Compare commits
20 commits
master
...
support-st
Author | SHA1 | Date | |
---|---|---|---|
|
92a4f86879 | ||
|
f82328ab65 | ||
|
6c353dc7c2 | ||
|
a1cf66ea94 | ||
|
101c578715 | ||
|
8bc76a225d | ||
|
ab13d071e1 | ||
|
4420cff654 | ||
|
dac31da489 | ||
|
0be15e162c | ||
|
77c7ec179c | ||
|
2683611944 | ||
|
a17ef39792 | ||
|
57f064d7c2 | ||
|
166a259f67 | ||
|
7298c37e7e | ||
|
7e0a843b6a | ||
|
76d32cca59 | ||
|
eb7f0eba3e | ||
|
0c5d4d87b0 |
4 changed files with 679 additions and 29 deletions
267
convert-starcoder-hf-to-gguf.py
Executable file
267
convert-starcoder-hf-to-gguf.py
Executable file
|
@ -0,0 +1,267 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# HF starcoder --> gguf conversion
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import struct
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from transformers import AutoTokenizer # type: ignore[import]
|
||||||
|
|
||||||
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||||
|
import gguf
|
||||||
|
|
||||||
|
|
||||||
|
def bytes_to_unicode():
|
||||||
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||||
|
"""
|
||||||
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||||
|
The reversible bpe codes work on unicode strings.
|
||||||
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||||
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||||
|
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||||
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||||
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||||
|
"""
|
||||||
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||||
|
cs = bs[:]
|
||||||
|
n = 0
|
||||||
|
for b in range(2**8):
|
||||||
|
if b not in bs:
|
||||||
|
bs.append(b)
|
||||||
|
cs.append(2**8+n)
|
||||||
|
n += 1
|
||||||
|
return dict(zip(bs, (chr(n) for n in cs)))
|
||||||
|
|
||||||
|
|
||||||
|
def count_model_parts(dir_model: Path) -> int:
|
||||||
|
num_parts = 0
|
||||||
|
for filename in os.listdir(dir_model):
|
||||||
|
if filename.startswith("pytorch_model-"):
|
||||||
|
num_parts += 1
|
||||||
|
|
||||||
|
if num_parts > 0:
|
||||||
|
print("gguf: found " + str(num_parts) + " model parts")
|
||||||
|
return num_parts
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args() -> argparse.Namespace:
|
||||||
|
parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file")
|
||||||
|
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||||
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||||
|
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
|
||||||
|
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
args = parse_args()
|
||||||
|
|
||||||
|
dir_model = args.model
|
||||||
|
ftype = args.ftype
|
||||||
|
if not dir_model.is_dir():
|
||||||
|
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
# possible tensor data types
|
||||||
|
# ftype == 0 -> float32
|
||||||
|
# ftype == 1 -> float16
|
||||||
|
|
||||||
|
# map from ftype to string
|
||||||
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
|
if args.outfile is not None:
|
||||||
|
fname_out = args.outfile
|
||||||
|
else:
|
||||||
|
# output in the same directory as the model by default
|
||||||
|
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||||
|
|
||||||
|
print("gguf: loading model "+dir_model.name)
|
||||||
|
|
||||||
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||||
|
hparams = json.load(f)
|
||||||
|
|
||||||
|
if hparams["architectures"][0] != "GPTBigCodeForCausalLM":
|
||||||
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||||
|
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
# get number of model parts
|
||||||
|
num_parts = count_model_parts(dir_model)
|
||||||
|
|
||||||
|
ARCH=gguf.MODEL_ARCH.STARCODER
|
||||||
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||||
|
|
||||||
|
print("gguf: get model metadata")
|
||||||
|
|
||||||
|
block_count = hparams["n_layer"]
|
||||||
|
|
||||||
|
gguf_writer.add_name("StarCoder")
|
||||||
|
gguf_writer.add_context_length(2048) # not in config.json
|
||||||
|
gguf_writer.add_embedding_length(hparams["n_embd"])
|
||||||
|
gguf_writer.add_max_position_embeddings(hparams["n_positions"])
|
||||||
|
gguf_writer.add_feed_forward_length(4 * hparams["n_embd"])
|
||||||
|
gguf_writer.add_block_count(block_count)
|
||||||
|
gguf_writer.add_head_count(hparams["n_head"])
|
||||||
|
gguf_writer.add_head_count_kv(hparams["n_head"])
|
||||||
|
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||||||
|
gguf_writer.add_file_type(ftype)
|
||||||
|
|
||||||
|
# TOKENIZATION
|
||||||
|
|
||||||
|
print("gguf: get tokenizer metadata")
|
||||||
|
|
||||||
|
tokens: list[bytearray] = []
|
||||||
|
scores: list[float] = []
|
||||||
|
toktypes: list[int] = []
|
||||||
|
|
||||||
|
tokenizer_json_file = dir_model / 'tokenizer.json'
|
||||||
|
if not tokenizer_json_file.is_file():
|
||||||
|
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
# gpt2 tokenizer
|
||||||
|
gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
|
||||||
|
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
|
||||||
|
tokenizer_json = json.load(f)
|
||||||
|
|
||||||
|
print("gguf: get gpt2 tokenizer vocab")
|
||||||
|
|
||||||
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||||
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||||
|
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
|
||||||
|
|
||||||
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
|
|
||||||
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||||
|
byte_encoder = bytes_to_unicode()
|
||||||
|
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||||
|
|
||||||
|
for i in range(vocab_size):
|
||||||
|
if i in reverse_vocab:
|
||||||
|
try:
|
||||||
|
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
||||||
|
except KeyError:
|
||||||
|
text = bytearray()
|
||||||
|
for c in reverse_vocab[i]:
|
||||||
|
if ord(c) < 256: # single byte character
|
||||||
|
text.append(byte_decoder[ord(c)])
|
||||||
|
else: # multibyte special token character
|
||||||
|
text.extend(c.encode('utf-8'))
|
||||||
|
else:
|
||||||
|
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
||||||
|
pad_token = f"[PAD{i}]".encode("utf8")
|
||||||
|
text = bytearray(pad_token)
|
||||||
|
|
||||||
|
tokens.append(text)
|
||||||
|
scores.append(0.0) # dymmy
|
||||||
|
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
||||||
|
|
||||||
|
gguf_writer.add_token_list(tokens)
|
||||||
|
gguf_writer.add_token_scores(scores)
|
||||||
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||||
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
|
# TENSORS
|
||||||
|
|
||||||
|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||||
|
|
||||||
|
# params for qkv transform
|
||||||
|
n_head = hparams["n_head"]
|
||||||
|
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
|
||||||
|
|
||||||
|
head_dim = hparams["n_embd"] // n_head
|
||||||
|
|
||||||
|
# tensor info
|
||||||
|
print("gguf: get tensor metadata")
|
||||||
|
|
||||||
|
if num_parts == 0:
|
||||||
|
part_names = iter(("pytorch_model.bin",))
|
||||||
|
else:
|
||||||
|
part_names = (
|
||||||
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
for part_name in part_names:
|
||||||
|
if args.vocab_only:
|
||||||
|
break
|
||||||
|
print("gguf: loading model part '" + part_name + "'")
|
||||||
|
model_part = torch.load(dir_model / part_name, map_location="cpu")
|
||||||
|
|
||||||
|
for name in model_part.keys():
|
||||||
|
data = model_part[name]
|
||||||
|
|
||||||
|
old_dtype = data.dtype
|
||||||
|
|
||||||
|
# convert any unsupported data types to float32
|
||||||
|
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||||
|
data = data.to(torch.float32)
|
||||||
|
|
||||||
|
data = data.squeeze().numpy()
|
||||||
|
|
||||||
|
if name.endswith(".attn.c_attn.weight") or name.endswith(".attn.c_attn.bias"):
|
||||||
|
print("Duplicate K,V heads to use MHA instead of MQA for", name)
|
||||||
|
|
||||||
|
embed_dim = hparams["n_embd"]
|
||||||
|
head_dim = embed_dim // hparams["n_head"]
|
||||||
|
|
||||||
|
# ((n_heads + 2) * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim)
|
||||||
|
q, k ,v = np.split(data, (hparams["n_head"] * head_dim, (hparams["n_head"] + 1) * head_dim), axis=0)
|
||||||
|
# duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim)
|
||||||
|
if len(k.shape) == 2:
|
||||||
|
k = np.tile(k, (hparams["n_head"], 1))
|
||||||
|
v = np.tile(v, (hparams["n_head"], 1))
|
||||||
|
elif len(k.shape) == 1:
|
||||||
|
k = np.tile(k, (hparams["n_head"]))
|
||||||
|
v = np.tile(v, (hparams["n_head"]))
|
||||||
|
# concat q, k, v along the first axis (n_heads * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim)
|
||||||
|
data = np.concatenate((q, k, v), axis=0)
|
||||||
|
|
||||||
|
# map tensor names
|
||||||
|
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||||
|
if new_name is None:
|
||||||
|
print("Can not map tensor '" + name + "'")
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
data_dtype = data.dtype
|
||||||
|
|
||||||
|
# if f32 desired, convert any float16 to float32
|
||||||
|
if ftype == 0 and data_dtype == np.float16:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||||
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
|
||||||
|
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||||
|
|
||||||
|
gguf_writer.add_tensor(new_name, data)
|
||||||
|
|
||||||
|
|
||||||
|
print("gguf: write header")
|
||||||
|
gguf_writer.write_header_to_file()
|
||||||
|
print("gguf: write metadata")
|
||||||
|
gguf_writer.write_kv_data_to_file()
|
||||||
|
if not args.vocab_only:
|
||||||
|
print("gguf: write tensors")
|
||||||
|
gguf_writer.write_tensors_to_file()
|
||||||
|
|
||||||
|
gguf_writer.close()
|
||||||
|
|
||||||
|
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||||
|
print("")
|
|
@ -118,7 +118,7 @@ kernel void kernel_soft_max(
|
||||||
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||||
|
|
||||||
// parallel max
|
// parallel max
|
||||||
float lmax = psrc0[tpitg[0]];
|
float lmax = tpitg[0] < ne00 ? psrc0[tpitg[0]] : -INFINITY;
|
||||||
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00; i00 += ntg[0]) {
|
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||||
lmax = MAX(lmax, psrc0[i00]);
|
lmax = MAX(lmax, psrc0[i00]);
|
||||||
}
|
}
|
||||||
|
@ -158,7 +158,7 @@ kernel void kernel_soft_max_4(
|
||||||
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||||
|
|
||||||
// parallel max
|
// parallel max
|
||||||
float4 lmax4 = psrc4[tpitg[0]];
|
float4 lmax4 = tpitg[0] < ne00/4 ? psrc4[tpitg[0]] : -INFINITY;
|
||||||
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
||||||
lmax4 = fmax(lmax4, psrc4[i00]);
|
lmax4 = fmax(lmax4, psrc4[i00]);
|
||||||
}
|
}
|
||||||
|
|
|
@ -36,12 +36,13 @@ KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
|
||||||
KEY_GENERAL_FILE_TYPE = "general.file_type"
|
KEY_GENERAL_FILE_TYPE = "general.file_type"
|
||||||
|
|
||||||
# LLM
|
# LLM
|
||||||
KEY_CONTEXT_LENGTH = "{arch}.context_length"
|
KEY_CONTEXT_LENGTH = "{arch}.context_length"
|
||||||
KEY_EMBEDDING_LENGTH = "{arch}.embedding_length"
|
KEY_EMBEDDING_LENGTH = "{arch}.embedding_length"
|
||||||
KEY_BLOCK_COUNT = "{arch}.block_count"
|
KEY_BLOCK_COUNT = "{arch}.block_count"
|
||||||
KEY_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
KEY_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||||
KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||||
KEY_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
KEY_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||||
|
KEY_MAX_POSITION_EMBEDDINGS = "{arch}.max_position_embeddings"
|
||||||
|
|
||||||
# attention
|
# attention
|
||||||
KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
|
KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
|
||||||
|
@ -77,13 +78,14 @@ KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
|
||||||
|
|
||||||
|
|
||||||
class MODEL_ARCH(IntEnum):
|
class MODEL_ARCH(IntEnum):
|
||||||
LLAMA : int = auto()
|
LLAMA : int = auto()
|
||||||
FALCON : int = auto()
|
FALCON : int = auto()
|
||||||
BAICHUAN:int = auto()
|
BAICHUAN : int = auto()
|
||||||
GPT2 : int = auto()
|
GPT2 : int = auto()
|
||||||
GPTJ : int = auto()
|
GPTJ : int = auto()
|
||||||
GPTNEOX: int = auto()
|
GPTNEOX : int = auto()
|
||||||
MPT : int = auto()
|
MPT : int = auto()
|
||||||
|
STARCODER : int = auto()
|
||||||
|
|
||||||
|
|
||||||
class MODEL_TENSOR(IntEnum):
|
class MODEL_TENSOR(IntEnum):
|
||||||
|
@ -107,13 +109,14 @@ class MODEL_TENSOR(IntEnum):
|
||||||
|
|
||||||
|
|
||||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
MODEL_ARCH.LLAMA: "llama",
|
MODEL_ARCH.LLAMA: "llama",
|
||||||
MODEL_ARCH.FALCON: "falcon",
|
MODEL_ARCH.FALCON: "falcon",
|
||||||
MODEL_ARCH.BAICHUAN:"baichuan",
|
MODEL_ARCH.BAICHUAN: "baichuan",
|
||||||
MODEL_ARCH.GPT2: "gpt2",
|
MODEL_ARCH.GPT2: "gpt2",
|
||||||
MODEL_ARCH.GPTJ: "gptj",
|
MODEL_ARCH.GPTJ: "gptj",
|
||||||
MODEL_ARCH.GPTNEOX: "gptneox",
|
MODEL_ARCH.GPTNEOX: "gptneox",
|
||||||
MODEL_ARCH.MPT: "mpt",
|
MODEL_ARCH.MPT: "mpt",
|
||||||
|
MODEL_ARCH.STARCODER: "starcoder",
|
||||||
}
|
}
|
||||||
|
|
||||||
MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
|
MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
|
||||||
|
@ -171,6 +174,18 @@ MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||||
},
|
},
|
||||||
|
MODEL_ARCH.STARCODER: {
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||||
|
MODEL_TENSOR.POS_EMBD: "position_embd",
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||||
|
MODEL_TENSOR.OUTPUT: "output",
|
||||||
|
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
||||||
|
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
||||||
|
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
||||||
|
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||||
|
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||||
|
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||||
|
},
|
||||||
MODEL_ARCH.GPT2: {
|
MODEL_ARCH.GPT2: {
|
||||||
# TODO
|
# TODO
|
||||||
},
|
},
|
||||||
|
@ -703,6 +718,10 @@ class GGUFWriter:
|
||||||
self.add_uint32(
|
self.add_uint32(
|
||||||
KEY_EMBEDDING_LENGTH.format(arch=self.arch), length)
|
KEY_EMBEDDING_LENGTH.format(arch=self.arch), length)
|
||||||
|
|
||||||
|
def add_max_position_embeddings(self, length: int):
|
||||||
|
self.add_uint32(
|
||||||
|
KEY_MAX_POSITION_EMBEDDINGS.format(arch=self.arch), length)
|
||||||
|
|
||||||
def add_block_count(self, length: int):
|
def add_block_count(self, length: int):
|
||||||
self.add_uint32(
|
self.add_uint32(
|
||||||
KEY_BLOCK_COUNT.format(arch=self.arch), length)
|
KEY_BLOCK_COUNT.format(arch=self.arch), length)
|
||||||
|
|
378
llama.cpp
378
llama.cpp
|
@ -160,17 +160,19 @@ enum llm_arch {
|
||||||
LLM_ARCH_GPTJ,
|
LLM_ARCH_GPTJ,
|
||||||
LLM_ARCH_GPTNEOX,
|
LLM_ARCH_GPTNEOX,
|
||||||
LLM_ARCH_MPT,
|
LLM_ARCH_MPT,
|
||||||
|
LLM_ARCH_STARCODER,
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
};
|
};
|
||||||
|
|
||||||
static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
|
static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
|
||||||
{ LLM_ARCH_LLAMA, "llama" },
|
{ LLM_ARCH_LLAMA, "llama" },
|
||||||
{ LLM_ARCH_FALCON, "falcon" },
|
{ LLM_ARCH_FALCON, "falcon" },
|
||||||
{ LLM_ARCH_GPT2, "gpt2" },
|
{ LLM_ARCH_GPT2, "gpt2" },
|
||||||
{ LLM_ARCH_GPTJ, "gptj" },
|
{ LLM_ARCH_GPTJ, "gptj" },
|
||||||
{ LLM_ARCH_GPTNEOX, "gptneox" },
|
{ LLM_ARCH_GPTNEOX, "gptneox" },
|
||||||
{ LLM_ARCH_MPT, "mpt" },
|
{ LLM_ARCH_MPT, "mpt" },
|
||||||
{ LLM_ARCH_BAICHUAN,"baichuan" },
|
{ LLM_ARCH_BAICHUAN, "baichuan" },
|
||||||
|
{ LLM_ARCH_STARCODER, "starcoder" },
|
||||||
};
|
};
|
||||||
|
|
||||||
enum llm_kv {
|
enum llm_kv {
|
||||||
|
@ -191,6 +193,7 @@ enum llm_kv {
|
||||||
LLM_KV_FEED_FORWARD_LENGTH,
|
LLM_KV_FEED_FORWARD_LENGTH,
|
||||||
LLM_KV_USE_PARALLEL_RESIDUAL,
|
LLM_KV_USE_PARALLEL_RESIDUAL,
|
||||||
LLM_KV_TENSOR_DATA_LAYOUT,
|
LLM_KV_TENSOR_DATA_LAYOUT,
|
||||||
|
LLM_KV_MAX_POSITION_EMBEDDINGS,
|
||||||
|
|
||||||
LLM_KV_ATTENTION_HEAD_COUNT,
|
LLM_KV_ATTENTION_HEAD_COUNT,
|
||||||
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
||||||
|
@ -235,6 +238,7 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
|
||||||
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
|
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
|
||||||
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
|
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
|
||||||
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
|
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
|
||||||
|
{ LLM_KV_MAX_POSITION_EMBEDDINGS, "%s.max_position_embeddings" },
|
||||||
|
|
||||||
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||||
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||||
|
@ -376,6 +380,21 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
||||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_STARCODER,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_POS_EMBD, "position_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
{
|
{
|
||||||
|
@ -895,6 +914,7 @@ static llama_state g_state;
|
||||||
// available llama models
|
// available llama models
|
||||||
enum e_model {
|
enum e_model {
|
||||||
MODEL_UNKNOWN,
|
MODEL_UNKNOWN,
|
||||||
|
MODEL_1B,
|
||||||
MODEL_3B,
|
MODEL_3B,
|
||||||
MODEL_7B,
|
MODEL_7B,
|
||||||
MODEL_13B,
|
MODEL_13B,
|
||||||
|
@ -919,6 +939,7 @@ struct llama_hparams {
|
||||||
uint32_t n_layer = 32;
|
uint32_t n_layer = 32;
|
||||||
uint32_t n_rot = 64;
|
uint32_t n_rot = 64;
|
||||||
uint32_t n_ff = 11008;
|
uint32_t n_ff = 11008;
|
||||||
|
uint32_t n_positions = 0; // StarCoder
|
||||||
|
|
||||||
float f_norm_eps = 1e-5;
|
float f_norm_eps = 1e-5;
|
||||||
float f_norm_rms_eps = 1e-5;
|
float f_norm_rms_eps = 1e-5;
|
||||||
|
@ -966,13 +987,22 @@ struct llama_layer {
|
||||||
struct ggml_tensor * wo;
|
struct ggml_tensor * wo;
|
||||||
struct ggml_tensor * wqkv;
|
struct ggml_tensor * wqkv;
|
||||||
|
|
||||||
|
// attention bias
|
||||||
|
struct ggml_tensor * bo;
|
||||||
|
struct ggml_tensor * bqkv;
|
||||||
|
|
||||||
// normalization
|
// normalization
|
||||||
struct ggml_tensor * ffn_norm;
|
struct ggml_tensor * ffn_norm;
|
||||||
|
struct ggml_tensor * ffn_norm_b;
|
||||||
|
|
||||||
// ff
|
// ff
|
||||||
struct ggml_tensor * w1; // ffn_gate
|
struct ggml_tensor * w1; // ffn_gate
|
||||||
struct ggml_tensor * w2; // ffn_down
|
struct ggml_tensor * w2; // ffn_down
|
||||||
struct ggml_tensor * w3; // ffn_up
|
struct ggml_tensor * w3; // ffn_up
|
||||||
|
|
||||||
|
// ff bias
|
||||||
|
struct ggml_tensor * b2; // ffn_down
|
||||||
|
struct ggml_tensor * b3; // ffn_up
|
||||||
};
|
};
|
||||||
|
|
||||||
struct llama_kv_cache {
|
struct llama_kv_cache {
|
||||||
|
@ -1050,6 +1080,7 @@ struct llama_model {
|
||||||
llama_vocab vocab;
|
llama_vocab vocab;
|
||||||
|
|
||||||
struct ggml_tensor * tok_embeddings;
|
struct ggml_tensor * tok_embeddings;
|
||||||
|
struct ggml_tensor * pos_embeddings;
|
||||||
|
|
||||||
struct ggml_tensor * output_norm;
|
struct ggml_tensor * output_norm;
|
||||||
struct ggml_tensor * output_norm_b;
|
struct ggml_tensor * output_norm_b;
|
||||||
|
@ -1634,6 +1665,7 @@ static void llm_load_hparams(
|
||||||
GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
|
GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
|
||||||
GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
|
GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
|
||||||
GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
|
GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
|
||||||
|
GGUF_GET_KEY(ctx, hparams.n_positions, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_MAX_POSITION_EMBEDDINGS));
|
||||||
|
|
||||||
// n_head_kv is optional, default to n_head
|
// n_head_kv is optional, default to n_head
|
||||||
hparams.n_head_kv = hparams.n_head;
|
hparams.n_head_kv = hparams.n_head;
|
||||||
|
@ -1713,6 +1745,14 @@ static void llm_load_hparams(
|
||||||
default: model.type = e_model::MODEL_UNKNOWN;
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_STARCODER:
|
||||||
|
{
|
||||||
|
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 24: model.type = e_model::MODEL_1B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
default: (void)0;
|
default: (void)0;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -2166,6 +2206,85 @@ static void llm_load_tensors(
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_STARCODER:
|
||||||
|
{
|
||||||
|
model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
||||||
|
model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_positions}, GGML_BACKEND_CPU);
|
||||||
|
|
||||||
|
// output
|
||||||
|
{
|
||||||
|
ggml_backend backend_norm;
|
||||||
|
ggml_backend backend_output;
|
||||||
|
|
||||||
|
if (n_gpu_layers > int(n_layer)) {
|
||||||
|
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||||
|
// on Windows however this is detrimental unless everything is on the GPU
|
||||||
|
#ifndef _WIN32
|
||||||
|
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
|
||||||
|
#else
|
||||||
|
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
|
||||||
|
#endif // _WIN32
|
||||||
|
|
||||||
|
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
|
||||||
|
} else {
|
||||||
|
backend_norm = GGML_BACKEND_CPU;
|
||||||
|
backend_output = GGML_BACKEND_CPU;
|
||||||
|
}
|
||||||
|
|
||||||
|
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
|
||||||
|
model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
|
||||||
|
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
|
||||||
|
|
||||||
|
if (backend_norm == GGML_BACKEND_GPU) {
|
||||||
|
vram_weights += ggml_nbytes(model.output_norm);
|
||||||
|
vram_weights += ggml_nbytes(model.output_norm_b);
|
||||||
|
}
|
||||||
|
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
|
||||||
|
vram_weights += ggml_nbytes(model.output);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const uint32_t n_ff = hparams.n_ff;
|
||||||
|
|
||||||
|
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||||
|
|
||||||
|
model.layers.resize(n_layer);
|
||||||
|
|
||||||
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||||
|
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
|
||||||
|
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
|
||||||
|
|
||||||
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
|
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
|
||||||
|
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
|
||||||
|
|
||||||
|
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3*n_embd}, backend_split);
|
||||||
|
layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {3*n_embd}, backend_split);
|
||||||
|
|
||||||
|
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||||
|
layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
|
||||||
|
|
||||||
|
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||||
|
layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
|
||||||
|
|
||||||
|
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
|
||||||
|
layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
|
||||||
|
|
||||||
|
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
||||||
|
layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
|
||||||
|
|
||||||
|
if (backend == GGML_BACKEND_GPU) {
|
||||||
|
vram_weights +=
|
||||||
|
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
|
||||||
|
ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
|
||||||
|
ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
|
||||||
|
ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
|
||||||
|
ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) +
|
||||||
|
ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
throw std::runtime_error("unknown architecture");
|
throw std::runtime_error("unknown architecture");
|
||||||
};
|
};
|
||||||
|
@ -3305,6 +3424,247 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static struct ggml_cgraph * llm_build_starcoder(
|
||||||
|
llama_context & lctx,
|
||||||
|
const llama_token * tokens,
|
||||||
|
const float * embd,
|
||||||
|
int n_tokens,
|
||||||
|
int n_past) {
|
||||||
|
|
||||||
|
GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
|
||||||
|
|
||||||
|
const int N = n_tokens;
|
||||||
|
|
||||||
|
const auto & model = lctx.model;
|
||||||
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
|
const auto & kv_self = lctx.kv_self;
|
||||||
|
|
||||||
|
GGML_ASSERT(!!kv_self.ctx);
|
||||||
|
|
||||||
|
const int64_t n_embd = hparams.n_embd;
|
||||||
|
const int64_t n_layer = hparams.n_layer;
|
||||||
|
const int64_t n_ctx = hparams.n_ctx;
|
||||||
|
const int64_t n_head = hparams.n_head;
|
||||||
|
const int64_t n_head_kv = hparams.n_head_kv;
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head();
|
||||||
|
const int64_t n_embd_gqa = hparams.n_embd_gqa();
|
||||||
|
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
|
const float norm_eps = hparams.f_norm_eps;
|
||||||
|
|
||||||
|
auto & buf_compute = lctx.buf_compute;
|
||||||
|
|
||||||
|
struct ggml_init_params params = {
|
||||||
|
/*.mem_size =*/ buf_compute.size,
|
||||||
|
/*.mem_buffer =*/ buf_compute.data,
|
||||||
|
/*.no_alloc =*/ false,
|
||||||
|
};
|
||||||
|
|
||||||
|
params.no_alloc = true;
|
||||||
|
|
||||||
|
struct ggml_context * ctx0 = ggml_init(params);
|
||||||
|
|
||||||
|
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||||
|
|
||||||
|
struct ggml_tensor * cur;
|
||||||
|
struct ggml_tensor * token;
|
||||||
|
struct ggml_tensor * position;
|
||||||
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
|
if (tokens) {
|
||||||
|
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||||
|
|
||||||
|
ggml_allocr_alloc(lctx.alloc, inp_tokens);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
|
||||||
|
}
|
||||||
|
ggml_set_name(inp_tokens, "inp_tokens");
|
||||||
|
|
||||||
|
token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
|
||||||
|
} else {
|
||||||
|
#ifdef GGML_USE_MPI
|
||||||
|
GGML_ASSERT(false && "not implemented");
|
||||||
|
#endif
|
||||||
|
|
||||||
|
token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
|
||||||
|
|
||||||
|
ggml_allocr_alloc(lctx.alloc, token);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
memcpy(token->data, embd, N * n_embd * ggml_element_size(inpL));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Compute position embeddings.
|
||||||
|
struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||||
|
ggml_allocr_alloc(lctx.alloc, inp_positions);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
for (int i = 0; i < N; ++i) {
|
||||||
|
((int32_t *) inp_positions->data)[i] = n_past + i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ggml_set_name(inp_positions, "inp_positions");
|
||||||
|
|
||||||
|
position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||||
|
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||||
|
}
|
||||||
|
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
||||||
|
|
||||||
|
inpL = ggml_add(ctx0, token, position);
|
||||||
|
ggml_set_name(inpL, "inpL");
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
{
|
||||||
|
// Norm
|
||||||
|
cur = ggml_norm(ctx0, inpL, norm_eps);
|
||||||
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Self Attention
|
||||||
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
|
||||||
|
|
||||||
|
struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
|
||||||
|
struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
|
||||||
|
struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
|
||||||
|
|
||||||
|
struct ggml_tensor * Qcur = tmpq;
|
||||||
|
struct ggml_tensor * Kcur = tmpk;
|
||||||
|
|
||||||
|
{
|
||||||
|
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, N));
|
||||||
|
ggml_set_name(Vcur, "Vcur");
|
||||||
|
|
||||||
|
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
|
||||||
|
ggml_set_name(k, "k");
|
||||||
|
|
||||||
|
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
|
||||||
|
( n_ctx)*ggml_element_size(kv_self.v),
|
||||||
|
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
||||||
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * Q =
|
||||||
|
ggml_permute(ctx0,
|
||||||
|
ggml_cpy(ctx0,
|
||||||
|
Qcur,
|
||||||
|
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
||||||
|
0, 2, 1, 3);
|
||||||
|
ggml_set_name(Q, "Q");
|
||||||
|
|
||||||
|
struct ggml_tensor * K =
|
||||||
|
ggml_view_3d(ctx0, kv_self.k,
|
||||||
|
n_embd_head, n_past + N, n_head_kv,
|
||||||
|
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||||
|
ggml_element_size(kv_self.k)*n_embd_head,
|
||||||
|
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
|
||||||
|
ggml_set_name(K, "K");
|
||||||
|
|
||||||
|
// K * Q
|
||||||
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||||
|
ggml_set_name(KQ, "KQ");
|
||||||
|
|
||||||
|
// KQ_scaled = KQ / sqrt(n_embd_head)
|
||||||
|
// KQ_scaled shape [n_past + N, N, n_head, 1]
|
||||||
|
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
|
||||||
|
ggml_set_name(KQ_scaled, "KQ_scaled");
|
||||||
|
|
||||||
|
// KQ_masked = mask_past(KQ_scaled)
|
||||||
|
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
|
||||||
|
ggml_set_name(KQ_masked, "KQ_masked");
|
||||||
|
|
||||||
|
// KQ = soft_max(KQ_masked)
|
||||||
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
|
||||||
|
ggml_set_name(KQ_soft_max, "KQ_soft_max");
|
||||||
|
|
||||||
|
// split cached V into n_head heads
|
||||||
|
struct ggml_tensor * V =
|
||||||
|
ggml_view_3d(ctx0, kv_self.v,
|
||||||
|
n_past + N, n_embd_head, n_head_kv,
|
||||||
|
ggml_element_size(kv_self.v)*n_ctx,
|
||||||
|
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
|
||||||
|
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
|
||||||
|
ggml_set_name(V, "V");
|
||||||
|
|
||||||
|
#if 1
|
||||||
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
||||||
|
ggml_set_name(KQV, "KQV");
|
||||||
|
#else
|
||||||
|
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
|
||||||
|
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
|
||||||
|
// is there a better way?
|
||||||
|
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
|
||||||
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
||||||
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||||
|
ggml_set_name(KQV_merged, "KQV_merged");
|
||||||
|
|
||||||
|
// cur = KQV_merged.contiguous().view(n_embd, N)
|
||||||
|
cur = ggml_cpy(ctx0,
|
||||||
|
KQV_merged,
|
||||||
|
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||||
|
ggml_set_name(cur, "KQV_merged_contiguous");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Projection
|
||||||
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
|
||||||
|
|
||||||
|
// add the input
|
||||||
|
cur = ggml_add(ctx0, cur, inpL);
|
||||||
|
|
||||||
|
struct ggml_tensor * inpFF = cur;
|
||||||
|
|
||||||
|
// FF
|
||||||
|
{
|
||||||
|
// norm
|
||||||
|
{
|
||||||
|
cur = ggml_norm(ctx0, inpFF, norm_eps);
|
||||||
|
|
||||||
|
// cur = ln_2_g*cur + ln_2_b
|
||||||
|
// [ 768, N]
|
||||||
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
|
||||||
|
|
||||||
|
// GELU activation
|
||||||
|
cur = ggml_gelu(ctx0, cur);
|
||||||
|
|
||||||
|
// projection
|
||||||
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
|
||||||
|
}
|
||||||
|
|
||||||
|
inpL = ggml_add(ctx0, cur, inpFF);
|
||||||
|
}
|
||||||
|
|
||||||
|
// norm
|
||||||
|
{
|
||||||
|
cur = ggml_norm(ctx0, inpL, norm_eps);
|
||||||
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
|
||||||
|
}
|
||||||
|
ggml_set_name(cur, "result_norm");
|
||||||
|
|
||||||
|
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||||
|
ggml_set_name(cur, "result_output");
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
ggml_free(ctx0);
|
||||||
|
|
||||||
|
// norm
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
|
|
||||||
static struct ggml_cgraph * llama_build_graph(
|
static struct ggml_cgraph * llama_build_graph(
|
||||||
llama_context & lctx,
|
llama_context & lctx,
|
||||||
const llama_token * tokens,
|
const llama_token * tokens,
|
||||||
|
@ -3328,6 +3688,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||||
{
|
{
|
||||||
result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);
|
result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_STARCODER:
|
||||||
|
{
|
||||||
|
result = llm_build_starcoder(lctx, tokens, embd, n_tokens, n_past);
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
};
|
};
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue