|
65
.github/workflows/docker.yml
vendored
65
.github/workflows/docker.yml
vendored
|
@ -1,65 +0,0 @@
|
|||
# This workflow uses actions that are not certified by GitHub.
|
||||
# They are provided by a third-party and are governed by
|
||||
# separate terms of service, privacy policy, and support
|
||||
# documentation.
|
||||
|
||||
# GitHub recommends pinning actions to a commit SHA.
|
||||
# To get a newer version, you will need to update the SHA.
|
||||
# You can also reference a tag or branch, but the action may change without warning.
|
||||
|
||||
name: Publish Docker image
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
|
||||
jobs:
|
||||
push_to_registry:
|
||||
name: Push Docker image to Docker Hub
|
||||
if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
COMMIT_SHA: ${{ github.sha }}
|
||||
strategy:
|
||||
matrix:
|
||||
config:
|
||||
- { tag: "light", dockerfile: ".devops/main.Dockerfile" }
|
||||
- { tag: "full", dockerfile: ".devops/full.Dockerfile" }
|
||||
steps:
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
|
||||
- name: Log in to Docker Hub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.repository_owner }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Build and push Docker image (versioned)
|
||||
if: github.event_name == 'push'
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: .
|
||||
push: true
|
||||
platforms: linux/amd64,linux/arm64
|
||||
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
||||
- name: Build and push Docker image (tagged)
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: .
|
||||
push: ${{ github.event_name == 'push' }}
|
||||
platforms: linux/amd64,linux/arm64
|
||||
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
17
.github/workflows/editorconfig.yml
vendored
17
.github/workflows/editorconfig.yml
vendored
|
@ -1,17 +0,0 @@
|
|||
name: EditorConfig Checker
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
|
||||
jobs:
|
||||
editorconfig:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: editorconfig-checker/action-editorconfig-checker@main
|
||||
- run: editorconfig-checker
|
20
.github/workflows/tidy-post.yml
vendored
20
.github/workflows/tidy-post.yml
vendored
|
@ -1,20 +0,0 @@
|
|||
name: clang-tidy review post comments
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
workflows: ["clang-tidy-review"]
|
||||
types:
|
||||
- completed
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: ZedThree/clang-tidy-review/post@v0.13.0
|
||||
# lgtm_comment_body, max_comments, and annotations need to be set on the posting workflow in a split setup
|
||||
with:
|
||||
# adjust options as necessary
|
||||
lgtm_comment_body: ''
|
||||
annotations: false
|
||||
max_comments: 25
|
23
.github/workflows/tidy-review.yml
vendored
23
.github/workflows/tidy-review.yml
vendored
|
@ -1,23 +0,0 @@
|
|||
name: clang-tidy-review
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
|
||||
jobs:
|
||||
clang-tidy-review:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- uses: ZedThree/clang-tidy-review@v0.13.0
|
||||
id: review
|
||||
with:
|
||||
lgtm_comment_body: ''
|
||||
build_dir: build
|
||||
cmake_command: cmake . -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=on
|
||||
split_workflow: true
|
||||
|
||||
- uses: ZedThree/clang-tidy-review/upload@v0.13.0
|
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -1,6 +1,7 @@
|
|||
*.o
|
||||
*.a
|
||||
*.so
|
||||
*.gguf
|
||||
.DS_Store
|
||||
.build/
|
||||
.cache/
|
||||
|
@ -45,6 +46,7 @@ models-mnt
|
|||
/server
|
||||
/Pipfile
|
||||
/embd-input-test
|
||||
/gguf
|
||||
/libllama.so
|
||||
build-info.h
|
||||
arm_neon.h
|
||||
|
|
7
Makefile
7
Makefile
|
@ -1,5 +1,5 @@
|
|||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple server embd-input-test
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple server embd-input-test gguf
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
|
||||
|
@ -330,7 +330,7 @@ libllama.so: llama.o ggml.o $(OBJS)
|
|||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch embd-input-test build-info.h $(TEST_TARGETS)
|
||||
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch embd-input-test gguf build-info.h $(TEST_TARGETS)
|
||||
|
||||
#
|
||||
# Examples
|
||||
|
@ -370,6 +370,9 @@ $(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-in
|
|||
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
|
||||
|
||||
gguf: examples/gguf/gguf.cpp build-info.h ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
|
|
33
constants.py
Normal file
33
constants.py
Normal file
|
@ -0,0 +1,33 @@
|
|||
GGUF_MAGIC = 0x47475546
|
||||
GGUF_VERSION = 1
|
||||
GGUF_DEFAULT_ALIGNMENT = 32
|
||||
|
||||
# general
|
||||
KEY_GENERAL_ARCHITECTURE = "general.architecture"
|
||||
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
|
||||
KEY_GENERAL_NAME = "general.name"
|
||||
KEY_GENERAL_AUTHOR = "general.author"
|
||||
KEY_GENERAL_URL = "general.url"
|
||||
KEY_GENERAL_DESCRIPTION = "general.description"
|
||||
KEY_GENERAL_FILE_TYPE = "general.file_type"
|
||||
KEY_GENERAL_LICENSE = "general.license"
|
||||
KEY_GENERAL_SOURCE_URL = "general.source.url"
|
||||
KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
|
||||
|
||||
# LLM
|
||||
KEY_LLM_CONTEXT_LENGTH = "{llm}.context_length"
|
||||
KEY_LLM_EMBEDDING_LENGTH = "{llm}.embedding_length"
|
||||
KEY_LLM_LAYER_COUNT = "{llm}.layer_count"
|
||||
KEY_LLM_FEED_FORWARD_LENGTH = "{llm}.feed_forward_length"
|
||||
KEY_LLM_USE_PARALLEL_RESIDUAL = "{llm}.use_parallel_residual"
|
||||
KEY_LLM_TENSOR_DATA_LAYOUT = "{llm}.tensor_data_layout"
|
||||
|
||||
# attention
|
||||
KEY_ATTENTION_HEAD_COUNT = "{llm}.attention.head_count"
|
||||
KEY_ATTENTION_HEAD_COUNT_KV = "{llm}.attention.head_count_kv"
|
||||
KEY_ATTENTION_MAX_ALIBI_BIAS = "{llm}.attention.max_alibi_bias"
|
||||
KEY_ATTENTION_CLAMP_KQV = "{llm}.attention.clamp_kqv"
|
||||
|
||||
# RoPE
|
||||
KEY_ROPE_DIMENSION_COUNT = "{llm}.rope.dimension_count"
|
||||
KEY_ROPE_SCALE = "{llm}.rope.scale"
|
949
convert-new.py
Executable file
949
convert-new.py
Executable file
|
@ -0,0 +1,949 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import argparse
|
||||
import concurrent.futures
|
||||
import copy
|
||||
import enum
|
||||
import faulthandler
|
||||
import functools
|
||||
import io
|
||||
import itertools
|
||||
import json
|
||||
import math
|
||||
import mmap
|
||||
import pickle
|
||||
import re
|
||||
import signal
|
||||
import struct
|
||||
import sys
|
||||
import zipfile
|
||||
import numpy as np
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, TypeVar, Union)
|
||||
from sentencepiece import SentencePieceProcessor # type: ignore
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
||||
faulthandler.register(signal.SIGUSR1)
|
||||
|
||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class UnquantizedDataType:
|
||||
name: str
|
||||
|
||||
DT_F16 = UnquantizedDataType('F16')
|
||||
DT_F32 = UnquantizedDataType('F32')
|
||||
DT_I32 = UnquantizedDataType('I32')
|
||||
DT_BF16 = UnquantizedDataType('BF16')
|
||||
|
||||
DataType = Union[UnquantizedDataType]
|
||||
|
||||
DATA_TYPE_TO_FTYPE: Dict[DataType, int] = {
|
||||
DT_F32: 0,
|
||||
DT_F16: 1,
|
||||
}
|
||||
|
||||
FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \
|
||||
{ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()}
|
||||
|
||||
DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = {
|
||||
DT_BF16: np.dtype(np.uint16),
|
||||
DT_F16: np.dtype(np.float16),
|
||||
DT_F32: np.dtype(np.float32),
|
||||
DT_I32: np.dtype(np.int32),
|
||||
}
|
||||
|
||||
NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \
|
||||
{dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()}
|
||||
|
||||
class GGMLFileType(enum.Enum):
|
||||
AllF32 = 0
|
||||
MostlyF16 = 1 # except 1d tensors
|
||||
|
||||
def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType:
|
||||
if len(tensor.shape) == 1:
|
||||
# 1D tensors are always F32.
|
||||
return DT_F32
|
||||
elif self == GGMLFileType.AllF32:
|
||||
return DT_F32
|
||||
elif self == GGMLFileType.MostlyF16:
|
||||
return DT_F16
|
||||
else:
|
||||
raise ValueError(self)
|
||||
|
||||
# TODO: this is LLaMA specific
|
||||
def make_tensors_list() -> List[str]:
|
||||
ret = [
|
||||
'tok_embeddings.weight',
|
||||
'norm.weight',
|
||||
'output.weight',
|
||||
]
|
||||
for i in range(80): # maximum number of layer
|
||||
ret += [
|
||||
f'layers.{i}.attention.wq.weight',
|
||||
f'layers.{i}.attention.wk.weight',
|
||||
f'layers.{i}.attention.wv.weight',
|
||||
f'layers.{i}.attention.wo.weight',
|
||||
f'layers.{i}.attention_norm.weight',
|
||||
f'layers.{i}.feed_forward.w1.weight',
|
||||
f'layers.{i}.feed_forward.w2.weight',
|
||||
f'layers.{i}.feed_forward.w3.weight',
|
||||
f'layers.{i}.ffn_norm.weight',
|
||||
]
|
||||
return ret
|
||||
|
||||
# TODO: this should be generalized for non-LLaMA models
|
||||
TENSORS_LIST = make_tensors_list()
|
||||
TENSORS_SET = set(TENSORS_LIST)
|
||||
|
||||
def find_n_mult(n_ff: int, n_embd: int) -> int:
|
||||
# hardcoded magic range
|
||||
for n_mult in range(256, 1, -1):
|
||||
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
|
||||
if calc_ff == n_ff:
|
||||
return n_mult
|
||||
raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
|
||||
|
||||
|
||||
@dataclass
|
||||
class Params:
|
||||
n_vocab: int
|
||||
n_embd: int
|
||||
n_mult: int
|
||||
n_head: int
|
||||
n_layer: int
|
||||
|
||||
@staticmethod
|
||||
def guessed(model: 'LazyModel') -> 'Params':
|
||||
# try transformer naming first
|
||||
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
|
||||
|
||||
# try transformer naming first
|
||||
if "model.layers.0.self_attn.q_proj.weight" in model:
|
||||
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
|
||||
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
|
||||
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
|
||||
else:
|
||||
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
|
||||
|
||||
if n_layer < 1:
|
||||
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
|
||||
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
|
||||
|
||||
n_head=n_embd // 128 # guessed
|
||||
|
||||
return Params(
|
||||
n_vocab = n_vocab,
|
||||
n_embd = n_embd,
|
||||
n_mult = 256,
|
||||
n_head = n_head,
|
||||
n_layer = n_layer,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
|
||||
config = json.load(open(config_path))
|
||||
|
||||
n_vocab = config["vocab_size"];
|
||||
n_embd = config["hidden_size"];
|
||||
n_head = config["num_attention_heads"];
|
||||
n_layer = config["num_hidden_layers"];
|
||||
n_ff = config["intermediate_size"];
|
||||
|
||||
n_mult = find_n_mult(n_ff, n_embd);
|
||||
|
||||
return Params(
|
||||
n_vocab = n_vocab,
|
||||
n_embd = n_embd,
|
||||
n_mult = n_mult,
|
||||
n_head = n_head,
|
||||
n_layer = n_layer,
|
||||
)
|
||||
|
||||
# LLaMA v2 70B params.json
|
||||
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
|
||||
@staticmethod
|
||||
def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
|
||||
config = json.load(open(config_path))
|
||||
|
||||
n_vocab = config["vocab_size"];
|
||||
n_embd = config["dim"];
|
||||
n_head = config["n_heads"];
|
||||
n_layer = config["n_layers"];
|
||||
n_mult = config["multiple_of"];
|
||||
|
||||
if n_vocab == -1:
|
||||
n_vocab = model["tok_embeddings.weight"].shape[0]
|
||||
|
||||
return Params(
|
||||
n_vocab = n_vocab,
|
||||
n_embd = n_embd,
|
||||
n_mult = n_mult,
|
||||
n_head = n_head,
|
||||
n_layer = n_layer,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load(model_plus: 'ModelPlus') -> 'Params':
|
||||
hf_config_path = model_plus.paths[0].parent / "config.json"
|
||||
orig_config_path = model_plus.paths[0].parent / "params.json"
|
||||
|
||||
if hf_config_path.exists():
|
||||
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
|
||||
elif orig_config_path.exists():
|
||||
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
|
||||
else:
|
||||
params = Params.guessed(model_plus.model)
|
||||
|
||||
print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd} n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}')
|
||||
return params
|
||||
|
||||
|
||||
class SentencePieceVocab:
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path], vocabtype: Optional[str]) -> None:
|
||||
self.vocabtype = vocabtype
|
||||
if self.vocabtype == "bpe":
|
||||
self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read())
|
||||
else:
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
||||
|
||||
added_tokens: Dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
added_tokens = json.load(open(fname_added_tokens))
|
||||
else:
|
||||
added_tokens = {}
|
||||
|
||||
if self.vocabtype == "bpe":
|
||||
vocab_size: int = len(self.sentencepiece_tokenizer)
|
||||
else:
|
||||
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
||||
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
if expected_ids != actual_ids:
|
||||
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
|
||||
|
||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
||||
self.added_tokens_list = [text for (text, idx) in items]
|
||||
self.vocab_size_base: int = vocab_size
|
||||
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
|
||||
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
||||
tokenizer = self.sentencepiece_tokenizer
|
||||
if self.vocabtype == "bpe":
|
||||
from transformers.models.gpt2 import tokenization_gpt2
|
||||
byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||
for i, item in enumerate(tokenizer):
|
||||
text: bytes
|
||||
text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y] for y in item]])
|
||||
score: float = -i
|
||||
yield text, score
|
||||
else:
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
text: bytes
|
||||
if tokenizer.is_unknown(i):
|
||||
text = " \u2047 ".encode("utf-8")
|
||||
elif tokenizer.is_control(i):
|
||||
text = b""
|
||||
elif tokenizer.is_byte(i):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
if len(piece) != 6:
|
||||
raise Exception(f"Invalid token: {piece}")
|
||||
byte_value = int(piece[3:-1], 16)
|
||||
text = struct.pack("B", byte_value)
|
||||
else:
|
||||
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
||||
score: float = tokenizer.get_score(i)
|
||||
yield text, score
|
||||
|
||||
def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
||||
for text in self.added_tokens_list:
|
||||
score = -1000.0
|
||||
yield text.encode("utf-8"), score
|
||||
|
||||
def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
||||
yield from self.sentencepiece_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
Vocab = Union[SentencePieceVocab]
|
||||
|
||||
|
||||
def permute(weights: NDArray, n_head: int) -> NDArray:
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
|
||||
class Tensor(metaclass=ABCMeta):
|
||||
data_type: DataType
|
||||
|
||||
@abstractmethod
|
||||
def astype(self, data_type: DataType) -> 'Tensor': ...
|
||||
@abstractmethod
|
||||
def permute(self, n_head: int) -> 'Tensor': ...
|
||||
@abstractmethod
|
||||
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ...
|
||||
@abstractmethod
|
||||
def part(self, n_part: int) -> 'UnquantizedTensor': ...
|
||||
@abstractmethod
|
||||
def to_ggml(self) -> 'GGMLCompatibleTensor': ...
|
||||
|
||||
|
||||
def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray:
|
||||
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
|
||||
fp32_arr = bf16_arr.astype(np.uint32) << 16
|
||||
return fp32_arr.view(np.float32)
|
||||
|
||||
|
||||
class UnquantizedTensor(Tensor):
|
||||
def __init__(self, ndarray: NDArray) -> None:
|
||||
assert isinstance(ndarray, np.ndarray)
|
||||
self.ndarray = ndarray
|
||||
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
|
||||
|
||||
def astype(self, data_type: DataType) -> Tensor:
|
||||
dtype = DATA_TYPE_TO_NUMPY[data_type]
|
||||
if self.data_type == DT_BF16:
|
||||
self.ndarray = bf16_to_fp32(self.ndarray)
|
||||
return UnquantizedTensor(self.ndarray.astype(dtype))
|
||||
|
||||
def to_ggml(self) -> 'UnquantizedTensor':
|
||||
return self
|
||||
|
||||
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
|
||||
r = self.ndarray.shape[0] // 3
|
||||
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head))
|
||||
|
||||
def part(self, n_part: int) -> 'UnquantizedTensor':
|
||||
r = self.ndarray.shape[0] // 3
|
||||
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
|
||||
|
||||
def permute(self, n_head: int) -> 'UnquantizedTensor':
|
||||
return UnquantizedTensor(permute(self.ndarray, n_head))
|
||||
|
||||
|
||||
def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray:
|
||||
tensor = lazy_tensor.load()
|
||||
assert isinstance(tensor, UnquantizedTensor)
|
||||
|
||||
# double-check:
|
||||
actual_shape = list(tensor.ndarray.shape)
|
||||
assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
|
||||
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
|
||||
if convert:
|
||||
tensor.ndarray = tensor.ndarray.astype(expected_dtype)
|
||||
else:
|
||||
raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
|
||||
|
||||
return tensor.ndarray
|
||||
|
||||
|
||||
GGMLCompatibleTensor = Union[UnquantizedTensor]
|
||||
|
||||
|
||||
class DeferredPermutedTensor(Tensor):
|
||||
def __init__(self, base: Tensor, n_head: int) -> None:
|
||||
self.base = base
|
||||
self.n_head = n_head
|
||||
self.data_type = self.base.data_type
|
||||
|
||||
def astype(self, data_type: DataType) -> Tensor:
|
||||
return self.base.astype(data_type).permute(self.n_head)
|
||||
|
||||
def to_ggml(self) -> GGMLCompatibleTensor:
|
||||
return self.base.to_ggml().permute(self.n_head)
|
||||
|
||||
def permute(self, n_head: int) -> Tensor:
|
||||
raise Exception("shouldn't permute twice")
|
||||
|
||||
|
||||
@dataclass
|
||||
class LazyTensor:
|
||||
_load: Callable[[], Tensor]
|
||||
shape: List[int]
|
||||
data_type: DataType
|
||||
description: str
|
||||
|
||||
def load(self) -> Tensor:
|
||||
ret = self._load()
|
||||
assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description)
|
||||
return ret
|
||||
|
||||
def astype(self, data_type: DataType) -> 'LazyTensor':
|
||||
self.validate_conversion_to(data_type)
|
||||
|
||||
def load() -> Tensor:
|
||||
return self.load().astype(data_type)
|
||||
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
|
||||
|
||||
def validate_conversion_to(self, data_type: DataType) -> None:
|
||||
if data_type == self.data_type:
|
||||
return
|
||||
|
||||
|
||||
LazyModel = Dict[str, LazyTensor]
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelPlus:
|
||||
model: LazyModel
|
||||
paths: List[Path] # Where this was read from.
|
||||
format: Literal['ggml', 'torch', 'safetensors']
|
||||
vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab.
|
||||
|
||||
|
||||
def merge_sharded(models: List[LazyModel]) -> LazyModel:
|
||||
# Original LLaMA models have each file contain one part of each tensor.
|
||||
# Use a dict instead of a set to preserve order.
|
||||
names = {name: None for model in models for name in model}
|
||||
|
||||
def convert(name: str) -> LazyTensor:
|
||||
lazy_tensors: List[LazyTensor] = [model[name] for model in models]
|
||||
if len(lazy_tensors) == 1:
|
||||
# only one file; don't go through this procedure since there might
|
||||
# be quantized tensors
|
||||
return lazy_tensors[0]
|
||||
if len(lazy_tensors[0].shape) == 1:
|
||||
# the tensor is just duplicated in every file
|
||||
return lazy_tensors[0]
|
||||
if name.startswith('tok_embeddings.') or \
|
||||
name.endswith('.attention.wo.weight') or \
|
||||
name.endswith('.feed_forward.w2.weight'):
|
||||
# split by columns
|
||||
axis = 1
|
||||
else:
|
||||
# split by rows
|
||||
axis = 0
|
||||
concatenated_shape = list(lazy_tensors[0].shape)
|
||||
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
|
||||
|
||||
def load() -> UnquantizedTensor:
|
||||
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
|
||||
concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
|
||||
return UnquantizedTensor(concatenated)
|
||||
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
|
||||
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
|
||||
return {name: convert(name) for name in names}
|
||||
|
||||
|
||||
def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
|
||||
formats = set(mp.format for mp in models_plus)
|
||||
assert len(formats) == 1, "different formats?"
|
||||
format = formats.pop()
|
||||
paths = [path for mp in models_plus for path in mp.paths]
|
||||
# Use the first non-None vocab, if any.
|
||||
try:
|
||||
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
|
||||
except StopIteration:
|
||||
vocab = None
|
||||
|
||||
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
|
||||
# Transformers models put different tensors in different files, but
|
||||
# don't split indivdual tensors between files.
|
||||
model: LazyModel = {}
|
||||
for mp in models_plus:
|
||||
model.update(mp.model)
|
||||
else:
|
||||
model = merge_sharded([mp.model for mp in models_plus])
|
||||
|
||||
return ModelPlus(model, paths, format, vocab)
|
||||
|
||||
|
||||
def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor:
|
||||
def load() -> Tensor:
|
||||
return lazy_tensor.load().permute(n_head)
|
||||
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
|
||||
|
||||
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor:
|
||||
def load() -> Tensor:
|
||||
return lazy_tensor.load().permute_part(n_part, n_head)
|
||||
s = lazy_tensor.shape.copy()
|
||||
s[0] = s[0] // 3
|
||||
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
|
||||
|
||||
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
|
||||
def load() -> Tensor:
|
||||
return lazy_tensor.load().part(n_part)
|
||||
s = lazy_tensor.shape.copy()
|
||||
s[0] = s[0] // 3
|
||||
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
|
||||
|
||||
def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
|
||||
out: LazyModel = {}
|
||||
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
|
||||
out["norm.weight"] = model["model.norm.weight"]
|
||||
out["output.weight"] = model["lm_head.weight"]
|
||||
|
||||
for i in itertools.count():
|
||||
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
||||
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
|
||||
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head)
|
||||
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
||||
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
|
||||
out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head)
|
||||
out[f"layers.{i}.attention.wk.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head)
|
||||
out[f"layers.{i}.attention.wv.weight"] = part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
|
||||
else:
|
||||
break
|
||||
|
||||
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
|
||||
|
||||
out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"]
|
||||
out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"]
|
||||
out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"]
|
||||
|
||||
out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"]
|
||||
out[f"layers.{i}.ffn_norm.weight"] = model[f"model.layers.{i}.post_attention_layernorm.weight"]
|
||||
return out
|
||||
|
||||
|
||||
# Functionality that simulates `torch.load` but where individual tensors are
|
||||
# only loaded into memory on demand, not all at once.
|
||||
# PyTorch can't do this natively as of time of writing:
|
||||
# - https://github.com/pytorch/pytorch/issues/64327
|
||||
# This allows us to de-shard without multiplying RAM usage, and also
|
||||
# conveniently drops the PyTorch dependency (though we still need numpy).
|
||||
|
||||
|
||||
@dataclass
|
||||
class LazyStorageKind:
|
||||
data_type: DataType
|
||||
|
||||
|
||||
@dataclass
|
||||
class LazyStorage:
|
||||
load: Callable[[int, int], NDArray]
|
||||
kind: LazyStorageKind
|
||||
description: str
|
||||
|
||||
|
||||
class LazyUnpickler(pickle.Unpickler):
|
||||
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
|
||||
super().__init__(fp)
|
||||
self.data_base_path = data_base_path
|
||||
self.zip_file = zip_file
|
||||
|
||||
def persistent_load(self, pid: Any) -> Any:
|
||||
assert pid[0] == 'storage'
|
||||
assert isinstance(pid[1], LazyStorageKind)
|
||||
data_type = pid[1].data_type
|
||||
filename_stem = pid[2]
|
||||
filename = self.data_base_path + '/' + filename_stem
|
||||
info = self.zip_file.getinfo(filename)
|
||||
|
||||
def load(offset: int, elm_count: int) -> NDArray:
|
||||
dtype = DATA_TYPE_TO_NUMPY.get(data_type)
|
||||
if dtype is None:
|
||||
raise Exception("tensor stored in unsupported format")
|
||||
fp = self.zip_file.open(info)
|
||||
fp.seek(offset * dtype.itemsize)
|
||||
size = elm_count * dtype.itemsize
|
||||
data = fp.read(size)
|
||||
assert len(data) == size
|
||||
return np.frombuffer(data, dtype)
|
||||
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
|
||||
return LazyStorage(load=load, kind=pid[1], description=description)
|
||||
|
||||
# @staticmethod
|
||||
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
|
||||
# pyright: ignore[reportSelfClsParameterName]
|
||||
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
|
||||
assert isinstance(storage, LazyStorage)
|
||||
|
||||
def load() -> UnquantizedTensor:
|
||||
elm_count = stride[0] * size[0]
|
||||
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
|
||||
description = f'pickled storage_offset={storage_offset} in {storage.description}'
|
||||
return LazyTensor(load, list(size), storage.kind.data_type, description)
|
||||
|
||||
# @staticmethod
|
||||
def rebuild_from_type_v2(func, new_type, args, state):
|
||||
return func(*args)
|
||||
|
||||
CLASSES: Dict[Any, Any] = {
|
||||
('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2,
|
||||
('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2,
|
||||
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
|
||||
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
|
||||
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
|
||||
('torch', 'IntStorage'): LazyStorageKind(DT_I32),
|
||||
('torch', 'Tensor'): LazyTensor,
|
||||
}
|
||||
|
||||
def find_class(self, module: str, name: str) -> Any:
|
||||
if not module.startswith('torch'):
|
||||
return super().find_class(module, name)
|
||||
return self.CLASSES[(module, name)]
|
||||
|
||||
|
||||
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
|
||||
zf = zipfile.ZipFile(outer_fp)
|
||||
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
|
||||
assert len(pickle_paths) == 1, pickle_paths
|
||||
pickle_fp = zf.open(pickle_paths[0], 'r')
|
||||
unpickler = LazyUnpickler(pickle_fp,
|
||||
data_base_path=pickle_paths[0][:-4],
|
||||
zip_file=zf)
|
||||
model = unpickler.load()
|
||||
as_dict = dict(model.items())
|
||||
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
|
||||
|
||||
|
||||
SAFETENSORS_DATA_TYPES: Dict[str, DataType] = {
|
||||
'BF16': DT_BF16,
|
||||
'F16': DT_F16,
|
||||
'F32': DT_F32,
|
||||
'I32': DT_I32,
|
||||
}
|
||||
|
||||
|
||||
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
|
||||
header_size, = struct.unpack('<Q', fp.read(8))
|
||||
header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size))
|
||||
# Use mmap for the actual data to avoid race conditions with the file offset.
|
||||
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
|
||||
byte_buf = mapped[8 + header_size:]
|
||||
|
||||
def convert(info: Dict[str, Any]) -> LazyTensor:
|
||||
data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
|
||||
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type]
|
||||
shape: List[int] = info['shape']
|
||||
begin, end = info['data_offsets']
|
||||
assert 0 <= begin <= end <= len(byte_buf)
|
||||
assert end - begin == math.prod(shape) * numpy_dtype.itemsize
|
||||
buf = byte_buf[begin:end]
|
||||
|
||||
def load() -> UnquantizedTensor:
|
||||
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
|
||||
description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
|
||||
return LazyTensor(load, shape, data_type, description)
|
||||
model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
|
||||
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
|
||||
|
||||
|
||||
def must_read(fp: IO[bytes], length: int) -> bytes:
|
||||
ret = fp.read(length)
|
||||
if len(ret) < length:
|
||||
raise Exception("unexpectedly reached end of file")
|
||||
return ret
|
||||
|
||||
|
||||
@functools.lru_cache(maxsize=None)
|
||||
def lazy_load_file(path: Path) -> ModelPlus:
|
||||
fp = open(path, 'rb')
|
||||
first8 = fp.read(8)
|
||||
fp.seek(0)
|
||||
if first8[:2] == b'PK':
|
||||
# A zip file, i.e. PyTorch format
|
||||
return lazy_load_torch_file(fp, path)
|
||||
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
|
||||
# Probably safetensors
|
||||
return lazy_load_safetensors_file(fp, path)
|
||||
else:
|
||||
raise ValueError(f"unknown format: {path}")
|
||||
|
||||
|
||||
In = TypeVar('In')
|
||||
Out = TypeVar('Out')
|
||||
|
||||
|
||||
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int) -> Iterable[Out]:
|
||||
'''Parallel map, but with backpressure. If the caller doesn't call `next`
|
||||
fast enough, this will stop calling `func` at some point rather than
|
||||
letting results pile up in memory. Specifically, there is a max of one
|
||||
output value buffered per thread.'''
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures: List[concurrent.futures.Future[Out]] = []
|
||||
items_rev = list(iterable)[::-1]
|
||||
for i in range(min(concurrency, len(items_rev))):
|
||||
futures.append(executor.submit(func, items_rev.pop()))
|
||||
while futures:
|
||||
result = futures.pop(0).result()
|
||||
if items_rev:
|
||||
futures.append(executor.submit(func, items_rev.pop()))
|
||||
yield result
|
||||
|
||||
|
||||
def check_vocab_size(params: Params, vocab: Vocab) -> None:
|
||||
if params.n_vocab != vocab.vocab_size:
|
||||
assert isinstance(vocab, SentencePieceVocab)
|
||||
if params.n_vocab == vocab.vocab_size_base:
|
||||
print("Ignoring added_tokens.json since model matches vocab size without it.")
|
||||
vocab.added_tokens_list = []
|
||||
vocab.vocab_size = vocab.vocab_size_base
|
||||
return
|
||||
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
|
||||
if vocab.fname_added_tokens is not None:
|
||||
msg += f" combined with {vocab.fname_added_tokens}"
|
||||
msg += f" has {vocab.vocab_size})."
|
||||
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
|
||||
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
|
||||
raise Exception(msg)
|
||||
|
||||
|
||||
class OutputFile:
|
||||
def __init__(self, fname_out: Path) -> None:
|
||||
self.fout = open(fname_out, "wb")
|
||||
|
||||
def write_file_header(self, params: Params, file_type: GGMLFileType) -> None:
|
||||
self.fout.write(b"ggjt"[::-1]) # magic
|
||||
values = [
|
||||
1, # file version
|
||||
params.n_vocab,
|
||||
params.n_embd,
|
||||
params.n_mult,
|
||||
params.n_head,
|
||||
params.n_layer,
|
||||
params.n_embd // params.n_head, # rot (obsolete)
|
||||
file_type.value,
|
||||
]
|
||||
self.fout.write(struct.pack("i" * len(values), *values))
|
||||
|
||||
def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None:
|
||||
sname = name.encode('utf-8')
|
||||
self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type]))
|
||||
self.fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
||||
self.fout.write(sname)
|
||||
self.fout.seek((self.fout.tell() + 31) & -32)
|
||||
|
||||
def write_vocab(self, vocab: Vocab) -> None:
|
||||
for text, score in vocab.all_tokens():
|
||||
self.fout.write(struct.pack("i", len(text)))
|
||||
self.fout.write(text)
|
||||
self.fout.write(struct.pack("f", score))
|
||||
|
||||
@staticmethod
|
||||
def write_vocab_only(fname_out: Path, vocab: Vocab) -> None:
|
||||
of = OutputFile(fname_out)
|
||||
params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, n_head=1, n_layer=0)
|
||||
of = OutputFile(fname_out)
|
||||
of.write_file_header(params, file_type=GGMLFileType.AllF32)
|
||||
of.write_vocab(vocab)
|
||||
of.fout.close()
|
||||
|
||||
@staticmethod
|
||||
def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None:
|
||||
check_vocab_size(params, vocab)
|
||||
of = OutputFile(fname_out)
|
||||
of.write_file_header(params, file_type)
|
||||
print("Writing vocab...")
|
||||
of.write_vocab(vocab)
|
||||
|
||||
def do_item(item: Tuple[str, LazyTensor]) -> NDArray:
|
||||
name, lazy_tensor = item
|
||||
return lazy_tensor.load().to_ggml().ndarray
|
||||
|
||||
ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8)
|
||||
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
|
||||
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
||||
padi = len(str(len(model)))
|
||||
print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}")
|
||||
of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type)
|
||||
ndarray.tofile(of.fout)
|
||||
of.fout.close()
|
||||
|
||||
|
||||
def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
|
||||
wq_type = model["layers.0.attention.wq.weight"].data_type
|
||||
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
|
||||
return GGMLFileType.AllF32
|
||||
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
|
||||
return GGMLFileType.MostlyF16
|
||||
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
|
||||
raise Exception(f"Unexpected combination of types: {name_to_type}")
|
||||
|
||||
|
||||
def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel:
|
||||
if "lm_head.weight" in model:
|
||||
model = convert_transformers_to_orig(model, params)
|
||||
model = filter_and_sort_tensors(model)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
||||
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
|
||||
for (name, tensor) in model.items()}
|
||||
|
||||
|
||||
def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
|
||||
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
||||
the nth path in the model.
|
||||
'''
|
||||
# Support the following patterns:
|
||||
patterns: List[Tuple[str, str]] = [
|
||||
# - x.00.pth, x.01.pth, etc.
|
||||
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
|
||||
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
|
||||
(r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
|
||||
# x.bin, x.bin.1, etc.
|
||||
(r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
|
||||
]
|
||||
for regex, replacement in patterns:
|
||||
if re.search(regex, path.name):
|
||||
new_path = path.with_name(re.sub(regex, replacement, path.name))
|
||||
if new_path.exists():
|
||||
return new_path
|
||||
return None
|
||||
|
||||
|
||||
def find_multifile_paths(path: Path) -> List[Path]:
|
||||
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
||||
the whole list of paths in the model.
|
||||
'''
|
||||
ret: List[Path] = []
|
||||
for i in itertools.count():
|
||||
nth_path = nth_multifile_path(path, i)
|
||||
if nth_path is None:
|
||||
break
|
||||
ret.append(nth_path)
|
||||
if not ret:
|
||||
# No matches. This should only happen if the file was named, e.g.,
|
||||
# foo.0, and there was no file named foo. Oh well, try to process it
|
||||
# as a single file.
|
||||
return [path]
|
||||
return ret
|
||||
|
||||
|
||||
def load_some_model(path: Path) -> ModelPlus:
|
||||
'''Load a model of any supported format.'''
|
||||
# Be extra-friendly and accept either a file or a directory:
|
||||
if path.is_dir():
|
||||
# Check if it's a set of safetensors files first
|
||||
files = list(path.glob("model-00001-of-*.safetensors"))
|
||||
if not files:
|
||||
# Try the PyTorch patterns too, with lower priority
|
||||
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
|
||||
files = [file for glob in globs for file in path.glob(glob)]
|
||||
if not files:
|
||||
# Try GGML too, but with lower priority, since if both a non-GGML
|
||||
# model and a GGML model exist in the same directory, we assume the
|
||||
# latter was converted from the former.
|
||||
files = list(path.glob("ggml-model*.bin*"))
|
||||
if not files:
|
||||
raise Exception(f"Can't find model in directory {path}")
|
||||
if len(files) > 1:
|
||||
raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
|
||||
path = files[0]
|
||||
|
||||
paths = find_multifile_paths(path)
|
||||
models_plus: List[ModelPlus] = []
|
||||
for path in paths:
|
||||
print(f"Loading model file {path}")
|
||||
models_plus.append(lazy_load_file(path))
|
||||
|
||||
model_plus = merge_multifile_models(models_plus)
|
||||
return model_plus
|
||||
|
||||
|
||||
def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
|
||||
return {name: model[name] for name in TENSORS_LIST if name in model}
|
||||
|
||||
|
||||
def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab:
|
||||
print(f"vocabtype: {vocabtype}")
|
||||
# Be extra-friendly and accept either a file or a directory. Also, if it's
|
||||
# a directory, it might be the model directory, and tokenizer.model might
|
||||
# be in the parent of that.
|
||||
if path.is_dir():
|
||||
vocab_file = "tokenizer.model"
|
||||
if vocabtype == 'bpe':
|
||||
vocab_file = "vocab.json"
|
||||
path2 = path / vocab_file
|
||||
# Use `.parent` instead of /.. to handle the symlink case better.
|
||||
path3 = path.parent / vocab_file
|
||||
if path2.exists():
|
||||
path = path2
|
||||
elif path3.exists():
|
||||
path = path3
|
||||
else:
|
||||
raise FileNotFoundError(
|
||||
f"Could not find tokenizer.model in {path} or its parent; "
|
||||
"if it's in another directory, pass the directory as --vocab-dir")
|
||||
added_tokens_path = path.parent / "added_tokens.json"
|
||||
print(f"Loading vocab file {path}")
|
||||
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None,
|
||||
vocabtype)
|
||||
|
||||
|
||||
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
|
||||
namestr = {
|
||||
GGMLFileType.AllF32: "f32",
|
||||
GGMLFileType.MostlyF16: "f16",
|
||||
}[file_type]
|
||||
ret = model_paths[0].parent / f"ggml-model-{namestr}.bin"
|
||||
if ret in model_paths:
|
||||
sys.stderr.write(
|
||||
f"Error: Default output path ({ret}) would overwrite the input. "
|
||||
"Please explicitly specify a path using --outfile.\n")
|
||||
sys.exit(1)
|
||||
return ret
|
||||
|
||||
|
||||
def do_dump_model(model_plus: ModelPlus) -> None:
|
||||
print(f"model_plus.paths = {model_plus.paths!r}")
|
||||
print(f"model_plus.format = {model_plus.format!r}")
|
||||
print(f"model_plus.vocab = {model_plus.vocab!r}")
|
||||
for name, lazy_tensor in model_plus.model.items():
|
||||
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
|
||||
|
||||
|
||||
def main(args_in: Optional[List[str]] = None) -> None:
|
||||
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
||||
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
||||
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--outtype", choices=["f32", "f16"], help="output format (default: based on input)")
|
||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
||||
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)")
|
||||
args = parser.parse_args(args_in)
|
||||
|
||||
vocab: Vocab
|
||||
if args.dump_single:
|
||||
model_plus = lazy_load_file(args.model)
|
||||
do_dump_model(model_plus)
|
||||
elif args.vocab_only:
|
||||
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
|
||||
assert args.outfile, "need --outfile if using --vocab-only"
|
||||
outfile = args.outfile
|
||||
OutputFile.write_vocab_only(outfile, vocab)
|
||||
print(f"Wrote {outfile}")
|
||||
else:
|
||||
model_plus = load_some_model(args.model)
|
||||
if args.dump:
|
||||
do_dump_model(model_plus)
|
||||
return
|
||||
if model_plus.vocab is not None and args.vocab_dir is None:
|
||||
vocab = model_plus.vocab
|
||||
else:
|
||||
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
||||
vocab = load_vocab(vocab_dir, args.vocabtype)
|
||||
|
||||
params = Params.load(model_plus)
|
||||
model = model_plus.model
|
||||
model = do_necessary_conversions(model, params)
|
||||
output_type = pick_output_type(model, args.outtype)
|
||||
model = convert_to_output_type(model, output_type)
|
||||
outfile = args.outfile or default_outfile(model_plus.paths, output_type)
|
||||
|
||||
OutputFile.write_all(outfile, params, output_type, model, vocab)
|
||||
print(f"Wrote {outfile}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
393
examples/gguf/gguf.cpp
Normal file
393
examples/gguf/gguf.cpp
Normal file
|
@ -0,0 +1,393 @@
|
|||
#include "ggml.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cinttypes>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
|
||||
template<typename T>
|
||||
static std::string to_string(const T & val) {
|
||||
std::stringstream ss;
|
||||
ss << val;
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
void gguf_ex_write_str(std::ofstream & fout, const std::string & val) {
|
||||
const int32_t n = val.size();
|
||||
fout.write((const char *) &n, sizeof(n));
|
||||
fout.write(val.c_str(), n);
|
||||
}
|
||||
|
||||
void gguf_ex_write_i32(std::ofstream & fout, int32_t val) {
|
||||
fout.write((const char *) &val, sizeof(val));
|
||||
}
|
||||
|
||||
void gguf_ex_write_u64(std::ofstream & fout, size_t val) {
|
||||
fout.write((const char *) &val, sizeof(val));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void gguf_ex_write_val(std::ofstream & fout, const std::string & key, enum gguf_type type, const T & val) {
|
||||
gguf_ex_write_str(fout, key);
|
||||
fout.write((const char *) &type, sizeof(type));
|
||||
fout.write((const char *) &val, sizeof(val));
|
||||
|
||||
fprintf(stdout, "%s: write param: %s = %s\n", __func__, key.c_str(), to_string(val).c_str());
|
||||
}
|
||||
|
||||
template<>
|
||||
void gguf_ex_write_val<std::string>(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::string & val) {
|
||||
gguf_ex_write_str(fout, key);
|
||||
fout.write((const char *) &type, sizeof(type));
|
||||
|
||||
const int32_t n = val.size();
|
||||
fout.write((const char *) &n, sizeof(n));
|
||||
fout.write(val.c_str(), n);
|
||||
|
||||
fprintf(stdout, "%s: write param: %s = %s\n", __func__, key.c_str(), val.c_str());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void gguf_ex_write_arr(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::vector<T> & val) {
|
||||
gguf_ex_write_str(fout, key);
|
||||
{
|
||||
const enum gguf_type tarr = GGUF_TYPE_ARRAY;
|
||||
fout.write((const char *) &tarr, sizeof(tarr));
|
||||
}
|
||||
|
||||
const int32_t n = val.size();
|
||||
fout.write((const char *) &type, sizeof(type));
|
||||
fout.write((const char *) &n, sizeof(n));
|
||||
fout.write((const char *) val.data(), n * sizeof(T));
|
||||
|
||||
fprintf(stdout, "%s: write param: %s = [", __func__, key.c_str());
|
||||
for (int i = 0; i < n; ++i) {
|
||||
fprintf(stdout, "%s", to_string(val[i]).c_str());
|
||||
if (i < n - 1) {
|
||||
fprintf(stdout, ", ");
|
||||
}
|
||||
}
|
||||
fprintf(stdout, "]\n");
|
||||
}
|
||||
|
||||
template<>
|
||||
void gguf_ex_write_arr<std::string>(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::vector<std::string> & val) {
|
||||
gguf_ex_write_str(fout, key);
|
||||
{
|
||||
const enum gguf_type tarr = GGUF_TYPE_ARRAY;
|
||||
fout.write((const char *) &tarr, sizeof(tarr));
|
||||
}
|
||||
|
||||
const int32_t n = val.size();
|
||||
fout.write((const char *) &type, sizeof(type));
|
||||
fout.write((const char *) &n, sizeof(n));
|
||||
for (int i = 0; i < n; ++i) {
|
||||
const int32_t nstr = val[i].size();
|
||||
fout.write((const char *) &nstr, sizeof(nstr));
|
||||
fout.write(val[i].c_str(), nstr);
|
||||
}
|
||||
|
||||
fprintf(stdout, "%s: write param: %s = [", __func__, key.c_str());
|
||||
for (int i = 0; i < n; ++i) {
|
||||
fprintf(stdout, "%s", val[i].c_str());
|
||||
if (i < n - 1) {
|
||||
fprintf(stdout, ", ");
|
||||
}
|
||||
}
|
||||
fprintf(stdout, "]\n");
|
||||
}
|
||||
|
||||
bool gguf_ex_write(const std::string & fname) {
|
||||
std::ofstream fout(fname.c_str(), std::ios::binary);
|
||||
|
||||
{
|
||||
const int32_t magic = GGUF_MAGIC;
|
||||
fout.write((const char *) &magic, sizeof(magic));
|
||||
}
|
||||
|
||||
{
|
||||
const int32_t version = GGUF_VERSION;
|
||||
fout.write((const char *) &version, sizeof(version));
|
||||
}
|
||||
|
||||
// NOTE: these have to match the output below!
|
||||
const int n_tensors = 10;
|
||||
const int n_kv = 12;
|
||||
|
||||
fout.write((const char*) &n_tensors, sizeof(n_tensors));
|
||||
fout.write((const char*) &n_kv, sizeof(n_kv));
|
||||
|
||||
fprintf(stdout, "%s: write header\n", __func__);
|
||||
|
||||
// kv data
|
||||
{
|
||||
gguf_ex_write_val< uint8_t>(fout, "some.parameter.uint8", GGUF_TYPE_UINT8, 0x12);
|
||||
gguf_ex_write_val< int8_t>(fout, "some.parameter.int8", GGUF_TYPE_INT8, -0x13);
|
||||
gguf_ex_write_val<uint16_t>(fout, "some.parameter.uint16", GGUF_TYPE_UINT16, 0x1234);
|
||||
gguf_ex_write_val< int16_t>(fout, "some.parameter.int16", GGUF_TYPE_INT16, -0x1235);
|
||||
gguf_ex_write_val<uint32_t>(fout, "some.parameter.uint32", GGUF_TYPE_UINT32, 0x12345678);
|
||||
gguf_ex_write_val< int32_t>(fout, "some.parameter.int32", GGUF_TYPE_INT32, -0x12345679);
|
||||
|
||||
gguf_ex_write_val<float> (fout, "some.parameter.float32", GGUF_TYPE_FLOAT32, 0.123456789f);
|
||||
gguf_ex_write_val<bool> (fout, "some.parameter.bool", GGUF_TYPE_BOOL, true);
|
||||
|
||||
gguf_ex_write_val<std::string>(fout, "some.parameter.string", GGUF_TYPE_STRING, "hello world");
|
||||
|
||||
gguf_ex_write_arr<int16_t> (fout, "some.parameter.arr.i16", GGUF_TYPE_INT16, { 1, 2, 3, 4, });
|
||||
gguf_ex_write_arr<float> (fout, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, { 3.145f, 2.718f, 1.414f, });
|
||||
gguf_ex_write_arr<std::string>(fout, "some.parameter.arr.str", GGUF_TYPE_STRING, { "hello", "world", "!" });
|
||||
}
|
||||
|
||||
uint64_t offset_tensor = 0;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ 128ull*1024ull*1024ull,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx_data = ggml_init(params);
|
||||
|
||||
// tensor infos
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const std::string name = "tensor_" + to_string(i);
|
||||
|
||||
int64_t ne[GGML_MAX_DIMS] = { 1 };
|
||||
int32_t n_dims = rand() % GGML_MAX_DIMS + 1;
|
||||
|
||||
for (int j = 0; j < n_dims; ++j) {
|
||||
ne[j] = rand() % 10 + 1;
|
||||
}
|
||||
|
||||
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne);
|
||||
ggml_set_name(cur, name.c_str());
|
||||
|
||||
{
|
||||
float * data = (float *) cur->data;
|
||||
for (int j = 0; j < ggml_nelements(cur); ++j) {
|
||||
data[j] = 100 + i;
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stdout, "%s: tensor: %s, %d dims, ne = [", __func__, name.c_str(), n_dims);
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
fprintf(stdout, "%s%3d", j == 0 ? "" : ", ", (int) cur->ne[j]);
|
||||
}
|
||||
fprintf(stdout, "], offset_tensor = %6" PRIu64 "\n", offset_tensor);
|
||||
|
||||
gguf_ex_write_str(fout, name);
|
||||
gguf_ex_write_i32(fout, n_dims);
|
||||
for (int j = 0; j < n_dims; ++j) {
|
||||
gguf_ex_write_i32(fout, cur->ne[j]);
|
||||
}
|
||||
gguf_ex_write_i32(fout, cur->type);
|
||||
gguf_ex_write_u64(fout, offset_tensor);
|
||||
|
||||
offset_tensor += GGML_PAD(ggml_nbytes(cur), GGUF_DEFAULT_ALIGNMENT);
|
||||
}
|
||||
|
||||
const uint64_t offset_data = GGML_PAD((uint64_t) fout.tellp(), GGUF_DEFAULT_ALIGNMENT);
|
||||
|
||||
fprintf(stdout, "%s: data offset = %" PRIu64 "\n", __func__, offset_data);
|
||||
|
||||
{
|
||||
const size_t pad = offset_data - fout.tellp();
|
||||
|
||||
for (size_t j = 0; j < pad; ++j) {
|
||||
fout.put(0);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
fprintf(stdout, "%s: writing tensor %d data\n", __func__, i);
|
||||
|
||||
const std::string name = "tensor_" + to_string(i);
|
||||
|
||||
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
|
||||
|
||||
fout.write((const char *) cur->data, ggml_nbytes(cur));
|
||||
|
||||
{
|
||||
const size_t pad = GGML_PAD(ggml_nbytes(cur), GGUF_DEFAULT_ALIGNMENT) - ggml_nbytes(cur);
|
||||
|
||||
for (size_t j = 0; j < pad; ++j) {
|
||||
fout.put(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fout.close();
|
||||
|
||||
fprintf(stdout, "%s: wrote file '%s;\n", __func__, fname.c_str());
|
||||
|
||||
ggml_free(ctx_data);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// just read tensor info
|
||||
bool gguf_ex_read_0(const std::string & fname) {
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ false,
|
||||
/*.ctx = */ NULL,
|
||||
};
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
||||
|
||||
fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx));
|
||||
fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
|
||||
|
||||
// kv
|
||||
{
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
|
||||
fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
const char * key = gguf_get_key(ctx, i);
|
||||
|
||||
fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
|
||||
}
|
||||
}
|
||||
|
||||
// tensor info
|
||||
{
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name (ctx, i);
|
||||
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
||||
|
||||
fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
||||
}
|
||||
}
|
||||
|
||||
gguf_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// read and create ggml_context containing the tensors and their data
|
||||
bool gguf_ex_read_1(const std::string & fname) {
|
||||
struct ggml_context * ctx_data = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ false,
|
||||
/*.ctx = */ &ctx_data,
|
||||
};
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
||||
|
||||
fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx));
|
||||
fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
|
||||
|
||||
// kv
|
||||
{
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
|
||||
fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
const char * key = gguf_get_key(ctx, i);
|
||||
|
||||
fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
|
||||
}
|
||||
}
|
||||
|
||||
// tensor info
|
||||
{
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name (ctx, i);
|
||||
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
||||
|
||||
fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
||||
}
|
||||
}
|
||||
|
||||
// data
|
||||
{
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
fprintf(stdout, "%s: reading tensor %d data\n", __func__, i);
|
||||
|
||||
const std::string name = "tensor_" + to_string(i);
|
||||
|
||||
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
|
||||
|
||||
fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n",
|
||||
__func__, i, cur->n_dims, cur->name, cur->data);
|
||||
|
||||
// check data
|
||||
{
|
||||
const float * data = (const float *) cur->data;
|
||||
for (int j = 0; j < ggml_nelements(cur); ++j) {
|
||||
if (data[j] != 100 + i) {
|
||||
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
|
||||
|
||||
ggml_free(ctx_data);
|
||||
gguf_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// read just the tensor info and mmap the data in user code
|
||||
bool gguf_ex_read_2(const std::string & fname) {
|
||||
struct ggml_context * ctx_data = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx_data,
|
||||
};
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
||||
|
||||
// TODO: mmap based on tensor infos
|
||||
|
||||
fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
|
||||
|
||||
ggml_free(ctx_data);
|
||||
gguf_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
fprintf(stdout, "usage: %s data.gguf r|w\n", argv[0]);
|
||||
return -1;
|
||||
}
|
||||
|
||||
const std::string fname(argv[1]);
|
||||
const std::string mode (argv[2]);
|
||||
|
||||
GGML_ASSERT((mode == "r" || mode == "w") && "mode must be r or w");
|
||||
|
||||
if (mode == "w") {
|
||||
GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
|
||||
} else if (mode == "r") {
|
||||
GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
|
||||
GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file");
|
||||
GGML_ASSERT(gguf_ex_read_2(fname) && "failed to read gguf file");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
508
ggml.c
508
ggml.c
|
@ -3698,7 +3698,6 @@ static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
|
|||
};
|
||||
static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
|
||||
|
||||
|
||||
static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
|
||||
[GGML_TYPE_F32] = "f32",
|
||||
[GGML_TYPE_F16] = "f16",
|
||||
|
@ -18297,6 +18296,513 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
|||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
struct gguf_str {
|
||||
uint32_t n;
|
||||
char * data;
|
||||
};
|
||||
|
||||
static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
|
||||
[GGUF_TYPE_UINT8] = sizeof(uint8_t),
|
||||
[GGUF_TYPE_INT8] = sizeof(int8_t),
|
||||
[GGUF_TYPE_UINT16] = sizeof(uint16_t),
|
||||
[GGUF_TYPE_INT16] = sizeof(int16_t),
|
||||
[GGUF_TYPE_UINT32] = sizeof(uint32_t),
|
||||
[GGUF_TYPE_INT32] = sizeof(int32_t),
|
||||
[GGUF_TYPE_FLOAT32] = sizeof(float),
|
||||
[GGUF_TYPE_BOOL] = sizeof(bool),
|
||||
[GGUF_TYPE_STRING] = sizeof(struct gguf_str),
|
||||
[GGUF_TYPE_ARRAY] = 0, // undefined
|
||||
};
|
||||
static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10");
|
||||
|
||||
union gguf_value {
|
||||
uint8_t uint8;
|
||||
int8_t int8;
|
||||
uint16_t uint16;
|
||||
int16_t int16;
|
||||
uint32_t uint32;
|
||||
int32_t int32;
|
||||
float float32;
|
||||
bool bool_;
|
||||
|
||||
struct gguf_str str;
|
||||
|
||||
struct {
|
||||
enum gguf_type type;
|
||||
|
||||
uint32_t n;
|
||||
void * data;
|
||||
} arr;
|
||||
};
|
||||
|
||||
struct gguf_kv {
|
||||
struct gguf_str key;
|
||||
|
||||
uint32_t n_bytes; // TODO: is this actually needed?
|
||||
|
||||
enum gguf_type type;
|
||||
union gguf_value value;
|
||||
};
|
||||
|
||||
struct gguf_header {
|
||||
uint32_t magic;
|
||||
uint32_t version;
|
||||
uint32_t n_tensors;
|
||||
uint32_t n_kv;
|
||||
|
||||
struct gguf_kv * kv;
|
||||
};
|
||||
|
||||
struct gguf_tensor_info {
|
||||
struct gguf_str name;
|
||||
|
||||
uint32_t n_dims;
|
||||
uint32_t ne[GGML_MAX_DIMS];
|
||||
uint32_t n_elms; // TODO: is this needed?
|
||||
|
||||
enum ggml_type type;
|
||||
|
||||
uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
|
||||
};
|
||||
|
||||
struct gguf_context {
|
||||
struct gguf_header header;
|
||||
struct gguf_tensor_info * infos;
|
||||
|
||||
size_t alignment;
|
||||
size_t offset; // offset of `data` from beginning of file
|
||||
size_t size_data; // size of `data` in bytes
|
||||
|
||||
//uint8_t * padding;
|
||||
uint8_t * data;
|
||||
};
|
||||
|
||||
static bool gguf_fread_el(void * dst, size_t size, FILE * file, size_t * offset) {
|
||||
const size_t n = fread(dst, 1, size, file);
|
||||
*offset += n;
|
||||
return n == size;
|
||||
}
|
||||
|
||||
static bool gguf_fread_str(struct gguf_str * p, FILE * file, size_t * offset) {
|
||||
p->n = 0;
|
||||
p->data = NULL;
|
||||
|
||||
bool ok = true;
|
||||
|
||||
// TODO: how to avoid mallocs for strings?
|
||||
ok = ok && gguf_fread_el(&p->n, sizeof(p->n), file, offset); p->data = calloc(p->n + 1, 1);
|
||||
ok = ok && gguf_fread_el( p->data, p->n, file, offset);
|
||||
|
||||
return ok;
|
||||
}
|
||||
|
||||
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
|
||||
FILE * file = fopen(fname, "rb");
|
||||
if (!file) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// offset from start of file
|
||||
size_t offset = 0;
|
||||
|
||||
uint32_t magic = 0;
|
||||
|
||||
// check the magic before making allocations
|
||||
{
|
||||
gguf_fread_el(&magic, sizeof(magic), file, &offset);
|
||||
|
||||
if (magic != GGUF_MAGIC) {
|
||||
fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
bool ok = true;
|
||||
|
||||
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
|
||||
|
||||
// read the header
|
||||
{
|
||||
ctx->header.magic = magic;
|
||||
ctx->header.kv = NULL;
|
||||
|
||||
ctx->infos = NULL;
|
||||
ctx->data = NULL;
|
||||
|
||||
ok = ok && gguf_fread_el(&ctx->header.version, sizeof(ctx->header.version), file, &offset);
|
||||
ok = ok && gguf_fread_el(&ctx->header.n_tensors, sizeof(ctx->header.n_tensors), file, &offset);
|
||||
ok = ok && gguf_fread_el(&ctx->header.n_kv, sizeof(ctx->header.n_kv), file, &offset);
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: failed to read header\n", __func__);
|
||||
fclose(file);
|
||||
gguf_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// read the kv pairs
|
||||
{
|
||||
ctx->header.kv = GGML_ALIGNED_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
|
||||
|
||||
for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
|
||||
struct gguf_kv * kv = &ctx->header.kv[i];
|
||||
|
||||
//fprintf(stderr, "%s: reading kv %d\n", __func__, i);
|
||||
|
||||
ok = ok && gguf_fread_str(&kv->key, file, &offset);
|
||||
//ok = ok && gguf_fread_el (&kv->n_bytes, sizeof(kv->n_bytes), file, &offset);
|
||||
ok = ok && gguf_fread_el (&kv->type, sizeof(kv->type), file, &offset);
|
||||
|
||||
//fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
|
||||
|
||||
switch (kv->type) {
|
||||
case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (&kv->value.uint8, sizeof(kv->value.uint8), file, &offset); break;
|
||||
case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (&kv->value.int8, sizeof(kv->value.int8), file, &offset); break;
|
||||
case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (&kv->value.uint16, sizeof(kv->value.uint16), file, &offset); break;
|
||||
case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (&kv->value.int16, sizeof(kv->value.int16), file, &offset); break;
|
||||
case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (&kv->value.uint32, sizeof(kv->value.uint32), file, &offset); break;
|
||||
case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (&kv->value.int32, sizeof(kv->value.int32), file, &offset); break;
|
||||
case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (&kv->value.float32, sizeof(kv->value.float32), file, &offset); break;
|
||||
case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (&kv->value.bool_, sizeof(kv->value.bool_), file, &offset); break;
|
||||
case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(&kv->value.str, file, &offset); break;
|
||||
case GGUF_TYPE_ARRAY:
|
||||
{
|
||||
ok = ok && gguf_fread_el(&kv->value.arr.type, sizeof(kv->value.arr.type), file, &offset);
|
||||
ok = ok && gguf_fread_el(&kv->value.arr.n, sizeof(kv->value.arr.n), file, &offset);
|
||||
|
||||
switch (kv->value.arr.type) {
|
||||
case GGUF_TYPE_UINT8:
|
||||
case GGUF_TYPE_INT8:
|
||||
case GGUF_TYPE_UINT16:
|
||||
case GGUF_TYPE_INT16:
|
||||
case GGUF_TYPE_UINT32:
|
||||
case GGUF_TYPE_INT32:
|
||||
case GGUF_TYPE_FLOAT32:
|
||||
case GGUF_TYPE_BOOL:
|
||||
{
|
||||
kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
|
||||
ok = ok && gguf_fread_el(kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], file, &offset);
|
||||
} break;
|
||||
case GGUF_TYPE_STRING:
|
||||
{
|
||||
kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
|
||||
for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
|
||||
ok = ok && gguf_fread_str(&((struct gguf_str *) kv->value.arr.data)[j], file, &offset);
|
||||
}
|
||||
} break;
|
||||
case GGUF_TYPE_ARRAY:
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
|
||||
};
|
||||
} break;
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
|
||||
};
|
||||
|
||||
if (!ok) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
|
||||
fclose(file);
|
||||
gguf_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// read the tensor infos
|
||||
{
|
||||
ctx->infos = GGML_ALIGNED_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
|
||||
|
||||
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||||
|
||||
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
|
||||
info->ne[j] = 1;
|
||||
}
|
||||
|
||||
ok = ok && gguf_fread_str(&info->name, file, &offset);
|
||||
ok = ok && gguf_fread_el (&info->n_dims, sizeof(info->n_dims), file, &offset);
|
||||
for (uint32_t j = 0; j < info->n_dims; ++j) {
|
||||
ok = ok && gguf_fread_el(&info->ne[j], sizeof(info->ne[j]), file, &offset);
|
||||
}
|
||||
//ok = ok && gguf_fread_el (&info->n_elms, sizeof(info->n_elms), file, &offset);
|
||||
ok = ok && gguf_fread_el (&info->type, sizeof(info->type), file, &offset);
|
||||
ok = ok && gguf_fread_el (&info->offset, sizeof(info->offset), file, &offset);
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
|
||||
fclose(file);
|
||||
gguf_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
|
||||
|
||||
// TODO: determine new alignment from kv if available
|
||||
|
||||
// we require the data section to be aligned, so take into account any padding
|
||||
{
|
||||
const size_t offset_pad = offset % ctx->alignment;
|
||||
|
||||
if (offset_pad != 0) {
|
||||
offset += ctx->alignment - offset_pad;
|
||||
fseek(file, offset, SEEK_SET);
|
||||
}
|
||||
}
|
||||
|
||||
// store the current file offset - this is where the data section starts
|
||||
ctx->offset = offset;
|
||||
|
||||
// compute the total size of the data section, taking into account the alignment
|
||||
{
|
||||
|
||||
ctx->size_data = 0;
|
||||
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||||
|
||||
const int64_t ne =
|
||||
(int64_t) info->ne[0] *
|
||||
(int64_t) info->ne[1] *
|
||||
(int64_t) info->ne[2] *
|
||||
(int64_t) info->ne[3];
|
||||
|
||||
if (ne % ggml_blck_size(info->type) != 0) {
|
||||
fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
|
||||
__func__, info->name.data, ne, ggml_blck_size(info->type));
|
||||
fclose(file);
|
||||
gguf_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
|
||||
|
||||
ctx->size_data += GGML_PAD(size_cur, ctx->alignment);
|
||||
}
|
||||
}
|
||||
|
||||
// load the tensor data only if requested
|
||||
if (params.ctx != NULL) {
|
||||
// if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
|
||||
// otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
|
||||
// the ggml_tensor structs to the appropriate locations in the binary blob
|
||||
|
||||
// compute the exact size needed for the new ggml_context
|
||||
const size_t mem_size =
|
||||
params.no_alloc ?
|
||||
(ctx->header.n_tensors )*ggml_tensor_overhead() :
|
||||
(ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size_data;
|
||||
|
||||
struct ggml_init_params pdata = {
|
||||
.mem_size = mem_size,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = params.no_alloc,
|
||||
};
|
||||
|
||||
*params.ctx = ggml_init(pdata);
|
||||
|
||||
struct ggml_context * ctx_data = *params.ctx;
|
||||
|
||||
struct ggml_tensor * data = NULL;
|
||||
|
||||
if (params.no_alloc == false) {
|
||||
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size_data);
|
||||
|
||||
ok = ok && data != NULL;
|
||||
|
||||
// read the binary blob with the tensor data
|
||||
ok = ok && gguf_fread_el(data->data, ctx->size_data, file, &offset);
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: failed to read tensor data\n", __func__);
|
||||
fclose(file);
|
||||
ggml_free(ctx_data);
|
||||
gguf_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ctx->data = data->data;
|
||||
}
|
||||
|
||||
ggml_set_no_alloc(ctx_data, true);
|
||||
|
||||
// create the tensors
|
||||
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||||
const int64_t ne[GGML_MAX_DIMS] = {
|
||||
ctx->infos[i].ne[0],
|
||||
ctx->infos[i].ne[1],
|
||||
ctx->infos[i].ne[2],
|
||||
ctx->infos[i].ne[3],
|
||||
};
|
||||
|
||||
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
|
||||
|
||||
ok = ok && cur != NULL;
|
||||
|
||||
ggml_set_name(cur, ctx->infos[i].name.data);
|
||||
|
||||
if (!ok) {
|
||||
break;
|
||||
}
|
||||
|
||||
// point the data member to the appropriate location in the binary blob using the tensor infos
|
||||
if (params.no_alloc == false) {
|
||||
//cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
|
||||
cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
|
||||
}
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
|
||||
fclose(file);
|
||||
ggml_free(ctx_data);
|
||||
gguf_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_set_no_alloc(ctx_data, params.no_alloc);
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void gguf_free(struct gguf_context * ctx) {
|
||||
if (ctx == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (ctx->header.kv) {
|
||||
// free string memory - not great..
|
||||
for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
|
||||
struct gguf_kv * kv = &ctx->header.kv[i];
|
||||
|
||||
if (kv->key.data) {
|
||||
free(kv->key.data);
|
||||
}
|
||||
|
||||
if (kv->type == GGUF_TYPE_STRING) {
|
||||
if (kv->value.str.data) {
|
||||
free(kv->value.str.data);
|
||||
}
|
||||
}
|
||||
|
||||
if (kv->type == GGUF_TYPE_ARRAY) {
|
||||
if (kv->value.arr.data) {
|
||||
if (kv->value.arr.type == GGUF_TYPE_STRING) {
|
||||
for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
|
||||
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
|
||||
if (str->data) {
|
||||
free(str->data);
|
||||
}
|
||||
}
|
||||
}
|
||||
free(kv->value.arr.data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ALIGNED_FREE(ctx->header.kv);
|
||||
}
|
||||
|
||||
if (ctx->infos) {
|
||||
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||||
|
||||
if (info->name.data) {
|
||||
free(info->name.data);
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ALIGNED_FREE(ctx->infos);
|
||||
}
|
||||
|
||||
GGML_ALIGNED_FREE(ctx);
|
||||
}
|
||||
|
||||
int gguf_get_version(struct gguf_context * ctx) {
|
||||
return ctx->header.version;
|
||||
}
|
||||
|
||||
size_t gguf_get_alignment(struct gguf_context * ctx) {
|
||||
return ctx->alignment;
|
||||
}
|
||||
|
||||
size_t gguf_get_data_offset(struct gguf_context * ctx) {
|
||||
return ctx->offset;
|
||||
}
|
||||
|
||||
void * gguf_get_data(struct gguf_context * ctx) {
|
||||
return ctx->data;
|
||||
}
|
||||
|
||||
int gguf_get_n_kv(struct gguf_context * ctx) {
|
||||
return ctx->header.n_kv;
|
||||
}
|
||||
|
||||
const char * gguf_get_key(struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].key.data;
|
||||
}
|
||||
|
||||
enum gguf_type gguf_get_type(struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].type;
|
||||
}
|
||||
|
||||
uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].value.uint8;
|
||||
}
|
||||
|
||||
int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].value.int8;
|
||||
}
|
||||
|
||||
uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].value.uint16;
|
||||
}
|
||||
|
||||
int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].value.int16;
|
||||
}
|
||||
|
||||
uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].value.uint32;
|
||||
}
|
||||
|
||||
int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].value.int32;
|
||||
}
|
||||
|
||||
float gguf_get_val_f32(struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].value.float32;
|
||||
}
|
||||
|
||||
bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].value.bool_;
|
||||
}
|
||||
|
||||
const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
|
||||
return ctx->header.kv[i].value.str.data;
|
||||
}
|
||||
|
||||
int gguf_get_n_tensors(struct gguf_context * ctx) {
|
||||
return ctx->header.n_tensors;
|
||||
}
|
||||
|
||||
size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
|
||||
return ctx->infos[i].offset;
|
||||
}
|
||||
|
||||
char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
|
||||
return ctx->infos[i].name.data;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int ggml_cpu_has_avx(void) {
|
||||
#if defined(__AVX__)
|
||||
return 1;
|
||||
|
|
63
ggml.h
63
ggml.h
|
@ -202,10 +202,14 @@
|
|||
#define GGML_MAX_OP_PARAMS 32
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
|
||||
|
||||
#define GGML_EXIT_SUCCESS 0
|
||||
#define GGML_EXIT_ABORTED 1
|
||||
|
||||
#define GGUF_MAGIC 0x47475546 // "GGUF"
|
||||
#define GGUF_VERSION 1
|
||||
|
||||
#define GGUF_DEFAULT_ALIGNMENT 32
|
||||
|
||||
#define GGML_UNUSED(x) (void)(x)
|
||||
|
||||
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
||||
|
@ -1611,6 +1615,63 @@ extern "C" {
|
|||
|
||||
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
|
||||
|
||||
//
|
||||
// gguf
|
||||
//
|
||||
|
||||
// TODO: can be removed if the API is extended for writing
|
||||
enum gguf_type {
|
||||
GGUF_TYPE_UINT8 = 0,
|
||||
GGUF_TYPE_INT8 = 1,
|
||||
GGUF_TYPE_UINT16 = 2,
|
||||
GGUF_TYPE_INT16 = 3,
|
||||
GGUF_TYPE_UINT32 = 4,
|
||||
GGUF_TYPE_INT32 = 5,
|
||||
GGUF_TYPE_FLOAT32 = 6,
|
||||
GGUF_TYPE_BOOL = 7,
|
||||
GGUF_TYPE_STRING = 8,
|
||||
GGUF_TYPE_ARRAY = 9,
|
||||
GGUF_TYPE_COUNT, // marks the end of the enum
|
||||
};
|
||||
|
||||
struct gguf_context;
|
||||
|
||||
struct gguf_init_params {
|
||||
bool no_alloc;
|
||||
|
||||
// if not NULL, create a ggml_context and allocate the tensor data in it
|
||||
struct ggml_context ** ctx;
|
||||
};
|
||||
|
||||
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
|
||||
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
|
||||
GGML_API void gguf_free(struct gguf_context * ctx);
|
||||
|
||||
GGML_API int gguf_get_version (struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_alignment (struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_data_offset(struct gguf_context * ctx);
|
||||
GGML_API void * gguf_get_data (struct gguf_context * ctx);
|
||||
|
||||
GGML_API int gguf_get_n_kv(struct gguf_context * ctx);
|
||||
GGML_API const char * gguf_get_key (struct gguf_context * ctx, int i);
|
||||
GGML_API void gguf_get_val (struct gguf_context * ctx, int i, void * val);
|
||||
|
||||
GGML_API uint8_t gguf_get_val_u8 (struct gguf_context * ctx, int i);
|
||||
GGML_API int8_t gguf_get_val_i8 (struct gguf_context * ctx, int i);
|
||||
GGML_API uint16_t gguf_get_val_u16 (struct gguf_context * ctx, int i);
|
||||
GGML_API int16_t gguf_get_val_i16 (struct gguf_context * ctx, int i);
|
||||
GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i);
|
||||
GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i);
|
||||
GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i);
|
||||
GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i);
|
||||
GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i);
|
||||
GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i);
|
||||
GGML_API void gguf_get_arr_data(struct gguf_context * ctx, int i, void * data);
|
||||
|
||||
GGML_API int gguf_get_n_tensors (struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i);
|
||||
GGML_API char * gguf_get_tensor_name (struct gguf_context * ctx, int i);
|
||||
|
||||
//
|
||||
// system info
|
||||
//
|
||||
|
|
283
gguf.py
Normal file
283
gguf.py
Normal file
|
@ -0,0 +1,283 @@
|
|||
"""TODOs
|
||||
1. Implement writers for known architectures, LLaMA in particular.
|
||||
2. Add docstrings from the format specs.
|
||||
3. After development is done, Convert it to a proper pip-installable Python package, and possibly move it to its own repo under ggml-org.
|
||||
"""
|
||||
|
||||
import struct
|
||||
import constants
|
||||
from enum import IntEnum
|
||||
from typing import Any, IO, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class GGMLQuantizationType(IntEnum):
|
||||
F32 = 0
|
||||
F16 = 1
|
||||
QR_0 = 2
|
||||
Q4_1 = 3
|
||||
# Q4_2 = 4 # support has been removed
|
||||
# Q4_3 = 5 # support has been removed
|
||||
Q5_0 = 6
|
||||
Q5_1 = 7
|
||||
Q8_0 = 8
|
||||
Q8_1 = 9
|
||||
Q2_K = 10
|
||||
Q3_K = 11
|
||||
Q4_K = 12
|
||||
Q5_K = 13
|
||||
Q6_K = 14
|
||||
Q8_K = 15
|
||||
|
||||
|
||||
class GGUFValueType(IntEnum):
|
||||
UINT8 = 0
|
||||
INT8 = 1
|
||||
UINT16 = 2
|
||||
INT16 = 3
|
||||
UINT32 = 4
|
||||
INT32 = 5
|
||||
FLOAT32 = 6
|
||||
BOOL = 7
|
||||
STRING = 8
|
||||
ARRAY = 9
|
||||
|
||||
@staticmethod
|
||||
def get_type(val):
|
||||
if isinstance(val, str):
|
||||
return GGUFValueType.STRING
|
||||
elif isinstance(val, list):
|
||||
return GGUFValueType.ARRAY
|
||||
elif isinstance(val, float):
|
||||
return GGUFValueType.FLOAT32
|
||||
elif isinstance(val, bool):
|
||||
return GGUFValueType.BOOL
|
||||
else:
|
||||
return GGUFValueType.INT32
|
||||
|
||||
|
||||
class GGUFWriter:
|
||||
def __init__(self, fout: IO):
|
||||
self.fout = fout
|
||||
self.offset_tensor = 0
|
||||
self.tensors: List[np.ndarray] = []
|
||||
|
||||
def write_header(self, tensor_count: int, metadata_kv_count: int):
|
||||
self.fout.write(struct.pack("<I", constants.GGUF_MAGIC))
|
||||
self.fout.write(struct.pack("<I", constants.GGUF_VERSION))
|
||||
self.fout.write(struct.pack("<I", tensor_count))
|
||||
self.fout.write(struct.pack("<I", metadata_kv_count))
|
||||
|
||||
@classmethod
|
||||
def open(cls, path: str) -> "GGUFWriter":
|
||||
f = open(path, "wb")
|
||||
return cls(f)
|
||||
|
||||
def write_key(self, key: str):
|
||||
self.write_val(key, GGUFValueType.STRING)
|
||||
|
||||
def write_uint8(self, key: str, val: int):
|
||||
self.write_key(key)
|
||||
self.write_val(val, GGUFValueType.UINT8)
|
||||
|
||||
def write_int8(self, key: str, val: int):
|
||||
self.write_key(key)
|
||||
self.write_val(val, GGUFValueType.INT8)
|
||||
|
||||
def write_uint16(self, key: str, val: int):
|
||||
self.write_key(key)
|
||||
self.write_val(val, GGUFValueType.UINT16)
|
||||
|
||||
def write_int16(self, key: str, val: int):
|
||||
self.write_key(key)
|
||||
self.write_val(val, GGUFValueType.INT16)
|
||||
|
||||
def write_uint32(self, key: str, val: int):
|
||||
self.write_key(key)
|
||||
self.write_val(val, GGUFValueType.UINT32)
|
||||
|
||||
def write_int32(self, key: str, val: int):
|
||||
self.write_key(key)
|
||||
self.write_val(val, GGUFValueType.INT32)
|
||||
|
||||
def write_float32(self, key: str, val: float):
|
||||
self.write_key(key)
|
||||
self.write_val(val, GGUFValueType.FLOAT32)
|
||||
|
||||
def write_bool(self, key: str, val: bool):
|
||||
self.write_key(key)
|
||||
self.write_val(val, GGUFValueType.BOOL)
|
||||
|
||||
def write_string(self, key: str, val: str):
|
||||
self.write_key(key)
|
||||
self.write_val(val, GGUFValueType.STRING)
|
||||
|
||||
def write_array(self, key: str, val: list):
|
||||
if not isinstance(val, list):
|
||||
raise ValueError("Value must be a list for array type")
|
||||
|
||||
self.write_key(key)
|
||||
self.write_val(val, GGUFValueType.ARRAY)
|
||||
|
||||
def write_val(self: str, val: Any, vtype: GGUFValueType = None):
|
||||
if vtype is None:
|
||||
vtype = GGUFValueType.get_type(val)
|
||||
|
||||
self.fout.write(struct.pack("<I", vtype))
|
||||
|
||||
if vtype == GGUFValueType.UINT8:
|
||||
self.fout.write(struct.pack("<B", val))
|
||||
elif vtype == GGUFValueType.INT8:
|
||||
self.fout.write(struct.pack("<b", val))
|
||||
elif vtype == GGUFValueType.UINT16:
|
||||
self.fout.write(struct.pack("<H", val))
|
||||
elif vtype == GGUFValueType.INT16:
|
||||
self.fout.write(struct.pack("<h", val))
|
||||
elif vtype == GGUFValueType.UINT32:
|
||||
self.fout.write(struct.pack("<I", val))
|
||||
elif vtype == GGUFValueType.INT32:
|
||||
self.fout.write(struct.pack("<i", val))
|
||||
elif vtype == GGUFValueType.FLOAT32:
|
||||
self.fout.write(struct.pack("<f", val))
|
||||
elif vtype == GGUFValueType.BOOL:
|
||||
self.fout.write(struct.pack("?", val))
|
||||
elif vtype == GGUFValueType.STRING:
|
||||
encoded_val = val.encode("utf8")
|
||||
self.fout.write(struct.pack("<I", len(encoded_val)))
|
||||
self.fout.write(encoded_val)
|
||||
elif vtype == GGUFValueType.ARRAY:
|
||||
self.fout.write(struct.pack("<I", len(val)))
|
||||
for item in val:
|
||||
self.write_val(item)
|
||||
else:
|
||||
raise ValueError("Invalid GGUF metadata value type")
|
||||
|
||||
@staticmethod
|
||||
def ggml_pad(x: int, n: int) -> int:
|
||||
return ((x + n - 1) // n) * n
|
||||
|
||||
def write_tensor_info(self, name: str, tensor: np.ndarray):
|
||||
self.write_val(name, GGUFValueType.STRING)
|
||||
n_dims = len(tensor.shape)
|
||||
self.write_val(n_dims, GGUFValueType.INT32)
|
||||
for i in range(n_dims):
|
||||
self.write_val(tensor.shape[n_dims - 1 - i], GGUFValueType.INT32)
|
||||
|
||||
assert tensor.dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
|
||||
dtype = GGMLQuantizationType.F32 if tensor.dtype == np.float32 else GGMLQuantizationType.F16
|
||||
self.write_val(dtype, GGUFValueType.INT32)
|
||||
self.fout.write(struct.pack("<Q", self.offset_tensor))
|
||||
self.offset_tensor += GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT)
|
||||
|
||||
offset_data = GGUFWriter.ggml_pad(self.fout.tell(), constants.GGUF_DEFAULT_ALIGNMENT)
|
||||
pad = offset_data - self.fout.tell()
|
||||
self.fout.write(bytes([0] * pad))
|
||||
|
||||
self.tensors.append(tensor)
|
||||
|
||||
def write_tensors(self):
|
||||
for tensor in self.tensors:
|
||||
tensor.tofile(self.fout)
|
||||
pad = GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT) - tensor.nbytes
|
||||
self.fout.write(bytes([0] * pad))
|
||||
|
||||
def flush(self):
|
||||
self.fout.flush()
|
||||
|
||||
def close(self):
|
||||
self.fout.close()
|
||||
|
||||
def write_architecture(self, architecture: str):
|
||||
self.write_string(constants.KEY_GENERAL_ARCHITECTURE,
|
||||
architecture)
|
||||
|
||||
def write_author(self, author: str):
|
||||
self.write_string(constants.KEY_GENERAL_AUTHOR, author)
|
||||
|
||||
def write_url(self, url: str):
|
||||
self.write_string(constants.KEY_GENERAL_URL, url)
|
||||
|
||||
def write_description(self, description: str):
|
||||
self.write_string(constants.KEY_GENERAL_DESCRIPTION, description)
|
||||
|
||||
def write_file_type(self, file_type: str):
|
||||
self.write_string(constants.KEY_GENERAL_FILE_TYPE, file_type)
|
||||
|
||||
def write_source_url(self, url: str):
|
||||
self.write_string(constants.KEY_GENERAL_SOURCE_URL, url)
|
||||
|
||||
def write_source_hf_repo(self, repo: str):
|
||||
self.write_string(constants.KEY_GENERAL_SOURCE_HF_REPO, repo)
|
||||
|
||||
def write_name(self, name: str):
|
||||
self.write_string(constants.KEY_GENERAL_NAME, name)
|
||||
|
||||
def write_quantization_version(self, quantization_version: GGMLQuantizationType):
|
||||
self.write_uint32(
|
||||
constants.KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
|
||||
|
||||
def write_context_length(self, llm: str, length: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_LLM_CONTEXT_LENGTH.format(llm=llm), length)
|
||||
|
||||
def write_embedding_length(self, llm: str, length: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_LLM_EMBEDDING_LENGTH.format(llm=llm), length)
|
||||
|
||||
def write_layer_count(self, llm: str, length: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_LLM_LAYER_COUNT.format(llm=llm), length)
|
||||
|
||||
def write_feed_forward_length(self, llm: str, length: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_LLM_FEED_FORWARD_LENGTH.format(llm=llm), length)
|
||||
|
||||
def write_parallel_residual(self, llm: str, use: bool):
|
||||
self.write_bool(
|
||||
constants.KEY_LLM_USE_PARALLEL_RESIDUAL.format(llm=llm), use)
|
||||
|
||||
def write_tensor_data_layout(self, llm: str, layout: str):
|
||||
self.write_string(
|
||||
constants.KEY_LLM_TENSOR_DATA_LAYOUT.format(llm=llm), layout)
|
||||
|
||||
def write_head_count(self, llm: str, count: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_ATTENTION_HEAD_COUNT.format(llm=llm), count)
|
||||
|
||||
def write_head_count_kv(self, llm: str, count: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_ATTENTION_HEAD_COUNT_KV.format(llm=llm), count)
|
||||
|
||||
def write_max_alibi_bias(self, llm: str, bias: float):
|
||||
self.write_float32(
|
||||
constants.KEY_ATTENTION_MAX_ALIBI_BIAS.format(llm=llm), bias)
|
||||
|
||||
def write_clamp_kqv(self, llm: str, value: float):
|
||||
self.write_float32(
|
||||
constants.KEY_ATTENTION_CLAMP_KQV.format(llm=llm), value)
|
||||
|
||||
def write_rope_dimension_count(self, llm: str, count: int):
|
||||
self.write_uint32(
|
||||
constants.KEY_ROPE_DIMENSION_COUNT.format(llm=llm), count)
|
||||
|
||||
def write_rope_scale(self, llm: str, value: float):
|
||||
self.write_float32(constants.KEY_ROPE_SCALE.format(llm=llm), value)
|
||||
|
||||
|
||||
# Example usage:
|
||||
if __name__ == "__main__":
|
||||
# Example usage with a file
|
||||
gguf_writer = GGUFWriter.open("example.gguf")
|
||||
gguf_writer.write_header(2, 3)
|
||||
|
||||
gguf_writer.write_architecture("llama")
|
||||
gguf_writer.write_uint32("answer", 42) # Write a 32-bit integer
|
||||
gguf_writer.write_float32("answer_in_float", 42.0) # Write a 32-bit float
|
||||
tensor1 = np.random.random(size=(7, 10)).astype(np.float32)
|
||||
tensor2 = np.random.random(size=(16, 12)).astype(np.float16)
|
||||
gguf_writer.write_tensor_info("tensor1", tensor1)
|
||||
gguf_writer.write_tensor_info("tensor2", tensor2)
|
||||
gguf_writer.write_tensors()
|
||||
|
||||
gguf_writer.close()
|
Loading…
Add table
Add a link
Reference in a new issue