Compare commits

..

1 commit

Author SHA1 Message Date
Georgi Gerganov
a40f6110f0
ggml : force F32 precision for ggml_mul_mat 2023-12-19 16:34:59 +02:00
1219 changed files with 105124 additions and 330201 deletions

View file

@ -1,161 +0,0 @@
---
Language: Cpp
AlignAfterOpenBracket: Align
AlignArrayOfStructures: Left
AlignConsecutiveAssignments: AcrossComments
AlignConsecutiveBitFields: AcrossComments
AlignConsecutiveDeclarations: AcrossComments
AlignConsecutiveMacros: AcrossComments
# AlignConsecutiveShortCaseStatements: AcrossComments
AlignEscapedNewlines: Left # LeftWithLastLine
AlignOperands: Align
AlignTrailingComments:
Kind: Always
OverEmptyLines: 1
AllowAllArgumentsOnNextLine: true
AllowAllParametersOfDeclarationOnNextLine: false
# AllowBreakBeforeNoexceptSpecifier: OnlyWithParen
AllowShortBlocksOnASingleLine: Never
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: Inline
AllowShortIfStatementsOnASingleLine: Never
AllowShortLambdasOnASingleLine: Inline
AllowShortLoopsOnASingleLine: false
AlwaysBreakBeforeMultilineStrings: true
BinPackArguments: true
BinPackParameters: true # OnePerLine
BitFieldColonSpacing: Both
BreakBeforeBraces: Custom # Attach
BraceWrapping:
AfterCaseLabel: true
AfterClass: false
AfterControlStatement: false
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
AfterExternBlock: false
BeforeCatch: false
BeforeElse: false
BeforeLambdaBody: false
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: false
SplitEmptyRecord: false
SplitEmptyNamespace: false
# BreakAdjacentStringLiterals: true
BreakAfterAttributes: Never
BreakBeforeBinaryOperators: None
BreakBeforeInlineASMColon: OnlyMultiline
BreakBeforeTernaryOperators: false
# BreakBinaryOperations: Never
BreakConstructorInitializers: AfterColon
# BreakFunctionDefinitionParameters: false
BreakInheritanceList: AfterComma
BreakStringLiterals: true
# BreakTemplateDeclarations: Yes
ColumnLimit: 120
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: false
DerivePointerAlignment: false
DisableFormat: false
EmptyLineBeforeAccessModifier: Leave
EmptyLineAfterAccessModifier: Never
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
IncludeBlocks: Regroup
IncludeCategories:
- Regex: '^<.*\.h>'
Priority: 1
SortPriority: 0
- Regex: '^<.*'
Priority: 2
SortPriority: 0
- Regex: '.*'
Priority: 3
SortPriority: 0
IncludeIsMainRegex: '([-_](test|unittest))?$'
IncludeIsMainSourceRegex: ''
IndentAccessModifiers: false
IndentCaseBlocks: true
IndentCaseLabels: true
IndentExternBlock: NoIndent
IndentGotoLabels: false
IndentPPDirectives: AfterHash
IndentWidth: 4
IndentWrappedFunctionNames: false
InsertBraces: true # NOTE: may lead to incorrect formatting
InsertNewlineAtEOF: true
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: false
LambdaBodyIndentation: Signature
LineEnding: LF
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBinPackProtocolList: Auto
ObjCBlockIndentWidth: 4
ObjCSpaceAfterProperty: true
ObjCSpaceBeforeProtocolList: true
PPIndentWidth: -1
PackConstructorInitializers: CurrentLine
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyBreakTemplateDeclaration: 10
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 200
PointerAlignment: Middle
QualifierAlignment: Left
#QualifierOrder: ['static', 'inline', 'friend', 'constexpr', 'const', 'volatile', 'type', 'restrict']
RawStringFormats:
- Language: Cpp
Delimiters:
- cc
- CC
- cpp
- Cpp
- CPP
- 'c++'
- 'C++'
CanonicalDelimiter: ''
ReferenceAlignment: Middle
ReflowComments: false # IndentOnly
SeparateDefinitionBlocks: Always
SortIncludes: CaseInsensitive
SortUsingDeclarations: LexicographicNumeric
SpaceAfterCStyleCast: true
SpaceAfterLogicalNot: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeCpp11BracedList: false
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeParens: ControlStatements
SpaceBeforeRangeBasedForLoopColon: true
SpaceInEmptyBlock: false
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 2
SpacesInAngles: Never
SpacesInContainerLiterals: true
SpacesInLineCommentPrefix:
Minimum: 1
Maximum: -1
SpacesInParentheses: false
SpacesInSquareBrackets: false
SpaceBeforeSquareBrackets: false
Standard: c++17
TabWidth: 4
UseTab: Never
WhitespaceSensitiveMacros: ['STRINGIZE']
...

View file

@ -12,15 +12,12 @@ Checks: >
-readability-implicit-bool-conversion,
-readability-magic-numbers,
-readability-uppercase-literal-suffix,
-readability-simplify-boolean-expr,
clang-analyzer-*,
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
performance-*,
portability-*,
-portability-simd-intrinsics,
misc-*,
-misc-const-correctness,
-misc-non-private-member-variables-in-classes,
-misc-no-recursion,
-misc-use-anonymous-namespace,
FormatStyle: none

View file

@ -15,7 +15,7 @@ node('x86_runner1'){ // Running on x86 runner containing latest vecto
stage('Running llama.cpp'){
sh'''#!/bin/bash
module load gnu-bin2/0.1 # loading latest versions of vector qemu and vector gcc
qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./llama-cli -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64
qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./main -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64
cat llama_log.txt # Printing results
'''
}

View file

@ -1,92 +0,0 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
ARG TARGETARCH
ARG GGML_CPU_ARM_ARCH=armv8-a
RUN apt-get update && \
apt-get install -y build-essential git cmake libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN if [ "$TARGETARCH" = "amd64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \
fi && \
cmake --build build -j $(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
## Base image
FROM ubuntu:$UBUNTU_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
COPY --from=build /app/lib/ /app
### Full
FROM base AS full
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -1,94 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=12.6.0
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
# CUDA architecture to build for (defaults to all supported archs)
ARG CUDA_DOCKER_ARCH=default
RUN apt-get update && \
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
WORKDIR /app
COPY . .
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
## Base image
FROM ${BASE_CUDA_RUN_CONTAINER} AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
COPY --from=build /app/lib/ /app
### Full
FROM base AS full
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -0,0 +1,33 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=11.7.1
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV LLAMA_CUBLAS=1
RUN make
ENTRYPOINT ["/app/.devops/tools.sh"]

View file

@ -0,0 +1,44 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=5.6
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
FROM ${BASE_ROCM_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
ARG ROCM_DOCKER_ARCH=\
gfx803 \
gfx900 \
gfx906 \
gfx908 \
gfx90a \
gfx1010 \
gfx1030 \
gfx1100 \
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
RUN make
ENTRYPOINT ["/app/.devops/tools.sh"]

21
.devops/full.Dockerfile Normal file
View file

@ -0,0 +1,21 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
RUN make
ENV LC_ALL=C.utf8
ENTRYPOINT ["/app/.devops/tools.sh"]

View file

@ -1,91 +0,0 @@
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
## Build Image
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
echo "GGML_SYCL_F16 is set" \
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with dynamic libs" && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
### Full
FROM base AS full
COPY --from=build /app/lib/ /app
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/lib/ /app
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/lib/ /app
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -1,44 +0,0 @@
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
FROM ascendai/cann:$ASCEND_VERSION AS build
WORKDIR /app
COPY . .
RUN yum install -y gcc g++ cmake make
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}
ENV PYTHONPATH=${ASCEND_TOOLKIT_HOME}/python/site-packages:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe:${PYTHONPATH}
ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${ASCEND_TOOLKIT_HOME}/compiler/ccec_compiler/bin:${PATH}
ENV ASCEND_AICPU_PATH=${ASCEND_TOOLKIT_HOME}
ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
ENV TOOLCHAIN_HOME=${ASCEND_TOOLKIT_HOME}/toolkit
ENV ASCEND_HOME_PATH=${ASCEND_TOOLKIT_HOME}
# find libascend_hal.so, because the drive hasn`t been mounted.
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
RUN echo "Building with static libs" && \
source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \
cmake --build build --config Release --target llama-cli
# TODO: use image with NNRT
FROM ascendai/cann:$ASCEND_VERSION AS runtime
COPY --from=build /app/build/bin/llama-cli /llama-cli
ENV LC_ALL=C.utf8
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}
ENV PYTHONPATH=${ASCEND_TOOLKIT_HOME}/python/site-packages:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe:${PYTHONPATH}
ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${ASCEND_TOOLKIT_HOME}/compiler/ccec_compiler/bin:${PATH}
ENV ASCEND_AICPU_PATH=${ASCEND_TOOLKIT_HOME}
ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
ENV TOOLCHAIN_HOME=${ASCEND_TOOLKIT_HOME}/toolkit
ENV ASCEND_HOME_PATH=${ASCEND_TOOLKIT_HOME}
ENTRYPOINT ["/llama-cli" ]

View file

@ -0,0 +1,84 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
# Notes for llama.cpp:
# 1. Tags are currently based on hash - which will not sort asciibetically.
# We need to declare standard versioning if people want to sort latest releases.
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
# It is up to the user to install the correct vendor-specific support.
Name: llama.cpp-clblast
Version: %( date "+%%Y%%m%%d" )
Release: 1%{?dist}
Summary: OpenCL Inference of LLaMA model in C/C++
License: MIT
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
BuildRequires: coreutils make gcc-c++ git mesa-libOpenCL-devel clblast-devel
Requires: clblast
URL: https://github.com/ggerganov/llama.cpp
%define debug_package %{nil}
%define source_date_epoch_from_changelog 0
%description
CPU inference for Meta's Lllama2 models using default options.
%prep
%setup -n llama.cpp-master
%build
make -j LLAMA_CLBLAST=1
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p main %{buildroot}%{_bindir}/llamaclblast
cp -p server %{buildroot}%{_bindir}/llamaclblastserver
cp -p simple %{buildroot}%{_bindir}/llamaclblastsimple
mkdir -p %{buildroot}/usr/lib/systemd/system
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamaclblast.service
[Unit]
Description=Llama.cpp server, CPU only (no GPU support in this build).
After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target
[Service]
Type=simple
EnvironmentFile=/etc/sysconfig/llama
ExecStart=/usr/bin/llamaclblastserver $LLAMA_ARGS
ExecReload=/bin/kill -s HUP $MAINPID
Restart=never
[Install]
WantedBy=default.target
EOF
mkdir -p %{buildroot}/etc/sysconfig
%{__cat} <<EOF > %{buildroot}/etc/sysconfig/llama
LLAMA_ARGS="-m /opt/llama2/ggml-model-f32.bin"
EOF
%clean
rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llamaclblast
%{_bindir}/llamaclblastserver
%{_bindir}/llamaclblastsimple
/usr/lib/systemd/system/llamaclblast.service
%config /etc/sysconfig/llama
%pre
%post
%preun
%postun
%changelog

View file

@ -1,5 +1,5 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
@ -12,7 +12,7 @@
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
# It is up to the user to install the correct vendor-specific support.
Name: llama.cpp-cuda
Name: llama.cpp-cublas
Version: %( date "+%%Y%%m%%d" )
Release: 1%{?dist}
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
@ -32,16 +32,16 @@ CPU inference for Meta's Lllama2 models using default options.
%setup -n llama.cpp-master
%build
make -j GGML_CUDA=1
make -j LLAMA_CUBLAS=1
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p llama-cli %{buildroot}%{_bindir}/llama-cuda-cli
cp -p llama-server %{buildroot}%{_bindir}/llama-cuda-server
cp -p llama-simple %{buildroot}%{_bindir}/llama-cuda-simple
cp -p main %{buildroot}%{_bindir}/llamacppcublas
cp -p server %{buildroot}%{_bindir}/llamacppcublasserver
cp -p simple %{buildroot}%{_bindir}/llamacppcublassimple
mkdir -p %{buildroot}/usr/lib/systemd/system
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacuda.service
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacublas.service
[Unit]
Description=Llama.cpp server, CPU only (no GPU support in this build).
After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target
@ -49,7 +49,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t
[Service]
Type=simple
EnvironmentFile=/etc/sysconfig/llama
ExecStart=/usr/bin/llama-cuda-server $LLAMA_ARGS
ExecStart=/usr/bin/llamacppcublasserver $LLAMA_ARGS
ExecReload=/bin/kill -s HUP $MAINPID
Restart=never
@ -67,10 +67,10 @@ rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llama-cuda-cli
%{_bindir}/llama-cuda-server
%{_bindir}/llama-cuda-simple
/usr/lib/systemd/system/llamacuda.service
%{_bindir}/llamacppcublas
%{_bindir}/llamacppcublasserver
%{_bindir}/llamacppcublassimple
/usr/lib/systemd/system/llamacublas.service
%config /etc/sysconfig/llama
%pre

View file

@ -1,5 +1,5 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
@ -38,9 +38,9 @@ make -j
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p llama-cli %{buildroot}%{_bindir}/llama-cli
cp -p llama-server %{buildroot}%{_bindir}/llama-server
cp -p llama-simple %{buildroot}%{_bindir}/llama-simple
cp -p main %{buildroot}%{_bindir}/llama
cp -p server %{buildroot}%{_bindir}/llamaserver
cp -p simple %{buildroot}%{_bindir}/llamasimple
mkdir -p %{buildroot}/usr/lib/systemd/system
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llama.service
@ -51,7 +51,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t
[Service]
Type=simple
EnvironmentFile=/etc/sysconfig/llama
ExecStart=/usr/bin/llama-server $LLAMA_ARGS
ExecStart=/usr/bin/llamaserver $LLAMA_ARGS
ExecReload=/bin/kill -s HUP $MAINPID
Restart=never
@ -69,9 +69,9 @@ rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llama-cli
%{_bindir}/llama-server
%{_bindir}/llama-simple
%{_bindir}/llama
%{_bindir}/llamaserver
%{_bindir}/llamasimple
/usr/lib/systemd/system/llama.service
%config /etc/sysconfig/llama

View file

@ -0,0 +1,32 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=11.7.1
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the CUDA runtime image
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential git
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV LLAMA_CUBLAS=1
RUN make
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
COPY --from=build /app/main /main
ENTRYPOINT [ "/main" ]

View file

@ -0,0 +1,44 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=5.6
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
FROM ${BASE_ROCM_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
ARG ROCM_DOCKER_ARCH=\
gfx803 \
gfx900 \
gfx906 \
gfx908 \
gfx90a \
gfx1010 \
gfx1030 \
gfx1100 \
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
RUN make
ENTRYPOINT [ "/app/main" ]

20
.devops/main.Dockerfile Normal file
View file

@ -0,0 +1,20 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential git
WORKDIR /app
COPY . .
RUN make
FROM ubuntu:$UBUNTU_VERSION as runtime
COPY --from=build /app/main /main
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/main" ]

View file

@ -1,108 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc3.1.0
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
# MUSA architecture to build for (defaults to all supported archs)
ARG MUSA_DOCKER_ARCH=default
RUN apt-get update && \
apt-get install -y \
build-essential \
cmake \
python3 \
python3-pip \
git \
libcurl4-openssl-dev \
libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Use the default MUSA archs if not specified
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
## Base image
FROM ${BASE_MUSA_RUN_CONTAINER} AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
COPY --from=build /app/lib/ /app
### Full
FROM base AS full
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -1,21 +0,0 @@
{
perSystem =
{ config, lib, ... }:
{
apps =
let
inherit (config.packages) default;
binaries = [
"llama-cli"
"llama-embedding"
"llama-server"
"llama-quantize"
];
mkApp = name: {
type = "app";
program = "${default}/bin/${name}";
};
in
lib.genAttrs binaries mkApp;
};
}

View file

@ -1,52 +0,0 @@
{ inputs, ... }:
{
perSystem =
{
config,
lib,
system,
...
}:
{
devShells =
let
pkgs = import inputs.nixpkgs { inherit system; };
stdenv = pkgs.stdenv;
scripts = config.packages.python-scripts;
in
lib.pipe (config.packages) [
(lib.concatMapAttrs (
name: package: {
${name} = pkgs.mkShell {
name = "${name}";
inputsFrom = [ package ];
shellHook = ''
echo "Entering ${name} devShell"
'';
};
"${name}-extra" =
if (name == "python-scripts") then
null
else
pkgs.mkShell {
name = "${name}-extra";
inputsFrom = [
package
scripts
];
# Extra packages that *may* be used by some scripts
packages = [
pkgs.python3Packages.tiktoken
];
shellHook = ''
echo "Entering ${name} devShell"
addToSearchPath "LD_LIBRARY_PATH" "${lib.getLib stdenv.cc.cc}/lib"
'';
};
}
))
(lib.filterAttrs (name: value: value != null))
];
};
}

View file

@ -1,37 +0,0 @@
{
lib,
dockerTools,
buildEnv,
llama-cpp,
interactive ? true,
coreutils,
}:
# A tar that can be fed into `docker load`:
#
# $ nix build .#llamaPackages.docker
# $ docker load < result
# For details and variations cf.
# - https://nixos.org/manual/nixpkgs/unstable/#ssec-pkgs-dockerTools-buildLayeredImage
# - https://discourse.nixos.org/t/a-faster-dockertools-buildimage-prototype/16922
# - https://nixery.dev/
# Approximate (compressed) sizes, at the time of writing, are:
#
# .#llamaPackages.docker: 125M;
# .#llamaPackagesCuda.docker: 537M;
# .#legacyPackages.aarch64-linux.llamaPackagesXavier.docker: 415M.
dockerTools.buildLayeredImage {
name = llama-cpp.pname;
tag = "latest";
contents =
[ llama-cpp ]
++ lib.optionals interactive [
coreutils
dockerTools.binSh
dockerTools.caCertificates
];
}

View file

@ -1,39 +0,0 @@
{ inputs, ... }:
{
perSystem =
{
config,
system,
lib,
pkgsCuda,
...
}:
{
legacyPackages =
let
caps.llamaPackagesXavier = "7.2";
caps.llamaPackagesOrin = "8.7";
caps.llamaPackagesTX2 = "6.2";
caps.llamaPackagesNano = "5.3";
pkgsFor =
cap:
import inputs.nixpkgs {
inherit system;
config = {
cudaSupport = true;
cudaCapabilities = [ cap ];
cudaEnableForwardCompat = false;
inherit (pkgsCuda.config) allowUnfreePredicate;
};
};
in
builtins.mapAttrs (name: cap: (pkgsFor cap).callPackage ./scope.nix { }) caps;
packages = lib.optionalAttrs (system == "aarch64-linux") {
jetson-xavier = config.legacyPackages.llamaPackagesXavier.llama-cpp;
jetson-orin = config.legacyPackages.llamaPackagesOrin.llama-cpp;
jetson-nano = config.legacyPackages.llamaPackagesNano.llama-cpp;
};
};
}

View file

@ -1,45 +0,0 @@
{ inputs, ... }:
{
# The _module.args definitions are passed on to modules as arguments. E.g.
# the module `{ pkgs ... }: { /* config */ }` implicitly uses
# `_module.args.pkgs` (defined in this case by flake-parts).
perSystem =
{ system, ... }:
{
_module.args = {
# Note: bringing up https://zimbatm.com/notes/1000-instances-of-nixpkgs
# again, the below creates several nixpkgs instances which the
# flake-centric CLI will be forced to evaluate e.g. on `nix flake show`.
#
# This is currently "slow" and "expensive", on a certain scale.
# This also isn't "right" in that this hinders dependency injection at
# the level of flake inputs. This might get removed in the foreseeable
# future.
#
# Note that you can use these expressions without Nix
# (`pkgs.callPackage ./devops/nix/scope.nix { }` is the entry point).
pkgsCuda = import inputs.nixpkgs {
inherit system;
# Ensure dependencies use CUDA consistently (e.g. that openmpi, ucc,
# and ucx are built with CUDA support)
config.cudaSupport = true;
config.allowUnfreePredicate =
p:
builtins.all (
license:
license.free
|| builtins.elem license.shortName [
"CUDA EULA"
"cuDNN EULA"
]
) (p.meta.licenses or [ p.meta.license ]);
};
# Ensure dependencies use ROCm consistently
pkgsRocm = import inputs.nixpkgs {
inherit system;
config.rocmSupport = true;
};
};
};
}

View file

@ -1,36 +0,0 @@
{
lib,
llamaVersion,
numpy,
tqdm,
sentencepiece,
pyyaml,
poetry-core,
buildPythonPackage,
pytestCheckHook,
}:
buildPythonPackage {
pname = "gguf";
version = llamaVersion;
pyproject = true;
nativeBuildInputs = [ poetry-core ];
propagatedBuildInputs = [
numpy
tqdm
sentencepiece
pyyaml
];
src = lib.cleanSource ../../gguf-py;
pythonImportsCheck = [
"numpy"
"gguf"
];
nativeCheckInputs = [ pytestCheckHook ];
doCheck = true;
meta = with lib; {
description = "Python package for writing binary files in the GGUF format";
license = licenses.mit;
maintainers = [ maintainers.ditsuke ];
};
}

View file

@ -1,247 +0,0 @@
{
lib,
glibc,
config,
stdenv,
runCommand,
cmake,
ninja,
pkg-config,
git,
mpi,
blas,
cudaPackages,
autoAddDriverRunpath,
darwin,
rocmPackages,
vulkan-headers,
vulkan-loader,
curl,
shaderc,
useBlas ?
builtins.all (x: !x) [
useCuda
useMetalKit
useRocm
useVulkan
]
&& blas.meta.available,
useCuda ? config.cudaSupport,
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin,
# Increases the runtime closure size by ~700M
useMpi ? false,
useRocm ? config.rocmSupport,
rocmGpuTargets ? builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets,
enableCurl ? true,
useVulkan ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
# It's necessary to consistently use backendStdenv when building with CUDA support,
# otherwise we get libstdc++ errors downstream.
effectiveStdenv ? if useCuda then cudaPackages.backendStdenv else stdenv,
enableStatic ? effectiveStdenv.hostPlatform.isStatic,
precompileMetalShaders ? false,
}:
let
inherit (lib)
cmakeBool
cmakeFeature
optionals
strings
;
stdenv = throw "Use effectiveStdenv instead";
suffices =
lib.optionals useBlas [ "BLAS" ]
++ lib.optionals useCuda [ "CUDA" ]
++ lib.optionals useMetalKit [ "MetalKit" ]
++ lib.optionals useMpi [ "MPI" ]
++ lib.optionals useRocm [ "ROCm" ]
++ lib.optionals useVulkan [ "Vulkan" ];
pnameSuffix =
strings.optionalString (suffices != [ ])
"-${strings.concatMapStringsSep "-" strings.toLower suffices}";
descriptionSuffix = strings.optionalString (
suffices != [ ]
) ", accelerated with ${strings.concatStringsSep ", " suffices}";
xcrunHost = runCommand "xcrunHost" { } ''
mkdir -p $out/bin
ln -s /usr/bin/xcrun $out/bin
'';
# apple_sdk is supposed to choose sane defaults, no need to handle isAarch64
# separately
darwinBuildInputs =
with darwin.apple_sdk.frameworks;
[
Accelerate
CoreVideo
CoreGraphics
]
++ optionals useMetalKit [ MetalKit ];
cudaBuildInputs = with cudaPackages; [
cuda_cudart
cuda_cccl # <nv/target>
libcublas
];
rocmBuildInputs = with rocmPackages; [
clr
hipblas
rocblas
];
vulkanBuildInputs = [
vulkan-headers
vulkan-loader
shaderc
];
in
effectiveStdenv.mkDerivation (finalAttrs: {
pname = "llama-cpp${pnameSuffix}";
version = llamaVersion;
# Note: none of the files discarded here are visible in the sandbox or
# affect the output hash. This also means they can be modified without
# triggering a rebuild.
src = lib.cleanSourceWith {
filter =
name: type:
let
noneOf = builtins.all (x: !x);
baseName = baseNameOf name;
in
noneOf [
(lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths
(lib.hasSuffix ".md" name) # Ignore *.md changes whe computing outPaths
(lib.hasPrefix "." baseName) # Skip hidden files and directories
(baseName == "flake.lock")
];
src = lib.cleanSource ../../.;
};
postPatch = ''
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
'';
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
# `default.metallib` may be compiled with Metal compiler from XCode
# and we need to escape sandbox on MacOS to access Metal compiler.
# `xcrun` is used find the path of the Metal compiler, which is varible
# and not on $PATH
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
nativeBuildInputs =
[
cmake
ninja
pkg-config
git
]
++ optionals useCuda [
cudaPackages.cuda_nvcc
autoAddDriverRunpath
]
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [ glibc.static ]
++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [ xcrunHost ];
buildInputs =
optionals effectiveStdenv.isDarwin darwinBuildInputs
++ optionals useCuda cudaBuildInputs
++ optionals useMpi [ mpi ]
++ optionals useRocm rocmBuildInputs
++ optionals useBlas [ blas ]
++ optionals useVulkan vulkanBuildInputs
++ optionals enableCurl [ curl ];
cmakeFlags =
[
(cmakeBool "LLAMA_BUILD_SERVER" true)
(cmakeBool "BUILD_SHARED_LIBS" (!enableStatic))
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
(cmakeBool "LLAMA_CURL" enableCurl)
(cmakeBool "GGML_NATIVE" false)
(cmakeBool "GGML_BLAS" useBlas)
(cmakeBool "GGML_CUDA" useCuda)
(cmakeBool "GGML_HIP" useRocm)
(cmakeBool "GGML_METAL" useMetalKit)
(cmakeBool "GGML_VULKAN" useVulkan)
(cmakeBool "GGML_STATIC" enableStatic)
]
++ optionals useCuda [
(
with cudaPackages.flags;
cmakeFeature "CMAKE_CUDA_ARCHITECTURES" (
builtins.concatStringsSep ";" (map dropDot cudaCapabilities)
)
)
]
++ optionals useRocm [
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" rocmGpuTargets)
]
++ optionals useMetalKit [
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
(cmakeBool "GGML_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
];
# Environment variables needed for ROCm
env = optionals useRocm {
ROCM_PATH = "${rocmPackages.clr}";
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
};
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
# if they haven't been added yet.
postInstall = ''
mkdir -p $out/include
cp $src/include/llama.h $out/include/
'';
meta = {
# Configurations we don't want even the CI to evaluate. Results in the
# "unsupported platform" messages. This is mostly a no-op, because
# cudaPackages would've refused to evaluate anyway.
badPlatforms = optionals useCuda lib.platforms.darwin;
# Configurations that are known to result in build failures. Can be
# overridden by importing Nixpkgs with `allowBroken = true`.
broken = (useMetalKit && !effectiveStdenv.isDarwin);
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
homepage = "https://github.com/ggerganov/llama.cpp/";
license = lib.licenses.mit;
# Accommodates `nix run` and `lib.getExe`
mainProgram = "llama-cli";
# These people might respond, on the best effort basis, if you ping them
# in case of Nix-specific regressions or for reviewing Nix-specific PRs.
# Consider adding yourself to this list if you want to ensure this flake
# stays maintained and you're willing to invest your time. Do not add
# other people without their consent. Consider removing people after
# they've been unreachable for long periods of time.
# Note that lib.maintainers is defined in Nixpkgs, but you may just add
# an attrset following the same format as in
# https://github.com/NixOS/nixpkgs/blob/f36a80e54da29775c78d7eff0e628c2b4e34d1d7/maintainers/maintainer-list.nix
maintainers = with lib.maintainers; [
philiptaron
SomeoneSerge
];
# Extend `badPlatforms` instead
platforms = lib.platforms.all;
};
})

View file

@ -1,66 +0,0 @@
{
lib,
stdenv,
buildPythonPackage,
poetry-core,
mkShell,
python3Packages,
gguf-py,
}@inputs:
let
llama-python-deps = with python3Packages; [
numpy
sentencepiece
transformers
protobuf
torchWithoutCuda
gguf-py
tqdm
# for scripts/compare-llama-bench.py
gitpython
tabulate
# for examples/pydantic-models-to-grammar-examples.py
docstring-parser
pydantic
];
llama-python-test-deps = with python3Packages; [
# Server bench
matplotlib
# server tests
openai
pytest
prometheus-client
];
in
buildPythonPackage ({
pname = "llama-scripts";
version = "0.0.0";
pyproject = true;
# NOTE: The files filtered out here are not visible in the build sandbox, neither
# do they affect the output hash. They can be modified without triggering a rebuild.
src = lib.cleanSourceWith {
filter =
name: type:
let
any = builtins.any (x: x);
baseName = builtins.baseNameOf name;
in
any [
(lib.hasSuffix ".py" name)
(baseName == "README.md")
(baseName == "pyproject.toml")
];
src = lib.cleanSource ../../.;
};
nativeBuildInputs = [ poetry-core ];
nativeCheckInputs = llama-python-test-deps;
dependencies = llama-python-deps;
})

View file

@ -1,41 +0,0 @@
{
lib,
newScope,
python3,
llamaVersion ? "0.0.0",
}:
let
pythonPackages = python3.pkgs;
buildPythonPackage = pythonPackages.buildPythonPackage;
numpy = pythonPackages.numpy;
tqdm = pythonPackages.tqdm;
sentencepiece = pythonPackages.sentencepiece;
pyyaml = pythonPackages.pyyaml;
poetry-core = pythonPackages.poetry-core;
pytestCheckHook = pythonPackages.pytestCheckHook;
in
# We're using `makeScope` instead of just writing out an attrset
# because it allows users to apply overlays later using `overrideScope'`.
# Cf. https://noogle.dev/f/lib/makeScope
lib.makeScope newScope (self: {
inherit llamaVersion;
gguf-py = self.callPackage ./package-gguf-py.nix {
inherit
buildPythonPackage
numpy
tqdm
sentencepiece
poetry-core
pyyaml
pytestCheckHook
;
};
python-scripts = self.callPackage ./python-scripts.nix { inherit buildPythonPackage poetry-core; };
llama-cpp = self.callPackage ./package.nix { };
docker = self.callPackage ./docker.nix { };
docker-min = self.callPackage ./docker.nix { interactive = false; };
sif = self.callPackage ./sif.nix { };
})

View file

@ -1,27 +0,0 @@
{
lib,
singularity-tools,
llama-cpp,
bashInteractive,
interactive ? false,
}:
let
optionalInt = cond: x: if cond then x else 0;
in
singularity-tools.buildImage rec {
inherit (llama-cpp) name;
contents = [ llama-cpp ] ++ lib.optionals interactive [ bashInteractive ];
# These are excessive (but safe) for most variants. Building singularity
# images requires superuser privileges, so we build them inside a VM in a
# writable image of pre-determined size.
#
# ROCm is currently affected by https://github.com/NixOS/nixpkgs/issues/276846
#
# Expected image sizes:
# - cpu/blas: 150M,
# - cuda, all gencodes: 560M,
diskSize = 4096 + optionalInt llama-cpp.useRocm 16384;
memSize = diskSize;
}

View file

@ -1,113 +0,0 @@
ARG UBUNTU_VERSION=24.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=6.3
ARG AMDGPU_VERSION=6.3
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
### Build image
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
#ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
ARG ROCM_DOCKER_ARCH=gfx1100
# Set nvcc architectured
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
# ENV CC=/opt/rocm/llvm/bin/clang
# ENV CXX=/opt/rocm/llvm/bin/clang++
RUN apt-get update \
&& apt-get install -y \
build-essential \
cmake \
git \
libcurl4-openssl-dev \
curl \
libgomp1
WORKDIR /app
COPY . .
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \
&& find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
## Base image
FROM ${BASE_ROCM_DEV_CONTAINER} AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
COPY --from=build /app/lib/ /app
### Full
FROM base AS full
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3-pip \
python3 \
python3-wheel\
&& pip install --break-system-packages --upgrade setuptools \
&& pip install --break-system-packages -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -8,40 +8,36 @@ arg1="$1"
shift
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
exec python3 ./convert_hf_to_gguf.py "$@"
python3 ./convert.py "$@"
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
exec ./llama-quantize "$@"
./quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
exec ./llama-cli "$@"
elif [[ "$arg1" == '--bench' || "$arg1" == '-b' ]]; then
exec ./llama-bench "$@"
elif [[ "$arg1" == '--perplexity' || "$arg1" == '-p' ]]; then
exec ./llama-perplexity "$@"
./main "$@"
elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then
./finetune "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..."
for i in $(ls $1/$2/ggml-model-f16.bin*); do
for i in `ls $1/$2/ggml-model-f16.bin*`; do
if [ -f "${i/f16/q4_0}" ]; then
echo "Skip model quantization, it already exists: ${i/f16/q4_0}"
else
echo "Converting PTH to GGML: $i into ${i/f16/q4_0}..."
exec ./llama-quantize "$i" "${i/f16/q4_0}" q4_0
./quantize "$i" "${i/f16/q4_0}" q4_0
fi
done
elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then
exec ./llama-server "$@"
./server "$@"
else
echo "Unknown command: $arg1"
echo "Available commands: "
echo " --run (-r): Run a model previously converted into ggml"
echo " ex: -m /models/7B/ggml-model-q4_0.bin -p \"Building a website can be done in 10 simple steps:\" -n 512"
echo " --bench (-b): Benchmark the performance of the inference for various parameters."
echo " ex: -m model.gguf"
echo " --perplexity (-p): Measure the perplexity of a model over a given text."
echo " ex: -m model.gguf -f file.txt"
echo " --convert (-c): Convert a llama model into ggml"
echo " ex: --outtype f16 \"/models/7B/\" "
echo " --quantize (-q): Optimize with quantization process ggml"
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
echo " --finetune (-f): Run finetune command to create a lora finetune of the model"
echo " See documentation for finetune for command-line parameters"
echo " --all-in-one (-a): Execute --convert & --quantize"
echo " ex: \"/models/\" 7B"
echo " --server (-s): Run a model on the server"

View file

@ -1,89 +0,0 @@
ARG UBUNTU_VERSION=24.04
FROM ubuntu:$UBUNTU_VERSION AS build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK and cURL
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-noble.list https://packages.lunarg.com/vulkan/lunarg-vulkan-noble.list && \
apt update -y && \
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
## Base image
FROM ubuntu:$UBUNTU_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl libvulkan-dev \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
COPY --from=build /app/lib/ /app
### Full
FROM base AS full
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
python3-wheel \
&& pip install --break-system-packages --upgrade setuptools \
&& pip install --break-system-packages -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -1,7 +1,7 @@
*.o
*.a
.cache/
# Do not ignore .git directory, otherwise the reported build number will always be 0
.git/
.github/
.gitignore
.vs/
@ -12,8 +12,8 @@ build*/
models/*
/llama-cli
/llama-quantize
/main
/quantize
arm_neon.h
compile_commands.json

1
.ecrc
View file

@ -1,5 +1,4 @@
{
"Exclude": ["^\\.gitmodules$", "stb_image\\.h"],
"Disable": {
"IndentSize": true
}

View file

@ -24,27 +24,5 @@ insert_final_newline = unset
[examples/server/public/*]
indent_size = 2
[examples/server/public/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
[examples/server/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab
[examples/cvector-generator/*.txt]
trim_trailing_whitespace = unset
insert_final_newline = unset
[models/templates/*.jinja]
indent_style = unset
indent_size = unset
end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset

15
.flake8
View file

@ -1,17 +1,2 @@
[flake8]
max-line-length = 125
ignore = E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503
exclude =
# Do not traverse examples
examples,
# Do not include package initializers
__init__.py,
# No need to traverse our git directory
.git,
# There's no value in checking cache directories
__pycache__,
# No need to include the build path
build,
# This contains builds that we don't want to check
dist # This is generated with `python build .` for package releases
# max-complexity = 10

View file

@ -1,87 +0,0 @@
name: Bug (compilation)
description: Something goes wrong when trying to compile llama.cpp.
title: "Compile bug: "
labels: ["bug-unconfirmed", "compilation"]
body:
- type: markdown
attributes:
value: >
Thanks for taking the time to fill out this bug report!
This issue template is intended for bug reports where the compilation of llama.cpp fails.
Before opening an issue, please confirm that the compilation still fails with `-DGGML_CCACHE=OFF`.
If the compilation succeeds with ccache disabled you should be able to permanently fix the issue
by clearing `~/.cache/ccache` (on Linux).
- type: textarea
id: commit
attributes:
label: Git commit
description: Which commit are you trying to compile?
placeholder: |
$git rev-parse HEAD
84a07a17b1b08cf2b9747c633a2372782848a27f
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: Operating systems
description: Which operating systems do you know to be affected?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: true
- type: dropdown
id: backends
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
multiple: true
validations:
required: true
- type: textarea
id: info
attributes:
label: Problem description & steps to reproduce
description: >
Please give us a summary of the problem and tell us how to reproduce it.
If you can narrow down the bug to specific compile flags, that information would be very much appreciated by us.
placeholder: >
I'm trying to compile llama.cpp with CUDA support on a fresh install of Ubuntu and get error XY.
Here are the exact commands that I used: ...
validations:
required: true
- type: textarea
id: first_bad_commit
attributes:
label: First Bad Commit
description: >
If the bug was not present on an earlier version: when did it start appearing?
If possible, please do a git bisect and identify the exact commit that introduced the bug.
validations:
required: false
- type: textarea
id: command
attributes:
label: Compile command
description: >
Please provide the exact command you used to compile llama.cpp. For example: `cmake -B ...`.
This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: true
- type: textarea
id: logs
attributes:
label: Relevant log output
description: >
Please copy and paste any relevant log output, including any generated text.
This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: true

View file

@ -1,101 +0,0 @@
name: Bug (model use)
description: Something goes wrong when using a model (in general, not specific to a single llama.cpp module).
title: "Eval bug: "
labels: ["bug-unconfirmed", "model evaluation"]
body:
- type: markdown
attributes:
value: >
Thanks for taking the time to fill out this bug report!
This issue template is intended for bug reports where the model evaluation results
(i.e. the generated text) are incorrect or llama.cpp crashes during model evaluation.
If you encountered the issue while using an external UI (e.g. ollama),
please reproduce your issue using one of the examples/binaries in this repository.
The `llama-cli` binary can be used for simple and reproducible model inference.
- type: textarea
id: version
attributes:
label: Name and Version
description: Which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: Operating systems
description: Which operating systems do you know to be affected?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: true
- type: dropdown
id: backends
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
multiple: true
validations:
required: true
- type: textarea
id: hardware
attributes:
label: Hardware
description: Which CPUs/GPUs are you using?
placeholder: >
e.g. Ryzen 5950X + 2x RTX 4090
validations:
required: true
- type: textarea
id: model
attributes:
label: Models
description: >
Which model(s) at which quantization were you using when encountering the bug?
If you downloaded a GGUF file off of Huggingface, please provide a link.
placeholder: >
e.g. Meta LLaMA 3.1 Instruct 8b q4_K_M
validations:
required: false
- type: textarea
id: info
attributes:
label: Problem description & steps to reproduce
description: >
Please give us a summary of the problem and tell us how to reproduce it.
If you can narrow down the bug to specific hardware, compile flags, or command line arguments,
that information would be very much appreciated by us.
placeholder: >
e.g. when I run llama-cli with -ngl 99 I get garbled outputs.
When I use -ngl 0 it works correctly.
Here are the exact commands that I used: ...
validations:
required: true
- type: textarea
id: first_bad_commit
attributes:
label: First Bad Commit
description: >
If the bug was not present on an earlier version: when did it start appearing?
If possible, please do a git bisect and identify the exact commit that introduced the bug.
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: >
Please copy and paste any relevant log output, including the command that you entered and any generated text.
This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: true

View file

@ -1,91 +0,0 @@
name: Bug (misc.)
description: Something is not working the way it should (and it's not covered by any of the above cases).
title: "Misc. bug: "
labels: ["bug-unconfirmed"]
body:
- type: markdown
attributes:
value: >
Thanks for taking the time to fill out this bug report!
This issue template is intended for miscellaneous bugs that don't fit into any other category.
If you encountered the issue while using an external UI (e.g. ollama),
please reproduce your issue using one of the examples/binaries in this repository.
- type: textarea
id: version
attributes:
label: Name and Version
description: Which version of our software is affected? (You can use `--version` to get a version string.)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: Operating systems
description: Which operating systems do you know to be affected?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: dropdown
id: module
attributes:
label: Which llama.cpp modules do you know to be affected?
multiple: true
options:
- Documentation/Github
- libllama (core library)
- llama-cli
- llama-server
- llama-bench
- llama-quantize
- Python/Bash scripts
- Test code
- Other (Please specify in the next section)
validations:
required: false
- type: textarea
id: command
attributes:
label: Command line
description: >
Please provide the exact commands you entered, if applicable. For example: `llama-server -m ... -c ...`, `llama-cli -m ...`, etc.
This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: false
- type: textarea
id: info
attributes:
label: Problem description & steps to reproduce
description: >
Please give us a summary of the problem and tell us how to reproduce it (if applicable).
validations:
required: true
- type: textarea
id: first_bad_commit
attributes:
label: First Bad Commit
description: >
If the bug was not present on an earlier version and it's not trivial to track down: when did it start appearing?
If possible, please do a git bisect and identify the exact commit that introduced the bug.
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: >
If applicable, please copy and paste any relevant log output, including any generated text.
This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: false

View file

@ -1,51 +0,0 @@
name: Enhancement
description: Used to request enhancements for llama.cpp.
title: "Feature Request: "
labels: ["enhancement"]
body:
- type: markdown
attributes:
value: |
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggerganov/llama.cpp/discussions/categories/ideas)
- type: checkboxes
id: prerequisites
attributes:
label: Prerequisites
description: Please confirm the following before submitting your enhancement request.
options:
- label: I am running the latest code. Mention the version if possible as well.
required: true
- label: I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
required: true
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
required: true
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new and useful enhancement to share.
required: true
- type: textarea
id: feature-description
attributes:
label: Feature Description
description: Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an enhancement.
placeholder: Detailed description of the enhancement
validations:
required: true
- type: textarea
id: motivation
attributes:
label: Motivation
description: Please provide a detailed written description of reasons why this feature is necessary and how it is useful to `llama.cpp` users.
placeholder: Explanation of why this feature is needed and its benefits
validations:
required: true
- type: textarea
id: possible-implementation
attributes:
label: Possible Implementation
description: If you have an idea as to how it can be implemented, please write a detailed description. Feel free to give links to external sources or share visuals that might be helpful to understand the details better.
placeholder: Detailed description of potential implementation
validations:
required: false

View file

@ -1,52 +0,0 @@
name: Research
description: Track new technical research area.
title: "Research: "
labels: ["research 🔬"]
body:
- type: markdown
attributes:
value: |
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
- type: checkboxes
id: research-stage
attributes:
label: Research Stage
description: Track general state of this research ticket
options:
- label: Background Research (Let's try to avoid reinventing the wheel)
- label: Hypothesis Formed (How do you think this will work and it's effect?)
- label: Strategy / Implementation Forming
- label: Analysis of results
- label: Debrief / Documentation (So people in the future can learn from us)
- type: textarea
id: background
attributes:
label: Previous existing literature and research
description: Whats the current state of the art and whats the motivation for this research?
- type: textarea
id: hypothesis
attributes:
label: Hypothesis
description: How do you think this will work and it's effect?
- type: textarea
id: implementation
attributes:
label: Implementation
description: Got an approach? e.g. a PR ready to go?
- type: textarea
id: analysis
attributes:
label: Analysis
description: How does the proposed implementation behave?
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View file

@ -1,28 +0,0 @@
name: Refactor (Maintainers)
description: Used to track refactoring opportunities.
title: "Refactor: "
labels: ["refactor"]
body:
- type: markdown
attributes:
value: |
Don't forget to [check for existing refactor issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
Also you may want to check [Pull request refactor label as well](https://github.com/ggerganov/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
- type: textarea
id: background-description
attributes:
label: Background Description
description: Please provide a detailed written description of the pain points you are trying to solve.
placeholder: Detailed description behind your motivation to request refactor
validations:
required: true
- type: textarea
id: possible-approaches
attributes:
label: Possible Refactor Approaches
description: If you have some idea of possible approaches to solve this problem. You may want to make it a todo list.
placeholder: Your idea of possible refactoring opportunity/approaches
validations:
required: false

184
.github/ISSUE_TEMPLATE/bug.md vendored Normal file
View file

@ -0,0 +1,184 @@
---
name: Bug template
about: Used to report bugs in llama.cpp
labels: ["bug-unconfirmed"]
assignees: ''
---
# Prerequisites
Please answer the following questions for yourself before submitting an issue.
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
# Expected Behavior
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do.
# Current Behavior
Please provide a detailed written description of what `llama.cpp` did, instead.
# Environment and Context
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
* Physical (or virtual) hardware you are using, e.g. for Linux:
`$ lscpu`
* Operating System, e.g. for Linux:
`$ uname -a`
* SDK version, e.g. for Linux:
```
$ python3 --version
$ make --version
$ g++ --version
```
# Failure Information (for bugs)
Please help provide information about the failure / bug.
# Steps to Reproduce
Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.
1. step 1
2. step 2
3. step 3
4. etc.
# Failure Logs
Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.
Also, please try to **avoid using screenshots** if at all possible. Instead, copy/paste the console output and use [Github's markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to cleanly format your logs for easy readability.
Example environment info:
```
llama.cpp$ git log | head -1
commit 2af23d30434a677c6416812eea52ccc0af65119c
llama.cpp$ lscpu | egrep "AMD|Flags"
Vendor ID: AuthenticAMD
Model name: AMD Ryzen Threadripper 1950X 16-Core Processor
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev
Virtualization: AMD-V
llama.cpp$ python3 --version
Python 3.10.9
llama.cpp$ pip list | egrep "torch|numpy|sentencepiece"
numpy 1.24.2
numpydoc 1.5.0
sentencepiece 0.1.97
torch 1.13.1
torchvision 0.14.1
llama.cpp$ make --version | head -1
GNU Make 4.3
$ md5sum ./models/65B/ggml-model-q4_0.bin
dbdd682cce80e2d6e93cefc7449df487 ./models/65B/ggml-model-q4_0.bin
```
Example run with the Linux command [perf](https://www.brendangregg.com/perf.html)
```
llama.cpp$ perf stat ./main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p "Please close your issue when it has been answered."
main: seed = 1679149377
llama_model_load: loading model from './models/65B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx = 512
llama_model_load: n_embd = 8192
llama_model_load: n_mult = 256
llama_model_load: n_head = 64
llama_model_load: n_layer = 80
llama_model_load: n_rot = 128
llama_model_load: f16 = 2
llama_model_load: n_ff = 22016
llama_model_load: n_parts = 8
llama_model_load: ggml ctx size = 41477.73 MB
llama_model_load: memory_size = 2560.00 MB, n_mem = 40960
llama_model_load: loading model part 1/8 from './models/65B/ggml-model-q4_0.bin'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 2/8 from './models/65B/ggml-model-q4_0.bin.1'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 3/8 from './models/65B/ggml-model-q4_0.bin.2'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 4/8 from './models/65B/ggml-model-q4_0.bin.3'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 5/8 from './models/65B/ggml-model-q4_0.bin.4'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 6/8 from './models/65B/ggml-model-q4_0.bin.5'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 7/8 from './models/65B/ggml-model-q4_0.bin.6'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.7'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
main: prompt: 'Please close your issue when it has been answered.'
main: number of tokens in prompt = 11
1 -> ''
12148 -> 'Please'
3802 -> ' close'
596 -> ' your'
2228 -> ' issue'
746 -> ' when'
372 -> ' it'
756 -> ' has'
1063 -> ' been'
7699 -> ' answered'
29889 -> '.'
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000
Please close your issue when it has been answered.
@duncan-donut: I'm trying to figure out what kind of "support" you need for this script and why, exactly? Is there a question about how the code works that hasn't already been addressed in one or more comments below this ticket, or are we talking something else entirely like some sorta bugfixing job because your server setup is different from mine??
I can understand if your site needs to be running smoothly and you need help with a fix of sorts but there should really be nothing wrong here that the code itself could not handle. And given that I'm getting reports about how it works perfectly well on some other servers, what exactly are we talking? A detailed report will do wonders in helping us get this resolved for ya quickly so please take your time and describe the issue(s) you see as clearly & concisely as possible!!
@duncan-donut: I'm not sure if you have access to cPanel but you could try these instructions. It is worth a shot! Let me know how it goes (or what error message, exactly!) when/if ya give that code a go? [end of text]
main: mem per token = 71159620 bytes
main: load time = 19309.95 ms
main: sample time = 168.62 ms
main: predict time = 223895.61 ms / 888.47 ms per token
main: total time = 246406.42 ms
Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':
3636882.89 msec task-clock # 14.677 CPUs utilized
13509 context-switches # 3.714 /sec
2436 cpu-migrations # 0.670 /sec
10476679 page-faults # 2.881 K/sec
13133115082869 cycles # 3.611 GHz (16.77%)
29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%)
10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%)
23479217109614 instructions # 1.79 insn per cycle
# 0.44 stalled cycles per insn (16.76%)
2353072268027 branches # 647.002 M/sec (16.77%)
1998682780 branch-misses # 0.08% of all branches (16.76%)
247.802177522 seconds time elapsed
3618.573072000 seconds user
18.491698000 seconds sys
```

View file

@ -1,11 +0,0 @@
blank_issues_enabled: true
contact_links:
- name: Got an idea?
url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas
about: Pop it there. It may then become an enhancement ticket.
- name: Got a question?
url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a
about: Ask a question there!
- name: Want to contribute?
url: https://github.com/ggerganov/llama.cpp/wiki/contribute
about: Head to the contribution guide page of the wiki for areas you can help with

28
.github/ISSUE_TEMPLATE/enhancement.md vendored Normal file
View file

@ -0,0 +1,28 @@
---
name: Enhancement template
about: Used to request enhancements for llama.cpp
labels: ["enhancement"]
assignees: ''
---
# Prerequisites
Please answer the following questions for yourself before submitting an issue.
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
# Feature Description
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an enhancement.
# Motivation
Please provide a detailed written description of reasons why this feature is necessary and how it is useful to `llama.cpp` users.
# Possible Implementation
If you have an idea as to how it can be implemented, please write a detailed description. Feel free to give links to external sources or share visuals that might be helpful to understand the details better.

86
.github/labeler.yml vendored
View file

@ -1,86 +0,0 @@
# https://github.com/actions/labeler
Kompute:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-kompute.h
- ggml/src/ggml-kompute/**
- README-kompute.md
Apple Metal:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-metal.h
- ggml/src/ggml-metal/**
- README-metal.md
SYCL:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-sycl.h
- ggml/src/ggml-sycl/**
- docs/backend/SYCL.md
- examples/sycl/**
Nvidia GPU:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-cuda.h
- ggml/src/ggml-cuda/**
Vulkan:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-vulkan.h
- ggml/src/ggml-vulkan/**
documentation:
- changed-files:
- any-glob-to-any-file:
- docs/**
- media/**
testing:
- changed-files:
- any-glob-to-any-file:
- tests/**
build:
- changed-files:
- any-glob-to-any-file:
- cmake/**
- CMakeLists.txt
- CMakePresets.json
examples:
- changed-files:
- any-glob-to-any-file: examples/**
devops:
- changed-files:
- any-glob-to-any-file:
- .devops/**
- .github/**
- ci/**
python:
- changed-files:
- any-glob-to-any-file:
- "**/*.py"
- requirements/**
- gguf-py/**
- .flake8
script:
- changed-files:
- any-glob-to-any-file:
- scripts/**
android:
- changed-files:
- any-glob-to-any-file:
- examples/llama.android/**
server:
- changed-files:
- any-glob-to-any-file:
- examples/server/**
ggml:
- changed-files:
- any-glob-to-any-file:
- ggml/**
nix:
- changed-files:
- any-glob-to-any-file:
- "**/*.nix"
- .github/workflows/nix-*.yml
- .devops/nix/nixpkgs-instances.nix
embedding:
- changed-files:
- any-glob-to-any-file: examples/embedding/

View file

@ -1 +0,0 @@
*Make sure to read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*

View file

@ -1,315 +0,0 @@
# TODO: there have been some issues with the workflow, so disabling for now
# https://github.com/ggerganov/llama.cpp/issues/7893
#
# Benchmark
name: Benchmark
on:
workflow_dispatch:
inputs:
gpu-series:
description: 'Azure GPU series to run with'
required: true
type: choice
options:
- Standard_NC4as_T4_v3
- Standard_NC24ads_A100_v4
- Standard_NC80adis_H100_v5
sha:
description: 'Commit SHA1 to build'
required: false
type: string
duration:
description: 'Duration of the bench'
type: string
default: 10m
push:
branches:
- master
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
pull_request_target:
types: [opened, synchronize, reopened]
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
schedule:
- cron: '04 2 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}-${{ github.event.inputs.sha }}
cancel-in-progress: true
jobs:
bench-server-baseline:
runs-on: Standard_NC4as_T4_v3
env:
RUNNER_LABEL: Standard_NC4as_T4_v3 # FIXME Do not find a way to not duplicate it
N_USERS: 8
DURATION: 10m
strategy:
matrix:
model: [phi-2]
ftype: [q4_0, q8_0, f16]
include:
- model: phi-2
ftype: q4_0
pr_comment_enabled: "true"
if: |
inputs.gpu-series == 'Standard_NC4as_T4_v3'
|| (
github.event_name == 'schedule'
&& github.ref_name == 'master'
&& github.repository_owner == 'ggerganov'
)
|| github.event_name == 'pull_request_target'
|| (
github.event_name == 'push'
&& github.event.ref == 'refs/heads/master'
&& github.repository_owner == 'ggerganov'
)
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Install python env
id: pipenv
run: |
cd examples/server/bench
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
- name: Prometheus
id: install_prometheus
run: |
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
tar xzf prometheus*.tar.gz --strip-components=1
./prometheus --config.file=examples/server/bench/prometheus.yml &
while ! nc -z localhost 9090; do
sleep 0.1
done
- name: Set up Go
uses: actions/setup-go@v5
with:
go-version: '1.21'
- name: Install k6 and xk6-sse
id: k6_installation
run: |
cd examples/server/bench
go install go.k6.io/xk6/cmd/xk6@latest
xk6 build master \
--with github.com/phymbert/xk6-sse
- name: Build
id: cmake_build
run: |
set -eux
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DLLAMA_CUBLAS=ON \
-DCUDAToolkit_ROOT=/usr/local/cuda \
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
-DCMAKE_CUDA_ARCHITECTURES=75 \
-DLLAMA_FATAL_WARNINGS=OFF \
-DLLAMA_ALL_WARNINGS=OFF \
-DCMAKE_BUILD_TYPE=Release;
cmake --build build --config Release -j $(nproc) --target llama-server
- name: Download the dataset
id: download_dataset
run: |
cd examples/server/bench
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
- name: Server bench
id: server_bench
env:
HEAD_REF: ${{ github.head_ref || github.ref_name }}
run: |
set -eux
cd examples/server/bench
source venv/bin/activate
python bench.py \
--runner-label ${{ env.RUNNER_LABEL }} \
--name ${{ github.job }} \
--branch $HEAD_REF \
--commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \
--scenario script.js \
--duration ${{ github.event.inputs.duration || env.DURATION }} \
--hf-repo ggml-org/models \
--hf-file ${{ matrix.model }}/ggml-model-${{ matrix.ftype }}.gguf \
--model-path-prefix /models \
--parallel ${{ env.N_USERS }} \
-ngl 33 \
--batch-size 2048 \
--ubatch-size 256 \
--ctx-size 16384 \
--n-prompts 1000 \
--max-prompt-tokens 1024 \
--max-tokens 2048
cat results.github.env >> $GITHUB_ENV
# Remove dataset as we do not want it in the artefact
rm ShareGPT_V3_unfiltered_cleaned_split.json
- uses: actions/upload-artifact@v4
with:
name: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
compression-level: 9
path: |
examples/server/bench/*.jpg
examples/server/bench/*.json
examples/server/bench/*.log
- name: Commit status
uses: Sibz/github-status-action@v1
with:
authToken: ${{secrets.GITHUB_TOKEN}}
sha: ${{ inputs.sha || github.event.pull_request.head.sha || github.sha }}
context: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
description: |
${{ env.BENCH_RESULTS }}
state: 'success'
- name: Upload benchmark images
uses: devicons/public-upload-to-imgur@v2.2.2
continue-on-error: true # Important as it looks unstable: 503
id: imgur_step
with:
client_id: ${{secrets.IMGUR_CLIENT_ID}}
path: |
examples/server/bench/prompt_tokens_seconds.jpg
examples/server/bench/predicted_tokens_seconds.jpg
examples/server/bench/kv_cache_usage_ratio.jpg
examples/server/bench/requests_processing.jpg
- name: Extract mermaid
id: set_mermaid
run: |
set -eux
cd examples/server/bench
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
PREDICTED_TOKENS_SECONDS=$(cat predicted_tokens_seconds.mermaid)
echo "PREDICTED_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
echo "$PREDICTED_TOKENS_SECONDS" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
KV_CACHE_USAGE_RATIO=$(cat kv_cache_usage_ratio.mermaid)
echo "KV_CACHE_USAGE_RATIO<<EOF" >> $GITHUB_ENV
echo "$KV_CACHE_USAGE_RATIO" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
REQUESTS_PROCESSING=$(cat requests_processing.mermaid)
echo "REQUESTS_PROCESSING<<EOF" >> $GITHUB_ENV
echo "$REQUESTS_PROCESSING" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
- name: Extract image url
id: extract_image_url
continue-on-error: true
run: |
set -eux
echo "IMAGE_O=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[0] }}" >> $GITHUB_ENV
echo "IMAGE_1=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[1] }}" >> $GITHUB_ENV
echo "IMAGE_2=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[2] }}" >> $GITHUB_ENV
echo "IMAGE_3=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[3] }}" >> $GITHUB_ENV
- name: Comment PR
uses: mshick/add-pr-comment@v2
id: comment_pr
if: ${{ github.event.pull_request != '' && matrix.pr_comment_enabled == 'true' }}
with:
message-id: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
message: |
<p align="center">
📈 **llama.cpp server** for _${{ github.job }}_ on _${{ env.RUNNER_LABEL }}_ for `${{ matrix.model }}`-`${{ matrix.ftype }}`: **${{ env.BENCH_ITERATIONS}} iterations** 🚀
</p>
<details>
<summary>Expand details for performance related PR only</summary>
- Concurrent users: ${{ env.N_USERS }}, duration: ${{ github.event.inputs.duration || env.DURATION }}
- HTTP request : avg=${{ env.HTTP_REQ_DURATION_AVG }}ms p(95)=${{ env.HTTP_REQ_DURATION_P_95_ }}ms fails=${{ env.HTTP_REQ_FAILED_PASSES }}, finish reason: stop=${{ env.LLAMACPP_COMPLETIONS_STOP_RATE_PASSES }} truncated=${{ env.LLAMACPP_COMPLETIONS_TRUNCATED_RATE_PASSES }}
- Prompt processing (pp): avg=${{ env.LLAMACPP_PROMPT_PROCESSING_SECOND_AVG }}tk/s p(95)=${{ env.LLAMACPP_PROMPT_PROCESSING_SECOND_P_95_ }}tk/s
- Token generation (tg): avg=${{ env.LLAMACPP_TOKENS_SECOND_AVG }}tk/s p(95)=${{ env.LLAMACPP_TOKENS_SECOND_P_95_ }}tk/s
- ${{ env.BENCH_GRAPH_XLABEL }}
<p align="center">
<img width="100%" height="100%" src="${{ env.IMAGE_O }}" alt="prompt_tokens_seconds" />
<details>
<summary>More</summary>
```mermaid
${{ env.PROMPT_TOKENS_SECONDS }}
```
</details>
<img width="100%" height="100%" src="${{ env.IMAGE_1 }}" alt="predicted_tokens_seconds"/>
<details>
<summary>More</summary>
```mermaid
${{ env.PREDICTED_TOKENS_SECONDS }}
```
</details>
</p>
<details>
<summary>Details</summary>
<p align="center">
<img width="100%" height="100%" src="${{ env.IMAGE_2 }}" alt="kv_cache_usage_ratio" />
<details>
<summary>More</summary>
```mermaid
${{ env.KV_CACHE_USAGE_RATIO }}
```
</details>
<img width="100%" height="100%" src="${{ env.IMAGE_3 }}" alt="requests_processing"/>
<details>
<summary>More</summary>
```mermaid
${{ env.REQUESTS_PROCESSING }}
```
</details>
</p>
</details>
</details>

File diff suppressed because it is too large Load diff

View file

@ -1,28 +0,0 @@
name: Close inactive issues
on:
schedule:
- cron: "42 0 * * *"
# Fine-grant permission
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
permissions:
issues: write
jobs:
close-issues:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
days-before-pr-stale: -1
days-before-pr-close: -1
operations-per-run: 10000
repo-token: ${{ secrets.GITHUB_TOKEN }}

36
.github/workflows/code-coverage.yml vendored Normal file
View file

@ -0,0 +1,36 @@
name: Code Coverage
on: [push, pull_request]
env:
GGML_NLOOP: 3
GGML_N_THREADS: 1
jobs:
run:
runs-on: ubuntu-20.04
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential gcc-8 lcov
- name: Build
run: CC=gcc-8 make -j LLAMA_CODE_COVERAGE=1 tests
- name: Run tests
run: CC=gcc-8 make test
- name: Generate coverage report
run: |
make coverage
make lcov-report
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
env:
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
with:
files: lcov-report/coverage.info

View file

@ -10,50 +10,40 @@
name: Publish Docker image
on:
workflow_dispatch: # allows manual triggering
schedule:
# Rebuild daily rather than on every push because it is expensive
- cron: '12 4 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
# Fine-grant permission
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
permissions:
packages: write
pull_request:
push:
branches:
- master
jobs:
push_to_registry:
name: Push Docker image to Docker Hub
if: github.event.pull_request.draft == false
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
fail-fast: false
matrix:
config:
# Multi-stage build
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false}
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: true }
- { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
# have disabled them for now until the reason why
# is understood.
- { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
steps:
- name: Check out the repo
uses: actions/checkout@v4
with:
fetch-depth: 0 # preserve git history, so we can determine the build number
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
uses: docker/setup-qemu-action@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
uses: docker/setup-buildx-action@v2
- name: Log in to Docker Hub
uses: docker/login-action@v2
@ -62,112 +52,21 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
REPO_OWNER="${GITHUB_REPOSITORY_OWNER@L}" # to lower case
REPO_NAME="${{ github.event.repository.name }}"
# determine tag name postfix (build number, commit hash)
if [[ "${{ env.GITHUB_BRANCH_NAME }}" == "master" ]]; then
TAG_POSTFIX="-b${BUILD_NUMBER}"
else
SAFE_NAME=$(echo "${{ env.GITHUB_BRANCH_NAME }}" | tr '/' '-')
TAG_POSTFIX="-${SAFE_NAME}-${SHORT_HASH}"
fi
# list all tags possible
if [[ "${{ matrix.config.tag }}" == "cpu" ]]; then
TYPE=""
else
TYPE="-${{ matrix.config.tag }}"
fi
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}${TAG_POSTFIX}"
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}${TAG_POSTFIX}"
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}${TAG_POSTFIX}"
echo "full_output_tags=$FULLTAGS" >> $GITHUB_OUTPUT
echo "light_output_tags=$LIGHTTAGS" >> $GITHUB_OUTPUT
echo "server_output_tags=$SERVERTAGS" >> $GITHUB_OUTPUT
echo "full_output_tags=$FULLTAGS" # print out for debugging
echo "light_output_tags=$LIGHTTAGS" # print out for debugging
echo "server_output_tags=$SERVERTAGS" # print out for debugging
env:
GITHUB_BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
- name: Free Disk Space (Ubuntu)
if: ${{ matrix.config.free_disk_space == true }}
uses: ggml-org/free-disk-space@v1.3.1
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: false
# all of these default to true, but feel free to set to
# "false" if necessary for your workflow
android: true
dotnet: true
haskell: true
large-packages: true
docker-images: true
swap-storage: true
- name: Build and push Full Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.full == true }}
uses: docker/build-push-action@v6
- name: Build and push Docker image (versioned)
if: github.event_name == 'push'
uses: docker/build-push-action@v4
with:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
# tag list is generated from step above
tags: ${{ steps.tag.outputs.full_output_tags }}
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
target: full
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
- name: Build and push Light Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.light == true }}
uses: docker/build-push-action@v6
- name: Build and push Docker image (tagged)
uses: docker/build-push-action@v4
with:
context: .
push: true
push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platforms }}
# tag list is generated from step above
tags: ${{ steps.tag.outputs.light_output_tags }}
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}"
file: ${{ matrix.config.dockerfile }}
target: light
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
- name: Build and push Server Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.server == true }}
uses: docker/build-push-action@v6
with:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
# tag list is generated from step above
tags: ${{ steps.tag.outputs.server_output_tags }}
file: ${{ matrix.config.dockerfile }}
target: server
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache

View file

@ -1,12 +1,6 @@
name: EditorConfig Checker
on:
workflow_dispatch: # allows manual triggering
inputs:
create_release:
description: 'Create new release'
required: true
type: boolean
push:
branches:
- master
@ -14,16 +8,10 @@ on:
branches:
- master
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
editorconfig:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: editorconfig-checker/action-editorconfig-checker@v2
with:
version: v3.0.3
- uses: actions/checkout@v3
- uses: editorconfig-checker/action-editorconfig-checker@main
- run: editorconfig-checker

View file

@ -24,9 +24,9 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v2
with:
python-version: '3.9.x'
- name: Install dependencies

View file

@ -1,17 +0,0 @@
name: "Pull Request Labeler"
on:
- pull_request_target
jobs:
labeler:
permissions:
contents: read
pull-requests: write
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
repository: "ggerganov/llama.cpp"
- uses: actions/labeler@v5
with:
configuration-path: '.github/labeler.yml'

View file

@ -1,33 +0,0 @@
name: Python check requirements.txt
on:
push:
paths:
- '.github/workflows/python-check-requirements.yml'
- 'scripts/check-requirements.sh'
- 'convert*.py'
- '**/requirements*.txt'
pull_request:
paths:
- '.github/workflows/python-check-requirements.yml'
- 'scripts/check-requirements.sh'
- 'convert*.py'
- '**/requirements*.txt'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
python-check-requirements:
runs-on: ubuntu-latest
name: check-requirements
steps:
- name: Check out source repository
uses: actions/checkout@v4
- name: Set up Python environment
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Run check-requirements.sh script
run: bash scripts/check-requirements.sh

View file

@ -1,17 +1,6 @@
name: flake8 Lint
on:
push:
branches:
- master
paths: ['.github/workflows/python-lint.yml', '**/*.py']
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/python-lint.yml', '**/*.py']
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
on: [push, pull_request]
jobs:
flake8-lint:
@ -19,12 +8,13 @@ jobs:
name: Lint
steps:
- name: Check out source repository
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: flake8 Lint
uses: py-actions/flake8@v2
with:
plugins: "flake8-no-print"
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704"
exclude: "examples/*,examples/*/**,*/**/__init__.py"

View file

@ -1,40 +0,0 @@
name: Python Type-Check
on:
push:
paths:
- '.github/workflows/python-type-check.yml'
- 'pyrightconfig.json'
- '**.py'
- '**/requirements*.txt'
pull_request:
paths:
- '.github/workflows/python-type-check.yml'
- 'pyrightconfig.json'
- '**.py'
- '**/requirements*.txt'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
python-type-check:
runs-on: ubuntu-latest
name: pyright type-check
steps:
- name: Check out source repository
uses: actions/checkout@v4
- name: Set up Python environment
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install Python dependencies
# TODO: use a venv
run: pip install -r requirements/requirements-all.txt
- name: Type-check with Pyright
uses: jakebailey/pyright-action@v2
with:
version: 1.1.382
level: warning
warnings: true

View file

@ -1,239 +0,0 @@
# Server build and tests
name: Server
on:
workflow_dispatch: # allows manual triggering
inputs:
sha:
description: 'Commit SHA1 to build'
required: false
type: string
slow_tests:
description: 'Run slow tests'
required: true
type: boolean
push:
branches:
- master
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
env:
LLAMA_LOG_COLORS: 1
LLAMA_LOG_PREFIX: 1
LLAMA_LOG_TIMESTAMPS: 1
LLAMA_LOG_VERBOSITY: 10
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
server:
runs-on: ubuntu-latest
strategy:
matrix:
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
build_type: [RelWithDebInfo]
include:
- build_type: Release
sanitizer: ""
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
steps:
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get -y install \
build-essential \
xxd \
git \
cmake \
curl \
wget \
language-pack-en \
libcurl4-openssl-dev
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
# Setup nodejs (to be used for verifying bundled index.html)
- uses: actions/setup-node@v4
with:
node-version: '22.11.0'
- name: WebUI - Install dependencies
id: webui_lint
run: |
cd examples/server/webui
npm ci
- name: WebUI - Check code format
id: webui_format
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server/webui
git status
npm run format
git status
modified_files="$(git status -s)"
echo "Modified files: ${modified_files}"
if [ -n "${modified_files}" ]; then
echo "Files do not follow coding style. To fix: npm run format"
echo "${modified_files}"
exit 1
fi
- name: Verify bundled index.html
id: verify_server_index_html
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server/webui
git status
npm run build
git status
modified_files="$(git status -s)"
echo "Modified files: ${modified_files}"
if [ -n "${modified_files}" ]; then
echo "Repository is dirty or server/webui is not built as expected"
echo "Hint: You may need to follow Web UI build guide in server/README.md"
echo "${modified_files}"
exit 1
fi
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build_sanitizers
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build
if: ${{ matrix.sanitizer == '' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
run: |
cd examples/server/tests
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd examples/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
SLOW_TESTS=1 ./tests.sh
server-windows:
runs-on: windows-2019
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: libCURL
id: get_libcurl
env:
CURL_VERSION: 8.6.0_6
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
- name: Build
id: cmake_build
run: |
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
- name: Copy Libcurl
id: prepare_libcurl
run: |
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
- name: Tests
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
run: |
cd examples/server/tests
$env:PYTHONIOENCODING = ":replace"
pytest -v -x -m "not slow"
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
$env:SLOW_TESTS = "1"
pytest -v -x

20
.github/workflows/tidy-post.yml vendored Normal file
View file

@ -0,0 +1,20 @@
name: clang-tidy review post comments
on:
workflow_dispatch:
workflows: ["clang-tidy-review"]
types:
- completed
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: ZedThree/clang-tidy-review/post@v0.13.0
# lgtm_comment_body, max_comments, and annotations need to be set on the posting workflow in a split setup
with:
# adjust options as necessary
lgtm_comment_body: ''
annotations: false
max_comments: 25

23
.github/workflows/tidy-review.yml vendored Normal file
View file

@ -0,0 +1,23 @@
name: clang-tidy-review
on:
pull_request:
branches:
- master
jobs:
clang-tidy-review:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: ZedThree/clang-tidy-review@v0.13.0
id: review
with:
lgtm_comment_body: ''
build_dir: build
cmake_command: cmake . -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=on
split_workflow: true
- uses: ZedThree/clang-tidy-review/upload@v0.13.0

25
.github/workflows/zig-build.yml vendored Normal file
View file

@ -0,0 +1,25 @@
name: Zig CI
on:
pull_request:
push:
branches:
- master
jobs:
build:
strategy:
fail-fast: false
matrix:
runs-on: [ubuntu-latest, macos-latest, windows-latest]
runs-on: ${{ matrix.runs-on }}
steps:
- uses: actions/checkout@v3
with:
submodules: recursive
fetch-depth: 0
- uses: goto-bus-stop/setup-zig@v2
with:
version: 0.11.0
- name: Build Summary
run: zig build --summary all -freference-trace

175
.gitignore vendored
View file

@ -1,145 +1,104 @@
# Extensions
*.a
*.bat
*.bin
*.d
*.dll
*.dot
*.etag
*.exe
*.gcda
*.gcno
*.gcov
*.gguf
*.gguf.json
*.lastModified
*.log
*.metallib
*.o
*.a
*.so
*.swp
*.tmp
# IDE / OS
*.gguf
*.bin
*.exe
*.dll
*.log
*.gcov
*.gcno
*.gcda
*.dot
*.bat
*.metallib
.DS_Store
.build/
.cache/
.ccls-cache/
.direnv/
.DS_Store
.envrc
.idea/
.swiftpm
.venv
.clang-tidy
.vs/
.vscode/
nppBackup
# Coverage
gcovr-report/
lcov-report/
gcovr-report/
# Build Artifacts
tags
.build/
build*
!build-info.cmake
!build-info.cpp.in
!build-info.sh
!build.zig
!docs/build.md
/libllama.so
/llama-*
/vulkan-shaders-gen
android-ndk-*
arm_neon.h
cmake-build-*
CMakeSettings.json
compile_commands.json
ggml-metal-embed.metal
llama-batched-swift
/rpc-server
build*/
out/
tmp/
autogen-*.md
# Deprecated
/main
/server
# CI
!.github/workflows/*.yml
# Models
models/*
models-mnt
!models/.editorconfig
!models/ggml-vocab-*.gguf*
# Zig
/Pipfile
/baby-llama
/beam-search
/benchmark-matmult
/convert-llama2c-to-ggml
/embd-input-test
/embedding
/gguf
/gguf-llama-simple
/infill
/libllama.so
/llama-bench
/llava-cli
/lookahead
/main
/metal
/perplexity
/q8dot
/quantize
/quantize-stats
/result
/save-load-state
/server
/simple
/batched
/batched-bench
/export-lora
/finetune
/speculative
/parallel
/train-text-from-scratch
/tokenize
/vdot
/common/build-info.cpp
arm_neon.h
compile_commands.json
CMakeSettings.json
__pycache__
dist
zig-out/
zig-cache/
# Logs
ppl-*.txt
qnt-*.txt
perf-*.txt
# Examples
examples/jeopardy/results.txt
examples/server/*.css.hpp
examples/server/*.html.hpp
examples/server/*.js.hpp
examples/server/*.mjs.hpp
!build_64.sh
!examples/*.bat
!examples/*/*.kts
!examples/*/*/*.kts
!examples/sycl/*.bat
!examples/sycl/*.sh
# Server Web UI temporary files
node_modules
examples/server/webui/dist
# Python
/.venv
__pycache__/
*/poetry.lock
poetry.lock
poetry.toml
# Nix
/result
# Test binaries
/tests/test-backend-ops
/tests/test-double-float
/tests/test-grad0
/tests/test-grammar-parser
/tests/test-llama-grammar
/tests/test-double-float
/tests/test-grad0
/tests/test-opt
/tests/test-quantize-fns
/tests/test-quantize-perf
/tests/test-rope
/tests/test-sampling
/tests/test-tokenizer-0
/tests/test-tokenizer-0-llama
/tests/test-tokenizer-0-falcon
/tests/test-tokenizer-1-llama
/tests/test-tokenizer-1-bpe
/tests/test-tokenizer-1-spm
# Scripts
!/scripts/install-oneapi.bat
# Test models for lora adapters
/lora-tests
# Local scripts
/run-vim.sh
/run-chat.sh
/tests/test-rope
/tests/test-backend-ops

3
.gitmodules vendored
View file

@ -1,3 +0,0 @@
[submodule "kompute"]
path = ggml/src/ggml-kompute/kompute
url = https://github.com/nomic-ai/kompute.git

View file

@ -3,14 +3,13 @@
exclude: prompts/.*.txt
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.6.0
rev: v3.2.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- repo: https://github.com/PyCQA/flake8
rev: 7.0.0
rev: 6.0.0
hooks:
- id: flake8
additional_dependencies: [flake8-no-print]

1047
AUTHORS

File diff suppressed because it is too large Load diff

View file

@ -1,9 +1,5 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
cmake_minimum_required(VERSION 3.13) # for add_link_options
project("llama.cpp" C CXX)
include(CheckIncludeFileCXX)
#set(CMAKE_WARN_DEPRECATED YES)
set(CMAKE_WARN_UNUSED_CLI YES)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@ -12,17 +8,11 @@ if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(LLAMA_STANDALONE ON)
include(git-vars)
# configure project version
# TODO
else()
@ -41,139 +31,738 @@ else()
endif()
endif()
option(BUILD_SHARED_LIBS "build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
if (WIN32)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
endif()
if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/bigobj>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
endif()
#
# option list
# Option list
#
if (APPLE)
set(LLAMA_METAL_DEFAULT ON)
else()
set(LLAMA_METAL_DEFAULT OFF)
endif()
# general
option(BUILD_SHARED_LIBS "build shared libraries" OFF)
option(LLAMA_STATIC "llama: static link libraries" OFF)
option(LLAMA_NATIVE "llama: enable -march=native flag" ON)
option(LLAMA_LTO "llama: enable link time optimization" OFF)
# debug
option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings" ON)
option(LLAMA_ALL_WARNINGS_3RD_PARTY "llama: enable all compiler warnings in 3rd party libs" OFF)
# build
option(LLAMA_FATAL_WARNINGS "llama: enable -Werror flag" OFF)
option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings" ON)
option(LLAMA_ALL_WARNINGS_3RD_PARTY "llama: enable all compiler warnings in 3rd party libs" OFF)
option(LLAMA_GPROF "llama: enable gprof" OFF)
# sanitizers
option(LLAMA_SANITIZE_THREAD "llama: enable thread sanitizer" OFF)
option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" OFF)
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
option(LLAMA_SANITIZE_THREAD "llama: enable thread sanitizer" OFF)
option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" OFF)
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
# utils
option(LLAMA_BUILD_COMMON "llama: build common utils library" ${LLAMA_STANDALONE})
# instruction set specific
if (LLAMA_NATIVE)
set(INS_ENB OFF)
else()
set(INS_ENB ON)
endif()
# extra artifacts
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
option(LLAMA_AVX "llama: enable AVX" ${INS_ENB})
option(LLAMA_AVX2 "llama: enable AVX2" ${INS_ENB})
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
option(LLAMA_FMA "llama: enable FMA" ${INS_ENB})
# in MSVC F16C is implied with AVX2/AVX512
if (NOT MSVC)
option(LLAMA_F16C "llama: enable F16C" ${INS_ENB})
endif()
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
option(LLAMA_BLAS "llama: use BLAS" OFF)
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
option(LLAMA_CUBLAS "llama: use CUDA" OFF)
#option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF)
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
option(LLAMA_CUDA_FORCE_MMQ "llama: use mmq kernels instead of cuBLAS" OFF)
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some calculations" OFF)
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"llama: max. batch size for using peer access")
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
# override ggml options
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
#
# Compile flags
#
# change the default for these ggml options
if (NOT DEFINED GGML_LLAMAFILE)
set(GGML_LLAMAFILE_DEFAULT ON)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED true)
set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED true)
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
include(CheckCXXCompilerFlag)
# enable libstdc++ assertions for debug builds
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions($<$<CONFIG:Debug>:_GLIBCXX_ASSERTIONS>)
endif()
if (NOT DEFINED GGML_CUDA_GRAPHS)
set(GGML_CUDA_GRAPHS_DEFAULT ON)
endif()
# transition helpers
function (llama_option_depr TYPE OLD NEW)
if (${OLD})
message(${TYPE} "${OLD} is deprecated and will be removed in the future.\nUse ${NEW} instead\n")
set(${NEW} ON PARENT_SCOPE)
endif()
endfunction()
llama_option_depr(FATAL_ERROR LLAMA_CUBLAS GGML_CUDA)
llama_option_depr(WARNING LLAMA_CUDA GGML_CUDA)
llama_option_depr(WARNING LLAMA_KOMPUTE GGML_KOMPUTE)
llama_option_depr(WARNING LLAMA_METAL GGML_METAL)
llama_option_depr(WARNING LLAMA_METAL_EMBED_LIBRARY GGML_METAL_EMBED_LIBRARY)
llama_option_depr(WARNING LLAMA_NATIVE GGML_NATIVE)
llama_option_depr(WARNING LLAMA_RPC GGML_RPC)
llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD)
message(STATUS "Using -fsanitize=thread")
add_compile_options(-fsanitize=thread)
link_libraries (-fsanitize=thread)
link_libraries(-fsanitize=thread)
endif()
if (LLAMA_SANITIZE_ADDRESS)
message(STATUS "Using -fsanitize=address")
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
link_libraries (-fsanitize=address)
link_libraries(-fsanitize=address)
endif()
if (LLAMA_SANITIZE_UNDEFINED)
message(STATUS "Using -fsanitize=undefined")
add_compile_options(-fsanitize=undefined)
link_libraries (-fsanitize=undefined)
link_libraries(-fsanitize=undefined)
endif()
endif()
#
# 3rd-party
#
if (APPLE AND LLAMA_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
if (NOT TARGET ggml)
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
add_compile_definitions(GGML_USE_ACCELERATE)
add_compile_definitions(ACCELERATE_NEW_LAPACK)
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
else()
message(WARNING "Accelerate framework not found")
endif()
endif()
if (LLAMA_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
message(STATUS "Metal framework found")
set(GGML_HEADERS_METAL ggml-metal.h)
set(GGML_SOURCES_METAL ggml-metal.m)
add_compile_definitions(GGML_USE_METAL)
if (LLAMA_METAL_NDEBUG)
add_compile_definitions(GGML_METAL_NDEBUG)
endif()
# get full path to the file
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
)
endif()
if (LLAMA_BLAS)
if (LLAMA_STATIC)
set(BLA_STATIC ON)
endif()
if ($(CMAKE_VERSION) VERSION_GREATER_EQUAL 3.22)
set(BLA_SIZEOF_INTEGER 8)
endif()
set(BLA_VENDOR ${LLAMA_BLAS_VENDOR})
find_package(BLAS)
if (BLAS_FOUND)
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
if ("${BLAS_INCLUDE_DIRS}" STREQUAL "")
# BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
# see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
find_package(PkgConfig REQUIRED)
if (${LLAMA_BLAS_VENDOR} MATCHES "Generic")
pkg_check_modules(DepBLAS REQUIRED blas)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "OpenBLAS")
pkg_check_modules(DepBLAS REQUIRED openblas)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FLAME")
pkg_check_modules(DepBLAS REQUIRED blis)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "ATLAS")
pkg_check_modules(DepBLAS REQUIRED blas-atlas)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FlexiBLAS")
pkg_check_modules(DepBLAS REQUIRED flexiblas_api)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "Intel")
# all Intel* libraries share the same include path
pkg_check_modules(DepBLAS REQUIRED mkl-sdl)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "NVHPC")
# this doesn't provide pkg-config
# suggest to assign BLAS_INCLUDE_DIRS on your own
if ("${NVHPC_VERSION}" STREQUAL "")
message(WARNING "Better to set NVHPC_VERSION")
else()
set(DepBLAS_FOUND ON)
set(DepBLAS_INCLUDE_DIRS "/opt/nvidia/hpc_sdk/${CMAKE_SYSTEM_NAME}_${CMAKE_SYSTEM_PROCESSOR}/${NVHPC_VERSION}/math_libs/include")
endif()
endif()
if (DepBLAS_FOUND)
set(BLAS_INCLUDE_DIRS ${DepBLAS_INCLUDE_DIRS})
else()
message(WARNING "BLAS_INCLUDE_DIRS neither been provided nor been automatically"
" detected by pkgconfig, trying to find cblas.h from possible paths...")
find_path(BLAS_INCLUDE_DIRS
NAMES cblas.h
HINTS
/usr/include
/usr/local/include
/usr/include/openblas
/opt/homebrew/opt/openblas/include
/usr/local/opt/openblas/include
/usr/include/x86_64-linux-gnu/openblas/include
)
endif()
endif()
message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}")
add_compile_options(${BLAS_LINKER_FLAGS})
add_compile_definitions(GGML_USE_OPENBLAS)
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${LLAMA_BLAS_VENDOR} MATCHES "Generic" OR ${LLAMA_BLAS_VENDOR} MATCHES "Intel"))
add_compile_definitions(GGML_BLAS_USE_MKL)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES})
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS})
else()
message(WARNING "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
" to set correct LLAMA_BLAS_VENDOR")
endif()
endif()
if (LLAMA_QKK_64)
add_compile_definitions(GGML_QKK_64)
endif()
if (LLAMA_CUBLAS)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
if (CUDAToolkit_FOUND)
message(STATUS "cuBLAS found")
enable_language(CUDA)
set(GGML_HEADERS_CUDA ggml-cuda.h)
set(GGML_SOURCES_CUDA ggml-cuda.cu)
add_compile_definitions(GGML_USE_CUBLAS)
# if (LLAMA_CUDA_CUBLAS)
# add_compile_definitions(GGML_CUDA_CUBLAS)
# endif()
if (LLAMA_CUDA_FORCE_DMMV)
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
endif()
if (LLAMA_CUDA_FORCE_MMQ)
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
endif()
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
if (DEFINED LLAMA_CUDA_DMMV_Y)
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_DMMV_Y}) # for backwards compatibility
endif()
if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16)
add_compile_definitions(GGML_CUDA_F16)
endif()
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${LLAMA_CUDA_PEER_MAX_BATCH_SIZE})
if (LLAMA_STATIC)
if (WIN32)
# As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
else ()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
endif()
else()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
# 52 == lowest CUDA 12 standard
# 60 == f16 CUDA intrinsics
# 61 == integer CUDA intrinsics
# 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16)
set(CMAKE_CUDA_ARCHITECTURES "60;61;70") # needed for f16 CUDA intrinsics
else()
set(CMAKE_CUDA_ARCHITECTURES "52;61;70") # lowest CUDA 12 standard + lowest for integer intrinsics
#set(CMAKE_CUDA_ARCHITECTURES "") # use this to compile much faster, but only F16 models work
endif()
endif()
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
else()
message(WARNING "cuBLAS not found")
endif()
endif()
if (LLAMA_MPI)
cmake_minimum_required(VERSION 3.10)
find_package(MPI)
if (MPI_C_FOUND)
message(STATUS "MPI found")
set(GGML_HEADERS_MPI ggml-mpi.h)
set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h)
add_compile_definitions(GGML_USE_MPI)
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
if (NOT MSVC)
add_compile_options(-Wno-cast-qual)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
# Even if you're only using the C header, C++ programs may bring in MPI
# C++ functions, so more linkage is needed
if (MPI_CXX_FOUND)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_CXX_LIBRARIES})
endif()
else()
message(WARNING "MPI not found")
endif()
endif()
if (LLAMA_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
message(STATUS "CLBlast found")
set(GGML_HEADERS_OPENCL ggml-opencl.h)
set(GGML_SOURCES_OPENCL ggml-opencl.cpp)
add_compile_definitions(GGML_USE_CLBLAST)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} clblast)
else()
message(WARNING "CLBlast not found")
endif()
endif()
if (LLAMA_HIPBLAS)
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
endif()
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
endif()
find_package(hip)
find_package(hipblas)
find_package(rocblas)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
if (BUILD_SHARED_LIBS)
set_target_properties(ggml-rocm PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
if (LLAMA_CUDA_FORCE_DMMV)
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_FORCE_DMMV)
endif()
if (LLAMA_CUDA_FORCE_MMQ)
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_FORCE_MMQ)
endif()
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
target_compile_definitions(ggml-rocm PRIVATE K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
if (LLAMA_STATIC)
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ggml-rocm)
else()
message(WARNING "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
endif()
endif()
function(get_flags CCID CCVER)
set(C_FLAGS "")
set(CXX_FLAGS "")
if (CCID MATCHES "Clang")
set(C_FLAGS -Wunreachable-code-break -Wunreachable-code-return)
set(CXX_FLAGS -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi)
if (
(CCID STREQUAL "Clang" AND CCVER VERSION_GREATER_EQUAL 3.8.0) OR
(CCID STREQUAL "AppleClang" AND CCVER VERSION_GREATER_EQUAL 7.3.0)
)
set(C_FLAGS ${C_FLAGS} -Wdouble-promotion)
endif()
elseif (CCID STREQUAL "GNU")
set(C_FLAGS -Wdouble-promotion)
set(CXX_FLAGS -Wno-array-bounds)
if (CCVER VERSION_GREATER_EQUAL 7.1.0)
set(CXX_FLAGS ${CXX_FLAGS} -Wno-format-truncation)
endif()
if (CCVER VERSION_GREATER_EQUAL 8.1.0)
set(CXX_FLAGS ${CXX_FLAGS} -Wextra-semi)
endif()
endif()
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
endfunction()
if (LLAMA_ALL_WARNINGS)
if (NOT MSVC)
set(WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
set(C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
-Werror=implicit-int -Werror=implicit-function-declaration)
set(CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
set(C_FLAGS ${WARNING_FLAGS} ${C_FLAGS})
set(CXX_FLAGS ${WARNING_FLAGS} ${CXX_FLAGS})
get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${C_FLAGS};${GF_C_FLAGS}>"
"$<$<COMPILE_LANGUAGE:CXX>:${CXX_FLAGS};${GF_CXX_FLAGS}>")
else()
# todo : msvc
set(C_FLAGS "")
set(CXX_FLAGS "")
endif()
endif()
if (LLAMA_CUBLAS)
set(CUDA_FLAGS ${CXX_FLAGS} -use_fast_math)
if (NOT MSVC)
set(CUDA_FLAGS ${CUDA_FLAGS} -Wno-pedantic)
endif()
if (LLAMA_ALL_WARNINGS AND NOT MSVC)
set(NVCC_CMD ${CMAKE_CUDA_COMPILER} .c)
if (NOT CMAKE_CUDA_HOST_COMPILER STREQUAL "")
set(NVCC_CMD ${NVCC_CMD} -ccbin ${CMAKE_CUDA_HOST_COMPILER})
endif()
execute_process(
COMMAND ${NVCC_CMD} -Xcompiler --version
OUTPUT_VARIABLE CUDA_CCFULLVER
ERROR_QUIET
)
if (NOT CUDA_CCFULLVER MATCHES clang)
set(CUDA_CCID "GNU")
execute_process(
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
OUTPUT_VARIABLE CUDA_CCVER
ERROR_QUIET
)
else()
if (CUDA_CCFULLVER MATCHES Apple)
set(CUDA_CCID "AppleClang")
else()
set(CUDA_CCID "Clang")
endif()
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
endif()
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
get_flags(${CUDA_CCID} ${CUDA_CCVER})
list(JOIN GF_CXX_FLAGS " " CUDA_CXX_FLAGS) # pass host compiler flags as a single argument
if (NOT CUDA_CXX_FLAGS STREQUAL "")
set(CUDA_FLAGS ${CUDA_FLAGS} -Xcompiler ${CUDA_CXX_FLAGS})
endif()
endif()
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${CUDA_FLAGS}>")
endif()
if (WIN32)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
if (BUILD_SHARED_LIBS)
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
endif()
endif()
if (LLAMA_LTO)
include(CheckIPOSupported)
check_ipo_supported(RESULT result OUTPUT output)
if (result)
set(CMAKE_INTERPROCEDURAL_OPTIMIZATION TRUE)
else()
message(WARNING "IPO is not supported: ${output}")
endif()
endif()
# this version of Apple ld64 is buggy
execute_process(
COMMAND ${CMAKE_C_COMPILER} ${CMAKE_EXE_LINKER_FLAGS} -Wl,-v
ERROR_VARIABLE output
OUTPUT_QUIET
)
if (output MATCHES "dyld-1015\.7")
add_compile_definitions(HAVE_BUGGY_APPLE_LINKER)
endif()
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
if (MSVC)
string(TOLOWER "${CMAKE_GENERATOR_PLATFORM}" CMAKE_GENERATOR_PLATFORM_LWR)
message(STATUS "CMAKE_GENERATOR_PLATFORM: ${CMAKE_GENERATOR_PLATFORM}")
else ()
set(CMAKE_GENERATOR_PLATFORM_LWR "")
endif ()
if (NOT MSVC)
if (LLAMA_STATIC)
add_link_options(-static)
if (MINGW)
add_link_options(-static-libgcc -static-libstdc++)
endif()
endif()
if (LLAMA_GPROF)
add_compile_options(-pg)
endif()
endif()
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64"))
message(STATUS "ARM detected")
if (MSVC)
add_compile_definitions(__ARM_NEON)
add_compile_definitions(__ARM_FEATURE_FMA)
add_compile_definitions(__ARM_FEATURE_DOTPROD)
# add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) # MSVC doesn't support vdupq_n_f16, vld1q_f16, vst1q_f16
add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead
else()
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
add_compile_options(-mfp16-format=ieee)
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
# Raspberry Pi 1, Zero
add_compile_options(-mfpu=neon-fp-armv8 -mno-unaligned-access)
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
# Raspberry Pi 2
add_compile_options(-mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
# Raspberry Pi 3, 4, Zero 2 (32-bit)
add_compile_options(-mno-unaligned-access)
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "^(x86_64|i686|amd64|x64)$" )
message(STATUS "x86 detected")
if (MSVC)
# instruction set detection for MSVC only
if (LLAMA_NATIVE)
include(cmake/FindSIMD.cmake)
endif ()
if (LLAMA_AVX512)
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX512>)
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX512>)
# MSVC has no compile-time flags enabling specific
# AVX512 extensions, neither it defines the
# macros corresponding to the extensions.
# Do it manually.
if (LLAMA_AVX512_VBMI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
endif()
if (LLAMA_AVX512_VNNI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
endif()
elseif (LLAMA_AVX2)
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX2>)
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX2>)
elseif (LLAMA_AVX)
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX>)
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX>)
endif()
else()
if (LLAMA_NATIVE)
add_compile_options(-march=native)
endif()
if (LLAMA_F16C)
add_compile_options(-mf16c)
endif()
if (LLAMA_FMA)
add_compile_options(-mfma)
endif()
if (LLAMA_AVX)
add_compile_options(-mavx)
endif()
if (LLAMA_AVX2)
add_compile_options(-mavx2)
endif()
if (LLAMA_AVX512)
add_compile_options(-mavx512f)
add_compile_options(-mavx512bw)
endif()
if (LLAMA_AVX512_VBMI)
add_compile_options(-mavx512vbmi)
endif()
if (LLAMA_AVX512_VNNI)
add_compile_options(-mavx512vnni)
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
message(STATUS "PowerPC detected")
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
add_compile_options(-mcpu=powerpc64le)
else()
add_compile_options(-mcpu=native -mtune=native)
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
endif()
else()
message(STATUS "Unknown architecture")
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=0x602)
endif()
#
# build the library
# POSIX conformance
#
add_subdirectory(src)
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
add_compile_definitions(_XOPEN_SOURCE=600)
# Somehow in OpenBSD whenever POSIX conformance is specified
# some string functions rely on locale_t availability,
# which was introduced in POSIX.1-2008, forcing us to go higher
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
remove_definitions(-D_XOPEN_SOURCE=600)
add_compile_definitions(_XOPEN_SOURCE=700)
endif()
# Data types, macros and functions related to controlling CPU affinity and
# some memory allocation are available on Linux through GNU extensions in libc
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions(_GNU_SOURCE)
endif()
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
# similarly on DragonFly, enabling BSD extensions is necessary
if (
CMAKE_SYSTEM_NAME MATCHES "Darwin" OR
CMAKE_SYSTEM_NAME MATCHES "iOS" OR
CMAKE_SYSTEM_NAME MATCHES "tvOS" OR
CMAKE_SYSTEM_NAME MATCHES "DragonFly"
)
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
# alloca is a non-standard interface that is not visible on BSDs when
# POSIX conformance is specified, but not all of them provide a clean way
# to enable it in such cases
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
add_compile_definitions(__BSD_VISIBLE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
add_compile_definitions(_NETBSD_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
add_compile_definitions(_BSD_SOURCE)
endif()
#
# utils, programs, examples and tests
# libraries
#
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
# ggml
if (GGML_USE_CPU_HBM)
add_definitions(-DGGML_USE_CPU_HBM)
find_library(memkind memkind REQUIRED)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest)
add_subdirectory(tests)
add_library(ggml OBJECT
ggml.c
ggml.h
ggml-alloc.c
ggml-alloc.h
ggml-backend.c
ggml-backend.h
ggml-quants.c
ggml-quants.h
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
)
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
target_compile_features(ggml PUBLIC c_std_11) # don't bump
target_link_libraries(ggml PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
if (GGML_USE_CPU_HBM)
target_link_libraries(ggml PUBLIC memkind)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
add_library(ggml_static STATIC $<TARGET_OBJECTS:ggml>)
if (BUILD_SHARED_LIBS)
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
add_library(ggml_shared SHARED $<TARGET_OBJECTS:ggml>)
target_link_libraries(ggml_shared PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
install(TARGETS ggml_shared LIBRARY)
endif()
# llama
add_library(llama
llama.cpp
llama.h
)
target_include_directories(llama PUBLIC .)
target_compile_features(llama PUBLIC cxx_std_11) # don't bump
target_link_libraries(llama PRIVATE
ggml
${LLAMA_EXTRA_LIBS}
)
if (BUILD_SHARED_LIBS)
set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
if (LLAMA_METAL)
set_target_properties(llama PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
endif()
endif()
#
# install
#
@ -181,43 +770,46 @@ endif()
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR}
CACHE PATH "Location of header files")
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR}
CACHE PATH "Location of library files")
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR}
CACHE PATH "Location of binary files")
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
set(LLAMA_PUBLIC_HEADERS
${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h
${CMAKE_CURRENT_SOURCE_DIR}/include/llama-cpp.h)
set_target_properties(llama
PROPERTIES
PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
install(TARGETS llama LIBRARY PUBLIC_HEADER)
get_directory_property(LLAMA_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
configure_package_config_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/llama-config.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/llama-config.cmake
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/llama
${CMAKE_CURRENT_SOURCE_DIR}/scripts/LlamaConfig.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama
PATH_VARS LLAMA_INCLUDE_INSTALL_DIR
LLAMA_LIB_INSTALL_DIR
LLAMA_BIN_INSTALL_DIR )
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/llama-version.cmake
${CMAKE_CURRENT_BINARY_DIR}/LlamaConfigVersion.cmake
VERSION ${LLAMA_INSTALL_VERSION}
COMPATIBILITY SameMajorVersion)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/llama-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/llama-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/llama)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
${CMAKE_CURRENT_BINARY_DIR}/LlamaConfigVersion.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama)
set(GGML_PUBLIC_HEADERS "ggml.h"
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}")
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
install(TARGETS ggml PUBLIC_HEADER)
set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/llama.h)
install(TARGETS llama LIBRARY PUBLIC_HEADER)
install(
FILES convert_hf_to_gguf.py
FILES convert.py
PERMISSIONS
OWNER_READ
OWNER_WRITE
@ -227,10 +819,40 @@ install(
WORLD_READ
WORLD_EXECUTE
DESTINATION ${CMAKE_INSTALL_BINDIR})
install(
FILES convert-lora-to-ggml.py
PERMISSIONS
OWNER_READ
OWNER_WRITE
OWNER_EXECUTE
GROUP_READ
GROUP_EXECUTE
WORLD_READ
WORLD_EXECUTE
DESTINATION ${CMAKE_INSTALL_BINDIR})
if (LLAMA_METAL)
install(
FILES ggml-metal.metal
PERMISSIONS
OWNER_READ
OWNER_WRITE
GROUP_READ
WORLD_READ
DESTINATION ${CMAKE_INSTALL_BINDIR})
endif()
configure_file(cmake/llama.pc.in
"${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
@ONLY)
#
# programs, examples and tests
#
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
add_subdirectory(common)
if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest)
add_subdirectory(tests)
endif ()
if (LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()

View file

@ -1,97 +0,0 @@
{
"version": 4,
"configurePresets": [
{
"name": "base",
"hidden": true,
"generator": "Ninja",
"binaryDir": "${sourceDir}/build-${presetName}",
"cacheVariables": {
"CMAKE_EXPORT_COMPILE_COMMANDS": "ON",
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
}
},
{
"name": "sycl-base",
"hidden": true,
"generator": "Ninja",
"binaryDir": "${sourceDir}/build-${presetName}",
"cacheVariables": {
"CMAKE_EXPORT_COMPILE_COMMANDS": "ON",
"CMAKE_CXX_COMPILER": "icx",
"CMAKE_C_COMPILER": "cl",
"GGML_SYCL": "ON",
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
}
},
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
{ "name": "vulkan", "hidden": true, "cacheVariables": { "GGML_VULKAN": "ON" } },
{
"name": "x64-windows-llvm", "hidden": true,
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/x64-windows-llvm.cmake"
}
},
{
"name": "arm64-windows-msvc", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
}
},
{
"name": "arm64-windows-llvm", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-llvm.cmake"
}
},
{
"name": "arm64-apple-clang", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-apple-clang.cmake"
}
},
{ "name": "arm64-windows-llvm-debug", "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
{ "name": "arm64-apple-clang-debug", "inherits": [ "base", "arm64-apple-clang", "debug" ] },
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
{ "name": "x64-windows-llvm-debug", "inherits": [ "base", "x64-windows-llvm", "debug" ] },
{ "name": "x64-windows-llvm-release", "inherits": [ "base", "x64-windows-llvm", "release" ] },
{ "name": "x64-windows-llvm-reldbg", "inherits": [ "base", "x64-windows-llvm", "reldbg" ] },
{ "name": "x64-windows-llvm+static-release", "inherits": [ "base", "x64-windows-llvm", "reldbg", "static" ] },
{ "name": "x64-windows-msvc-debug", "inherits": [ "base", "debug" ] },
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] },
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
{ "name": "x64-windows-sycl-debug", "inherits": [ "sycl-base", "debug" ] },
{ "name": "x64-windows-sycl-debug-f16", "inherits": [ "sycl-base", "debug", "sycl_f16" ] },
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] },
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] },
{ "name": "x64-windows-vulkan-debug", "inherits": [ "base", "vulkan", "debug" ] },
{ "name": "x64-windows-vulkan-release", "inherits": [ "base", "vulkan", "release" ] }
]
}

View file

@ -1,11 +0,0 @@
# collaborators can optionally add themselves here to indicate their availability for reviewing related PRs
/ci/ @ggerganov
/.devops/*.Dockerfile @ngxson
/examples/server/ @ngxson
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/gguf.cpp @JohannesGaessler

View file

@ -1,125 +0,0 @@
# Pull requests (for contributors)
- Test your changes:
- Execute [the full CI locally on your machine](ci/README.md) before publishing
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
# Pull requests (for collaborators)
- Squash-merge PRs
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
# Coding guidelines
- Avoid adding third-party dependencies, extra files, extra headers, etc.
- Always consider cross-compatibility with other operating systems and architectures
- Avoid fancy-looking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
- Vertical alignment makes things more readable and easier to batch edit
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
- Use sized integer types such as `int32_t` in the public API, e.g. `size_t` may also be appropriate for allocation sizes or byte offsets
- Declare structs with `struct foo {}` instead of `typedef struct foo {} foo`
- In C++ code omit optional `struct` and `enum` keyword whenever they are not necessary
```cpp
// OK
llama_context * ctx;
const llama_rope_type rope_type;
// not OK
struct llama_context * ctx;
const enum llama_rope_type rope_type;
```
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline.)_
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
![matmul](media/matmul.png)
# Naming guidelines
- Use `snake_case` for function, variable and type names
- Naming usually optimizes for longest common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
```cpp
// not OK
int small_number;
int big_number;
// OK
int number_small;
int number_big;
```
- Enum values are always in upper case and prefixed with the enum name
```cpp
enum llama_vocab_type {
LLAMA_VOCAB_TYPE_NONE = 0,
LLAMA_VOCAB_TYPE_SPM = 1,
LLAMA_VOCAB_TYPE_BPE = 2,
LLAMA_VOCAB_TYPE_WPM = 3,
LLAMA_VOCAB_TYPE_UGM = 4,
LLAMA_VOCAB_TYPE_RWKV = 5,
};
```
- The general naming pattern is `<class>_<method>`, with `<method>` being `<action>_<noun>`
```cpp
llama_model_init(); // class: "llama_model", method: "init"
llama_sampler_chain_remove(); // class: "llama_sampler_chain", method: "remove"
llama_sampler_get_seed(); // class: "llama_sampler", method: "get_seed"
llama_set_embeddings(); // class: "llama_context", method: "set_embeddings"
llama_n_threads(); // class: "llama_context", method: "n_threads"
llama_adapter_lora_free(); // class: "llama_adapter_lora", method: "free"
```
- The `get` `<action>` can be omitted
- The `<noun>` can be omitted if not necessary
- The `_context` suffix of the `<class>` is optional. Use it to disambiguate symbols when needed
- Use `init`/`free` for constructor/destructor `<action>`
- Use the `_t` suffix when a type is supposed to be opaque to the user - it's not relevant to them if it is a struct or anything else
```cpp
typedef struct llama_context * llama_context_t;
enum llama_pooling_type llama_pooling_type(const llama_context_t ctx);
```
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline)_
- C/C++ filenames are all lowercase with dashes. Headers use the `.h` extension. Source files use the `.c` or `.cpp` extension
- Python filenames are all lowercase with underscores
- _(TODO: abbreviations usage)_
# Preprocessor directives
- _(TODO: add guidelines with examples and apply them to the codebase)_
```cpp
#ifdef FOO
#endif // FOO
```
# Documentation
- Documentation is a community effort
- When you need to look into the source code to figure out how to use an API consider adding a short summary to the header file for future reference
- When you notice incorrect or outdated documentation, please update it
# Resources
The Github issues, PRs and discussions contain a lot of information that can be useful to get familiar with the codebase. For convenience, some of the more important information is referenced from Github projects:
https://github.com/ggerganov/llama.cpp/projects

View file

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023-2024 The ggml authors
Copyright (c) 2023 Georgi Gerganov
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

1517
Makefile

File diff suppressed because it is too large Load diff

View file

@ -14,6 +14,37 @@ let package = Package(
.library(name: "llama", targets: ["llama"]),
],
targets: [
.systemLibrary(name: "llama", pkgConfig: "llama"),
]
.target(
name: "llama",
path: ".",
exclude: [],
sources: [
"ggml.c",
"llama.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
"ggml-metal.m",
],
resources: [
.process("ggml-metal.metal")
],
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_ACCELERATE"),
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL"),
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
],
linkerSettings: [
.linkedFramework("Accelerate")
]
)
],
cxxLanguageStandard: .cxx11
)

1194
README.md

File diff suppressed because it is too large Load diff

View file

@ -1,67 +0,0 @@
# Security Policy
- [**Using llama.cpp securely**](#using-llamacpp-securely)
- [Untrusted models](#untrusted-models)
- [Untrusted inputs](#untrusted-inputs)
- [Data privacy](#data-privacy)
- [Untrusted environments or networks](#untrusted-environments-or-networks)
- [Multi-Tenant environments](#multi-tenant-environments)
- [**Reporting a vulnerability**](#reporting-a-vulnerability)
## Using llama.cpp securely
### Untrusted models
Be careful when running untrusted models. This classification includes models created by unknown developers or utilizing data obtained from unknown sources.
*Always execute untrusted models within a secure, isolated environment such as a sandbox* (e.g., containers, virtual machines). This helps protect your system from potentially malicious code.
> [!NOTE]
> The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance.
### Untrusted inputs
Some models accept various input formats (text, images, audio, etc.). The libraries converting these inputs have varying security levels, so it's crucial to isolate the model and carefully pre-process inputs to mitigate script injection risks.
For maximum security when handling untrusted inputs, you may need to employ the following:
* Sandboxing: Isolate the environment where the inference happens.
* Pre-analysis: Check how the model performs by default when exposed to prompt injection (e.g. using [fuzzing for prompt injection](https://github.com/FonduAI/awesome-prompt-injection?tab=readme-ov-file#tools)). This will give you leads on how hard you will have to work on the next topics.
* Updates: Keep both LLaMA C++ and your libraries updated with the latest security patches.
* Input Sanitation: Before feeding data to the model, sanitize inputs rigorously. This involves techniques such as:
* Validation: Enforce strict rules on allowed characters and data types.
* Filtering: Remove potentially malicious scripts or code fragments.
* Encoding: Convert special characters into safe representations.
* Verification: Run tooling that identifies potential script injections (e.g. [models that detect prompt injection attempts](https://python.langchain.com/docs/guides/safety/hugging_face_prompt_injection)).
### Data privacy
To protect sensitive data from potential leaks or unauthorized access, it is crucial to sandbox the model execution. This means running the model in a secure, isolated environment, which helps mitigate many attack vectors.
### Untrusted environments or networks
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value
* Encrypt your data if sending it over the network.
### Multi-Tenant environments
If you intend to run multiple models in parallel with shared memory, it is your responsibility to ensure the models do not interact or access each other's data. The primary areas of concern are tenant isolation, resource allocation, model sharing and hardware attacks.
1. Tenant Isolation: Models should run separately with strong isolation methods to prevent unwanted data access. Separating networks is crucial for isolation, as it prevents unauthorized access to data or models and malicious users from sending graphs to execute under another tenant's identity.
2. Resource Allocation: A denial of service caused by one model can impact the overall system health. Implement safeguards like rate limits, access controls, and health monitoring.
3. Model Sharing: In a multitenant model sharing design, tenants and users must understand the security risks of running code provided by others. Since there are no reliable methods to detect malicious models, sandboxing the model execution is the recommended approach to mitigate the risk.
4. Hardware Attacks: GPUs or TPUs can also be attacked. [Researches](https://scholar.google.com/scholar?q=gpu+side+channel) has shown that side channel attacks on GPUs are possible, which can make data leak from other models or processes running on the same system at the same time.
## Reporting a vulnerability
Beware that none of the topics under [Using llama.cpp securely](#using-llamacpp-securely) are considered vulnerabilities of LLaMA C++.
<!-- normal version -->
However, If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
Please disclose it as a private [security advisory](https://github.com/ggerganov/llama.cpp/security/advisories/new).
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.

40
SHA256SUMS Normal file
View file

@ -0,0 +1,40 @@
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
ec2f2d1f0dfb73b72a4cbac7fa121abbe04c37ab327125a38248f930c0f09ddf models/7B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_1.bin
7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
fad169e6f0f575402cf75945961cb4a8ecd824ba4da6be2af831f320c4348fa5 models/13B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_1.bin
4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json
e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth
4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
d2a441403944819492ec8c2002cc36fa38468149bfb4b7b4c52afc7bd9a7166d models/30B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_1.bin
2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json
135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth
9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth
e7babf7c5606f165a3756f527cb0fedc4f83e67ef1290391e52fb1cce5f26770 models/65B/consolidated.02.pth
73176ffb426b40482f2aa67ae1217ef79fbbd1fff5482bae5060cdc5a24ab70e models/65B/consolidated.03.pth
882e6431d0b08a8bc66261a0d3607da21cbaeafa96a24e7e59777632dbdac225 models/65B/consolidated.04.pth
a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/consolidated.05.pth
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
cde053439fa4910ae454407e2717cc46cc2c2b4995c00c93297a2b52e790fa92 models/65B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_1.bin
999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json
9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model

View file

@ -1,4 +0,0 @@
#pragma once
#include <llama.h>

View file

@ -1,5 +0,0 @@
module llama [system] {
header "llama.h"
link "llama"
export *
}

138
build.zig Normal file
View file

@ -0,0 +1,138 @@
// Compatible with Zig Version 0.11.0
const std = @import("std");
const ArrayList = std.ArrayList;
const Compile = std.Build.Step.Compile;
const ConfigHeader = std.Build.Step.ConfigHeader;
const Mode = std.builtin.Mode;
const CrossTarget = std.zig.CrossTarget;
const Maker = struct {
builder: *std.build.Builder,
target: CrossTarget,
optimize: Mode,
enable_lto: bool,
include_dirs: ArrayList([]const u8),
cflags: ArrayList([]const u8),
cxxflags: ArrayList([]const u8),
objs: ArrayList(*Compile),
fn addInclude(m: *Maker, dir: []const u8) !void {
try m.include_dirs.append(dir);
}
fn addProjectInclude(m: *Maker, path: []const []const u8) !void {
try m.addInclude(try m.builder.build_root.join(m.builder.allocator, path));
}
fn addCFlag(m: *Maker, flag: []const u8) !void {
try m.cflags.append(flag);
}
fn addCxxFlag(m: *Maker, flag: []const u8) !void {
try m.cxxflags.append(flag);
}
fn addFlag(m: *Maker, flag: []const u8) !void {
try m.addCFlag(flag);
try m.addCxxFlag(flag);
}
fn init(builder: *std.build.Builder) !Maker {
const target = builder.standardTargetOptions(.{});
const zig_version = @import("builtin").zig_version_string;
const commit_hash = try std.ChildProcess.exec(
.{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } },
);
try std.fs.cwd().writeFile("common/build-info.cpp", builder.fmt(
\\int LLAMA_BUILD_NUMBER = {};
\\char const *LLAMA_COMMIT = "{s}";
\\char const *LLAMA_COMPILER = "Zig {s}";
\\char const *LLAMA_BUILD_TARGET = "{s}";
\\
, .{ 0, commit_hash.stdout[0 .. commit_hash.stdout.len - 1], zig_version, try target.allocDescription(builder.allocator) }));
var m = Maker{
.builder = builder,
.target = target,
.optimize = builder.standardOptimizeOption(.{}),
.enable_lto = false,
.include_dirs = ArrayList([]const u8).init(builder.allocator),
.cflags = ArrayList([]const u8).init(builder.allocator),
.cxxflags = ArrayList([]const u8).init(builder.allocator),
.objs = ArrayList(*Compile).init(builder.allocator),
};
try m.addCFlag("-std=c11");
try m.addCxxFlag("-std=c++11");
try m.addProjectInclude(&.{});
try m.addProjectInclude(&.{"common"});
return m;
}
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
if (o.target.getAbi() != .msvc)
o.defineCMacro("_GNU_SOURCE", null);
if (std.mem.endsWith(u8, src, ".c")) {
o.addCSourceFiles(&.{src}, m.cflags.items);
o.linkLibC();
} else {
o.addCSourceFiles(&.{src}, m.cxxflags.items);
if (o.target.getAbi() == .msvc) {
o.linkLibC(); // need winsdk + crt
} else {
// linkLibCpp already add (libc++ + libunwind + libc)
o.linkLibCpp();
}
}
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
o.want_lto = m.enable_lto;
return o;
}
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
e.addCSourceFiles(&.{src}, m.cxxflags.items);
for (deps) |d| e.addObject(d);
for (m.objs.items) |o| e.addObject(o);
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
// https://github.com/ziglang/zig/issues/15448
if (e.target.getAbi() == .msvc) {
e.linkLibC(); // need winsdk + crt
} else {
// linkLibCpp already add (libc++ + libunwind + libc)
e.linkLibCpp();
}
m.builder.installArtifact(e);
e.want_lto = m.enable_lto;
return e;
}
};
pub fn build(b: *std.build.Builder) !void {
var make = try Maker.init(b);
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
const ggml = make.obj("ggml", "ggml.c");
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
const llama = make.obj("llama", "llama.cpp");
const buildinfo = make.obj("common", "common/build-info.cpp");
const common = make.obj("common", "common/common.cpp");
const console = make.obj("console", "common/console.cpp");
const sampling = make.obj("sampling", "common/sampling.cpp");
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
const train = make.obj("train", "common/train.cpp");
const clip = make.obj("clip", "examples/llava/clip.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip });
if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32");
}
}

View file

@ -22,8 +22,4 @@ bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with CUDA support
GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with SYCL support
source /opt/intel/oneapi/setvars.sh
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
```

748
ci/run.sh
View file

@ -1,4 +1,4 @@
#!/bin/bash
#/bin/bash
#
# sample usage:
#
@ -10,12 +10,6 @@
# # with CUDA support
# GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with SYCL support
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with VULKAN support
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@ -28,37 +22,14 @@ mkdir -p "$2"
OUT=$(realpath "$1")
MNT=$(realpath "$2")
rm -f "$OUT/*.log"
rm -f "$OUT/*.exit"
rm -f "$OUT/*.md"
rm -v $OUT/*.log
rm -v $OUT/*.exit
rm -v $OUT/*.md
sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
if [ -z ${ONEAPI_ROOT} ]; then
echo "Not detected ONEAPI_ROOT, please install oneAPI base toolkit and enable it by:"
echo "source /opt/intel/oneapi/setvars.sh"
exit 1
fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
fi
## helpers
# download a file if it does not exist or if it is outdated
@ -110,13 +81,10 @@ function gg_run_ctest_debug {
set -e
# Check cmake, make and ctest are installed
gg_check_build_requirements
(time cmake -DCMAKE_BUILD_TYPE=Debug .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
}
@ -141,16 +109,13 @@ function gg_run_ctest_release {
set -e
# Check cmake, make and ctest are installed
gg_check_build_requirements
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
if [ -z ${GG_BUILD_LOW_PERF} ]; then
(time ctest --output-on-failure -L main ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure ) 2>&1 | tee -a $OUT/${ci}-ctest.log
else
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
fi
set +e
@ -166,140 +131,33 @@ function gg_sum_ctest_release {
gg_printf '```\n'
}
# test_scripts_debug
# open_llama_3b_v2
function gg_run_test_scripts_debug {
function gg_run_open_llama_3b_v2 {
cd ${SRC}
set -e
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
function gg_sum_test_scripts_debug {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in debug mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
gg_printf '```\n'
gg_printf '\n'
}
# test_scripts_release
function gg_run_test_scripts_release {
cd ${SRC}
set -e
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
function gg_sum_test_scripts_release {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in release mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
gg_printf '```\n'
gg_printf '\n'
}
function gg_get_model {
local gguf_0="$MNT/models/pythia/1.4B/ggml-model-f16.gguf"
local gguf_1="$MNT/models/pythia/2.8B/ggml-model-f16.gguf"
local gguf_2="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
if [[ -s $gguf_0 ]]; then
echo -n "$gguf_0"
elif [[ -s $gguf_1 ]]; then
echo -n "$gguf_1"
elif [[ -s $gguf_2 ]]; then
echo -n "$gguf_2"
else
echo >&2 "No model found. Can't run gg_run_ctest_with_model."
exit 1
fi
}
function gg_run_ctest_with_model_debug {
cd ${SRC}
local model; model=$(gg_get_model)
cd build-ci-debug
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
cd ..
}
function gg_run_ctest_with_model_release {
cd ${SRC}
local model; model=$(gg_get_model)
cd build-ci-release
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
cd ..
}
function gg_sum_ctest_with_model_debug {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs ctest with model files in debug mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
gg_printf '```\n'
}
function gg_sum_ctest_with_model_release {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs ctest with model files in release mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
gg_printf '```\n'
}
# open_llama_7b_v2
function gg_run_open_llama_7b_v2 {
cd ${SRC}
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/tokenizer.model
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/tokenizer_config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/special_tokens_map.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/pytorch_model.bin.index.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00001-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00002-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/generation_config.json
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
path_models="../models-mnt/open-llama/7B-v2"
path_models="../models-mnt/open-llama/3B-v2"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@ -313,49 +171,44 @@ function gg_run_open_llama_7b_v2 {
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test="${path_wiki}/wiki.test.raw"
wiki_test_60="${path_wiki}/wiki.test-60.raw"
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@ -382,150 +235,58 @@ function gg_run_open_llama_7b_v2 {
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_open_llama_7b_v2 {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'OpenLLaMA 7B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# pythia_1.4b
function gg_run_pythia_1_4b {
cd ${SRC}
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/resolve/main/pytorch_model.bin
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
path_models="../models-mnt/pythia/1.4B"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test_60="${path_wiki}/wiki.test-60.raw"
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
# lora
function compare_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
path_lora="../models-mnt/open-llama/3B-v2/lora"
path_shakespeare="../models-mnt/shakespeare"
shakespeare="${path_shakespeare}/shakespeare.txt"
lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_config.json
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_model.bin
gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/shakespeare.txt
python3 ../convert-lora-to-ggml.py ${path_lora}
# f16
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0 + f16 lora-base
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_pythia_1_4b {
function gg_sum_open_llama_3b_v2 {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 1.4B:\n'
gg_printf 'OpenLLaMA 3B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
@ -538,33 +299,42 @@ function gg_sum_pythia_1_4b {
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
}
# pythia_2_8b
# open_llama_7b_v2
# requires: GG_BUILD_CUDA
function gg_run_pythia_2_8b {
function gg_run_open_llama_7b_v2 {
cd ${SRC}
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/resolve/main/pytorch_model.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/tokenizer.model
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/tokenizer_config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/special_tokens_map.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/pytorch_model.bin.index.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00001-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00002-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/generation_config.json
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
path_models="../models-mnt/pythia/2.8B"
path_models="../models-mnt/open-llama/7B-v2"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@ -580,47 +350,42 @@ function gg_run_pythia_2_8b {
wiki_test="${path_wiki}/wiki.test.raw"
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@ -641,24 +406,64 @@ function gg_run_pythia_2_8b {
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
# lora
function compare_ppl {
qnt="$1"
ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
return 20
fi
printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
return 0
}
path_lora="../models-mnt/open-llama/7B-v2/lora"
path_shakespeare="../models-mnt/shakespeare"
shakespeare="${path_shakespeare}/shakespeare.txt"
lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_config.json
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_model.bin
gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/shakespeare.txt
python3 ../convert-lora-to-ggml.py ${path_lora}
# f16
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# currently not supported by the CUDA backend
# q8_0
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
#compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0 + f16 lora-base
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
#compare_ppl "q8_0 / f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
set +e
}
function gg_sum_pythia_2_8b {
function gg_sum_open_llama_7b_v2 {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 2.8B:\n'
gg_printf 'OpenLLaMA 7B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
@ -671,158 +476,24 @@ function gg_sum_pythia_2_8b {
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# bge-small
function gg_run_embd_bge_small {
cd ${SRC}
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer_config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/special_tokens_map.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/pytorch_model.bin
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/sentence_bert_config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/vocab.txt
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/modules.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
gg_wget models-mnt/bge-small/1_Pooling https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/1_Pooling/config.json
path_models="../models-mnt/bge-small"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
function gg_sum_embd_bge_small {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'BGE Small (BERT):\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
}
# rerank_tiny
function gg_run_rerank_tiny {
cd ${SRC}
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/tokenizer.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/tokenizer_config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/special_tokens_map.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/resolve/main/pytorch_model.bin
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/sentence_bert_config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/vocab.txt
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/modules.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/config.json
gg_wget models-mnt/rerank-tiny/1_Pooling https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/1_Pooling/config.json
path_models="../models-mnt/rerank-tiny"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
# for this model, the SEP token is "</s>"
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
# sample output
# rerank score 0: 0.029
# rerank score 1: 0.029
# rerank score 2: 0.135
# check that the score is in the range [$3, $4]
function check_score {
qnt="$1"
score=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$score < $3" | bc) -eq 1 ] || [ $(echo "$score > $4" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: score not in range [%s, %s])\n' "$qnt" "$score" "$3" "$4"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$score"
return 0
}
check_score "rerank score 0" "$(cat $OUT/${ci}-rk-f16.log | grep "rerank score 0")" "0.00" "0.05" | tee -a $OUT/${ci}-rk-f16.log
check_score "rerank score 1" "$(cat $OUT/${ci}-rk-f16.log | grep "rerank score 1")" "0.00" "0.05" | tee -a $OUT/${ci}-rk-f16.log
check_score "rerank score 2" "$(cat $OUT/${ci}-rk-f16.log | grep "rerank score 2")" "0.10" "0.30" | tee -a $OUT/${ci}-rk-f16.log
set +e
}
function gg_sum_rerank_tiny {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Rerank Tiny (Jina):\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-rk-f16.log)"
}
function gg_check_build_requirements {
if ! command -v cmake &> /dev/null; then
gg_printf 'cmake not found, please install'
fi
if ! command -v make &> /dev/null; then
gg_printf 'make not found, please install'
fi
if ! command -v ctest &> /dev/null; then
gg_printf 'ctest not found, please install'
fi
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
#gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
#gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
}
## main
export LLAMA_LOG_PREFIX=1
export LLAMA_LOG_TIMESTAMPS=1
if [ -z ${GG_BUILD_LOW_PERF} ]; then
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
rm -rf ${SRC}/models-mnt
mnt_models=${MNT}/models
mkdir -p ${mnt_models}
ln -sfn ${mnt_models} ${SRC}/models-mnt
# Create a fresh python3 venv and enter it
if ! python3 -m venv "$MNT/venv"; then
echo "Error: Failed to create Python virtual environment at $MNT/venv."
exit 1
fi
source "$MNT/venv/bin/activate"
pip install -r ${SRC}/requirements.txt --disable-pip-version-check
pip install --editable gguf-py --disable-pip-version-check
python3 -m pip install -r ${SRC}/requirements.txt
python3 -m pip install --editable gguf-py
fi
ret=0
@ -831,23 +502,12 @@ test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run embd_bge_small
test $ret -eq 0 && gg_run rerank_tiny
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
test $ret -eq 0 && gg_run test_scripts_release
fi
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ] && [ -z ${GG_BUILD_VULKAN} ]; then
test $ret -eq 0 && gg_run pythia_1_4b
if [ -z ${GG_BUILD_CUDA} ]; then
test $ret -eq 0 && gg_run open_llama_3b_v2
else
test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
test $ret -eq 0 && gg_run open_llama_7b_v2
fi
test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release
fi
fi

View file

@ -79,22 +79,22 @@ endmacro()
# flags are for MSVC only!
check_sse("AVX" " ;/arch:AVX")
if (NOT ${AVX_FOUND})
set(GGML_AVX OFF)
set(LLAMA_AVX OFF)
else()
set(GGML_AVX ON)
set(LLAMA_AVX ON)
endif()
check_sse("AVX2" " ;/arch:AVX2")
check_sse("FMA" " ;/arch:AVX2")
if ((NOT ${AVX2_FOUND}) OR (NOT ${FMA_FOUND}))
set(GGML_AVX2 OFF)
set(LLAMA_AVX2 OFF)
else()
set(GGML_AVX2 ON)
set(LLAMA_AVX2 ON)
endif()
check_sse("AVX512" " ;/arch:AVX512")
if (NOT ${AVX512_FOUND})
set(GGML_AVX512 OFF)
set(LLAMA_AVX512 OFF)
else()
set(GGML_AVX512 ON)
set(LLAMA_AVX512 ON)
endif()

View file

@ -1,16 +0,0 @@
set( CMAKE_SYSTEM_NAME Darwin )
set( CMAKE_SYSTEM_PROCESSOR arm64 )
set( target arm64-apple-darwin-macho )
set( CMAKE_C_COMPILER clang )
set( CMAKE_CXX_COMPILER clang++ )
set( CMAKE_C_COMPILER_TARGET ${target} )
set( CMAKE_CXX_COMPILER_TARGET ${target} )
set( arch_c_flags "-march=armv8.4-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )

View file

@ -1,16 +0,0 @@
set( CMAKE_SYSTEM_NAME Windows )
set( CMAKE_SYSTEM_PROCESSOR arm64 )
set( target arm64-pc-windows-msvc )
set( CMAKE_C_COMPILER clang )
set( CMAKE_CXX_COMPILER clang++ )
set( CMAKE_C_COMPILER_TARGET ${target} )
set( CMAKE_CXX_COMPILER_TARGET ${target} )
set( arch_c_flags "-march=armv8.7-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function -Wno-gnu-zero-variadic-macro-arguments" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )

View file

@ -1,6 +0,0 @@
set( CMAKE_SYSTEM_NAME Windows )
set( CMAKE_SYSTEM_PROCESSOR arm64 )
set( target arm64-pc-windows-msvc )
set( CMAKE_C_COMPILER_TARGET ${target} )
set( CMAKE_CXX_COMPILER_TARGET ${target} )

View file

@ -1,33 +0,0 @@
function(llama_add_compile_flags)
if (LLAMA_FATAL_WARNINGS)
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
list(APPEND C_FLAGS -Werror)
list(APPEND CXX_FLAGS -Werror)
elseif (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
add_compile_options(/WX)
endif()
endif()
if (LLAMA_ALL_WARNINGS)
if (NOT MSVC)
list(APPEND C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
-Werror=implicit-int -Werror=implicit-function-declaration)
list(APPEND CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
list(APPEND WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
list(APPEND C_FLAGS ${WARNING_FLAGS})
list(APPEND CXX_FLAGS ${WARNING_FLAGS})
ggml_get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${C_FLAGS};${GF_C_FLAGS}>"
"$<$<COMPILE_LANGUAGE:CXX>:${CXX_FLAGS};${GF_CXX_FLAGS}>")
else()
# todo : msvc
set(C_FLAGS "" PARENT_SCOPE)
set(CXX_FLAGS "" PARENT_SCOPE)
endif()
endif()
endfunction()

View file

@ -1,22 +0,0 @@
find_package(Git)
# the commit's SHA1
execute_process(COMMAND
"${GIT_EXECUTABLE}" describe --match=NeVeRmAtCh --always --abbrev=8
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_SHA1
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
# the date of the commit
execute_process(COMMAND
"${GIT_EXECUTABLE}" log -1 --format=%ad --date=local
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_DATE
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
# the subject of the commit
execute_process(COMMAND
"${GIT_EXECUTABLE}" log -1 --format=%s
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_COMMIT_SUBJECT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)

View file

@ -1,30 +0,0 @@
set(LLAMA_VERSION @LLAMA_INSTALL_VERSION@)
set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
@PACKAGE_INIT@
set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
find_package(ggml REQUIRED HINTS ${LLAMA_LIB_DIR}/cmake)
find_library(llama_LIBRARY llama
REQUIRED
HINTS ${LLAMA_LIB_DIR}
NO_CMAKE_FIND_ROOT_PATH
)
add_library(llama UNKNOWN IMPORTED)
set_target_properties(llama
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
INTERFACE_LINK_LIBRARIES "ggml::ggml;ggml::ggml-base;"
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
IMPORTED_LOCATION "${llama_LIBRARY}"
INTERFACE_COMPILE_FEATURES c_std_90
POSITION_INDEPENDENT_CODE ON)
check_required_components(Llama)

View file

@ -1,10 +0,0 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=@CMAKE_INSTALL_PREFIX@
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
includedir=@CMAKE_INSTALL_FULL_INCLUDEDIR@
Name: llama
Description: Port of Facebook's LLaMA model in C/C++
Version: @LLAMA_INSTALL_VERSION@
Libs: -L${libdir} -lggml -lggml-base -lllama
Cflags: -I${includedir}

View file

@ -1,11 +0,0 @@
set( CMAKE_SYSTEM_NAME Windows )
set( CMAKE_SYSTEM_PROCESSOR x86_64 )
set( CMAKE_C_COMPILER clang )
set( CMAKE_CXX_COMPILER clang++ )
set( arch_c_flags "-march=native" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags}" )
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags}" )

14
codecov.yml Normal file
View file

@ -0,0 +1,14 @@
comment: off
coverage:
status:
project:
default:
target: auto
threshold: 0
base: auto
patch:
default:
target: auto
threshold: 0
base: auto

View file

@ -1,8 +1,5 @@
# common
find_package(Threads REQUIRED)
llama_add_compile_flags()
# Build info header
#
@ -22,12 +19,7 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
endif()
endif()
if(EXISTS "${GIT_DIR}/index")
set(GIT_INDEX "${GIT_DIR}/index")
else()
message(WARNING "Git index not found in git repository.")
set(GIT_INDEX "")
endif()
set(GIT_INDEX "${GIT_DIR}/index")
else()
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
set(GIT_INDEX "")
@ -39,7 +31,7 @@ add_custom_command(
COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/../scripts/gen-build-info-cpp.cmake"
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
VERBATIM
@ -50,75 +42,27 @@ if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
set(TARGET common)
add_library(${TARGET} STATIC
arg.cpp
arg.h
base64.hpp
chat.cpp
chat.hpp
chat-template.hpp
common.cpp
common.h
console.cpp
console.h
json-schema-to-grammar.cpp
json.hpp
llguidance.cpp
log.cpp
log.h
minja.hpp
ngram-cache.cpp
ngram-cache.h
sampling.cpp
common.cpp
sampling.h
speculative.cpp
speculative.h
sampling.cpp
console.h
console.cpp
grammar-parser.h
grammar-parser.cpp
train.h
train.cpp
)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL REQUIRED)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
if (LLAMA_LLGUIDANCE)
include(ExternalProject)
set(LLGUIDANCE_SRC ${CMAKE_BINARY_DIR}/llguidance/source)
set(LLGUIDANCE_PATH ${LLGUIDANCE_SRC}/target/release)
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v0.6.12:
GIT_TAG ced1c9023d47ec194fa977932d35ce65c2ebfc09
PREFIX ${CMAKE_BINARY_DIR}/llguidance
SOURCE_DIR ${LLGUIDANCE_SRC}
BUILD_IN_SOURCE TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND cargo build --release
INSTALL_COMMAND ""
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/libllguidance.a ${LLGUIDANCE_PATH}/llguidance.h
UPDATE_COMMAND ""
)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_LLGUIDANCE)
add_library(llguidance STATIC IMPORTED)
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/libllguidance.a)
add_dependencies(llguidance llguidance_ext)
target_include_directories(${TARGET} PRIVATE ${LLGUIDANCE_PATH})
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance)
endif ()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features (${TARGET} PUBLIC cxx_std_17)
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE llama build_info)

File diff suppressed because it is too large Load diff

View file

@ -1,80 +0,0 @@
#pragma once
#include "common.h"
#include <set>
#include <string>
#include <vector>
//
// CLI argument parsing
//
struct common_arg {
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
std::set<enum llama_example> excludes = {};
std::vector<const char *> args;
const char * value_hint = nullptr; // help text or example for arg value
const char * value_hint_2 = nullptr; // for second arg value
const char * env = nullptr;
std::string help;
bool is_sparam = false; // is current arg a sampling param?
void (*handler_void) (common_params & params) = nullptr;
void (*handler_string) (common_params & params, const std::string &) = nullptr;
void (*handler_str_str)(common_params & params, const std::string &, const std::string &) = nullptr;
void (*handler_int) (common_params & params, int) = nullptr;
common_arg(
const std::initializer_list<const char *> & args,
const char * value_hint,
const std::string & help,
void (*handler)(common_params & params, const std::string &)
) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
common_arg(
const std::initializer_list<const char *> & args,
const char * value_hint,
const std::string & help,
void (*handler)(common_params & params, int)
) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
common_arg(
const std::initializer_list<const char *> & args,
const std::string & help,
void (*handler)(common_params & params)
) : args(args), help(help), handler_void(handler) {}
// support 2 values for arg
common_arg(
const std::initializer_list<const char *> & args,
const char * value_hint,
const char * value_hint_2,
const std::string & help,
void (*handler)(common_params & params, const std::string &, const std::string &)
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
common_arg & set_examples(std::initializer_list<enum llama_example> examples);
common_arg & set_excludes(std::initializer_list<enum llama_example> excludes);
common_arg & set_env(const char * env);
common_arg & set_sparam();
bool in_example(enum llama_example ex);
bool is_exclude(enum llama_example ex);
bool get_value_from_env(std::string & output);
bool has_value_from_env();
std::string to_string();
};
struct common_params_context {
enum llama_example ex = LLAMA_EXAMPLE_COMMON;
common_params & params;
std::vector<common_arg> options;
void(*print_usage)(int, char **) = nullptr;
common_params_context(common_params & params) : params(params) {}
};
// parse input arguments from CLI
// if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
// function to be used by test-arg-parser
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);

View file

@ -1,529 +0,0 @@
/*
Copyright 2024 Google LLC
Use of this source code is governed by an MIT-style
license that can be found in the LICENSE file or at
https://opensource.org/licenses/MIT.
*/
// SPDX-License-Identifier: MIT
#pragma once
#include "minja.hpp"
#include <json.hpp>
#include <string>
#include <vector>
using json = nlohmann::ordered_json;
namespace minja {
struct chat_template_caps {
bool supports_tools = false;
bool supports_tool_calls = false;
bool supports_tool_responses = false;
bool supports_system_role = false;
bool supports_parallel_tool_calls = false;
bool supports_tool_call_id = false;
// meta-llama/Llama-3.1-8B-Instruct expects arguments to be an object.
// Most other templates (and OpenAI's API) expect the arguments object to be stringified.
bool requires_object_arguments = false;
// CohereForAI/c4ai-command-r-plus simple variant
bool requires_non_null_content = false;
// MiniMaxAI/MiniMax-Text-01 special
bool requires_typed_content = false;
};
struct chat_template_inputs {
nlohmann::ordered_json messages;
nlohmann::ordered_json tools;
bool add_generation_prompt = true;
nlohmann::ordered_json extra_context;
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
};
struct chat_template_options {
bool apply_polyfills = true;
bool use_bos_token = true;
bool use_eos_token = true;
bool define_strftime_now = true;
bool polyfill_tools = true;
bool polyfill_tool_call_examples = true;
bool polyfill_tool_calls = true;
bool polyfill_tool_responses = true;
bool polyfill_system_role = true;
bool polyfill_object_arguments = true;
bool polyfill_typed_content = true;
};
class chat_template {
private:
chat_template_caps caps_;
std::string source_;
std::string bos_token_;
std::string eos_token_;
std::shared_ptr<minja::TemplateNode> template_root_;
std::string tool_call_example_;
std::string try_raw_render(
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json()) const
{
try {
chat_template_inputs inputs;
inputs.messages = messages;
inputs.tools = tools;
inputs.add_generation_prompt = add_generation_prompt;
inputs.extra_context = extra_context;
// Use fixed date for tests
inputs.now = std::chrono::system_clock::from_time_t(0);
chat_template_options opts;
opts.apply_polyfills = false;
auto prompt = apply(inputs, opts);
// fprintf(stderr, "try_raw_render: %s\n", prompt.c_str());
return prompt;
} catch (const std::exception & e) {
// fprintf(stderr, "try_raw_render error: %s\n", e.what());
return "";
}
}
public:
chat_template(const std::string & source, const std::string & bos_token, const std::string & eos_token)
: source_(source), bos_token_(bos_token), eos_token_(eos_token)
{
template_root_ = minja::Parser::parse(source_, {
/* .trim_blocks = */ true,
/* .lstrip_blocks = */ true,
/* .keep_trailing_newline = */ false,
});
auto contains = [](const std::string & haystack, const std::string & needle) {
return haystack.find(needle) != std::string::npos;
};
const std::string user_needle = "<User Needle>";
const std::string sys_needle = "<System Needle>";
const json dummy_str_user_msg = {{"role", "user"}, {"content", user_needle}};
const json dummy_typed_user_msg = {{"role", "user"}, {"content", json::array({{{"type", "text"}, {"text", user_needle}}})}};
caps_.requires_typed_content =
!contains(try_raw_render(json::array({dummy_str_user_msg}), {}, false), user_needle)
&& contains(try_raw_render(json::array({dummy_typed_user_msg}), {}, false), user_needle);
const auto dummy_user_msg = caps_.requires_typed_content
? dummy_typed_user_msg
: dummy_str_user_msg;
const json needle_system_msg = {
{"role", "system"},
{"content", caps_.requires_typed_content ? json::array({{{"type", "text"}, {"text", sys_needle}}}) : json(sys_needle)},
};
caps_.supports_system_role = contains(try_raw_render({needle_system_msg, dummy_user_msg,}, {}, false), sys_needle);
auto out = try_raw_render(json::array({
dummy_user_msg
}), json::array({
{
{"name", "some_tool"},
{"type", "function"},
{"function", {
{"name", "some_tool"},
{"description", "Some tool."},
{"parameters", {
{"type", "object"},
{"properties", {
{"arg", {
{"type", "string"},
{"description", "Some argument."},
}},
}},
{"required", json::array({ "arg" })},
}},
}},
},
}), false);
caps_.supports_tools = contains(out, "some_tool");
auto make_tool_calls_msg = [&](const json & tool_calls) {
return json {
{"role", "assistant"},
{"content", nullptr},
{"tool_calls", tool_calls},
};
};
auto make_tool_call = [](const std::string & tool_name, const json & arguments) {
return json {
{"id", "call_1___"},
{"type", "function"},
{"function", {
{"arguments", arguments},
{"name", tool_name},
}},
};
};
const json dummy_args_obj {{"argument_needle", "print('Hello, World!')"}};
// Note: the arguments are rendered in both cases, but may be double-escaped, which we don't want.
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({make_tool_call("ipython", dummy_args_obj.dump())})),
}), {}, false);
auto tool_call_renders_str_arguments = contains(out, "\"argument_needle\":") || contains(out, "'argument_needle':");
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({make_tool_call("ipython", dummy_args_obj)})),
}), {}, false);
auto tool_call_renders_obj_arguments = contains(out, "\"argument_needle\":") || contains(out, "'argument_needle':");
caps_.supports_tool_calls = tool_call_renders_str_arguments || tool_call_renders_obj_arguments;
caps_.requires_object_arguments = !tool_call_renders_str_arguments && tool_call_renders_obj_arguments;
auto out_empty = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", ""}}}), {}, false);
auto out_null = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", nullptr}}}), {}, false);
caps_.requires_non_null_content = contains(out_empty, user_needle) && !contains(out_null, user_needle);
if (caps_.supports_tool_calls) {
auto dummy_args = caps_.requires_object_arguments ? dummy_args_obj : json(dummy_args_obj.dump());
auto tc1 = make_tool_call("test_tool1", dummy_args);
auto tc2 = make_tool_call("test_tool2", dummy_args);
auto out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({tc1, tc2})),
}), {}, false);
caps_.supports_parallel_tool_calls = contains(out, "test_tool1") && contains(out, "test_tool2");
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({tc1})),
{
{"role", "tool"},
{"name", "test_tool1"},
{"content", "Some response!"},
{"tool_call_id", "call_911_"},
}
}), {}, false);
caps_.supports_tool_responses = contains(out, "Some response!");
caps_.supports_tool_call_id = contains(out, "call_911_");
}
try {
if (!caps_.supports_tools) {
const json user_msg {
{"role", "user"},
{"content", "Hey"},
};
const json args {
{"arg1", "some_value"},
};
const json tool_call_msg {
{"role", "assistant"},
{"content", nullptr},
{"tool_calls", json::array({
{
// TODO: detect if requires numerical id or fixed length == 6 like Nemo
{"id", "call_1___"},
{"type", "function"},
{"function", {
{"name", "tool_name"},
{"arguments", (caps_.requires_object_arguments ? args : json(minja::Value(args).dump(-1, /* to_json= */ true)))},
}},
},
})},
};
std::string prefix, full;
{
chat_template_inputs inputs;
inputs.messages = json::array({user_msg});
inputs.add_generation_prompt = true;
prefix = apply(inputs);
}
{
chat_template_inputs inputs;
inputs.messages = json::array({user_msg, tool_call_msg});
inputs.add_generation_prompt = false;
full = apply(inputs);
}
auto eos_pos_last = full.rfind(eos_token_);
if (eos_pos_last == prefix.size() - eos_token_.size() ||
(full[full.size() - 1] == '\n' && (eos_pos_last == full.size() - eos_token_.size() - 1))) {
full = full.substr(0, eos_pos_last);
}
size_t common_prefix_length = 0;
for (size_t i = 0; i < prefix.size() && i < full.size(); ++i) {
if (prefix[i] != full[i]) {
break;
}
if (prefix[i] == '<') {
// DeepSeek R1's template (as of 20250209) adds a trailing <think> if add_generation_prompt,
// but it removes thinking tags for past messages.
// The prefix and full strings diverge at <think> vs. <tool▁calls▁begin>, we avoid consuming the leading <.
continue;
}
common_prefix_length = i + 1;
}
auto example = full.substr(common_prefix_length);
if (example.find("tool_name") == std::string::npos && example.find("some_value") == std::string::npos) {
fprintf(stderr, "Failed to infer a tool call example (possible template bug)\n");
} else {
tool_call_example_ = example;
}
}
} catch (const std::exception & e) {
fprintf(stderr, "Failed to generate tool call example: %s\n", e.what());
}
}
const std::string & source() const { return source_; }
const std::string & bos_token() const { return bos_token_; }
const std::string & eos_token() const { return eos_token_; }
const chat_template_caps & original_caps() const { return caps_; }
// Deprecated, please use the form with chat_template_inputs and chat_template_options
std::string apply(
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json(),
bool apply_polyfills = true)
{
fprintf(stderr, "[%s] Deprecated!\n", __func__);
chat_template_inputs inputs;
inputs.messages = messages;
inputs.tools = tools;
inputs.add_generation_prompt = add_generation_prompt;
inputs.extra_context = extra_context;
inputs.now = std::chrono::system_clock::now();
chat_template_options opts;
opts.apply_polyfills = apply_polyfills;
return apply(inputs, opts);
}
std::string apply(
const chat_template_inputs & inputs,
const chat_template_options & opts = chat_template_options()) const
{
json actual_messages;
auto has_tools = inputs.tools.is_array() && !inputs.tools.empty();
auto has_tool_calls = false;
auto has_tool_responses = false;
auto has_string_content = false;
for (const auto & message : inputs.messages) {
if (message.contains("tool_calls") && !message["tool_calls"].is_null()) {
has_tool_calls = true;
}
if (message.contains("role") && message["role"] == "tool") {
has_tool_responses = true;
}
if (message.contains("content") && message["content"].is_string()) {
has_string_content = true;
}
}
auto polyfill_system_role = opts.polyfill_system_role && !caps_.supports_system_role;
auto polyfill_tools = opts.polyfill_tools && has_tools && !caps_.supports_tools;
auto polyfill_tool_call_example = polyfill_tools && opts.polyfill_tool_call_examples;
auto polyfill_tool_calls = opts.polyfill_tool_calls && has_tool_calls && !caps_.supports_tool_calls;
auto polyfill_tool_responses = opts.polyfill_tool_responses && has_tool_responses && !caps_.supports_tool_responses;
auto polyfill_object_arguments = opts.polyfill_object_arguments && has_tool_calls && caps_.requires_object_arguments;
auto polyfill_typed_content = opts.polyfill_typed_content && has_string_content && caps_.requires_typed_content;
auto needs_polyfills = opts.apply_polyfills && (false
|| polyfill_system_role
|| polyfill_tools
|| polyfill_tool_calls
|| polyfill_tool_responses
|| polyfill_object_arguments
|| polyfill_typed_content
);
if (needs_polyfills) {
actual_messages = json::array();
auto add_message = [&](const json & msg) {
if (polyfill_typed_content && msg.contains("content") && !msg.at("content").is_null() && msg.at("content").is_string()) {
actual_messages.push_back({
{"role", msg.at("role")},
{"content", {{
{"type", "text"},
{"text", msg.at("content")},
}}},
});
} else {
actual_messages.push_back(msg);
}
};
std::string pending_system;
auto flush_sys = [&]() {
if (!pending_system.empty()) {
add_message({
{"role", "user"},
{"content", pending_system},
});
pending_system.clear();
}
};
json adjusted_messages;
if (polyfill_tools) {
adjusted_messages = add_system(inputs.messages,
"You can call any of the following tools to satisfy the user's requests: " + minja::Value(inputs.tools).dump(2, /* to_json= */ true) +
(!polyfill_tool_call_example || tool_call_example_.empty() ? "" : "\n\nExample tool call syntax:\n\n" + tool_call_example_ + "\n\n"));
} else {
adjusted_messages = inputs.messages;
}
for (const auto & message_ : adjusted_messages) {
auto message = message_;
if (!message.contains("role") || !message.contains("content")) {
throw std::runtime_error("message must have 'role' and 'content' fields: " + message.dump());
}
std::string role = message.at("role");
if (message.contains("tool_calls")) {
if (polyfill_object_arguments || polyfill_tool_calls) {
for (auto & tool_call : message.at("tool_calls")) {
if (tool_call["type"] == "function") {
auto & function = tool_call.at("function");
auto & arguments = function.at("arguments");
if (arguments.is_string()) {
try {
arguments = json::parse(arguments.get<std::string>());
} catch (const std::exception & ecvt) {
fprintf(stderr, "Failed to parse arguments: %s\n", ecvt.what());
}
}
}
}
}
if (polyfill_tool_calls) {
auto content = message.at("content");
auto tool_calls = json::array();
for (const auto & tool_call : message.at("tool_calls")) {
if (tool_call.at("type") != "function") {
continue;
}
const auto & function = tool_call.at("function");
auto tc = json {
{"name", function.at("name")},
{"arguments", function.at("arguments")},
};
if (tool_call.contains("id")) {
tc["id"] = tool_call["id"];
}
tool_calls.push_back(tc);
}
auto obj = json {
{"tool_calls", tool_calls},
};
if (!content.is_null() && content != "") {
obj["content"] = content;
}
message["content"] = obj.dump(2);
message.erase("tool_calls");
}
}
if (polyfill_tool_responses && role == "tool") {
message["role"] = "user";
auto obj = json {
{"tool_response", {
{"content", message.at("content")},
}},
};
if (message.contains("name")) {
obj["tool_response"]["name"] = message.at("name");
}
if (message.contains("tool_call_id")) {
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
}
message["content"] = obj.dump(2);
message.erase("name");
}
if (!message["content"].is_null() && polyfill_system_role) {
std::string content = message.at("content");
if (role == "system") {
if (!pending_system.empty()) pending_system += "\n";
pending_system += content;
continue;
} else {
if (role == "user") {
if (!pending_system.empty()) {
message["content"] = pending_system + (content.empty() ? "" : "\n" + content);
pending_system.clear();
}
} else {
flush_sys();
}
}
}
add_message(message);
}
flush_sys();
} else {
actual_messages = inputs.messages;
}
auto context = minja::Context::make(json({
{"messages", actual_messages},
{"add_generation_prompt", inputs.add_generation_prompt},
}));
context->set("bos_token", opts.use_bos_token ? bos_token_ : "");
context->set("eos_token", opts.use_eos_token ? eos_token_ : "");
if (opts.define_strftime_now) {
auto now = inputs.now;
context->set("strftime_now", Value::callable([now](const std::shared_ptr<minja::Context> &, minja::ArgumentsValue & args) {
args.expectArgs("strftime_now", {1, 1}, {0, 0});
auto format = args.args[0].get<std::string>();
auto time = std::chrono::system_clock::to_time_t(now);
auto local_time = *std::localtime(&time);
std::ostringstream ss;
ss << std::put_time(&local_time, format.c_str());
return ss.str();
}));
}
if (!inputs.tools.is_null()) {
context->set("tools", minja::Value(inputs.tools));
}
if (!inputs.extra_context.is_null()) {
for (auto & kv : inputs.extra_context.items()) {
context->set(kv.key(), minja::Value(kv.value()));
}
}
auto ret = template_root_->render(context);
// fprintf(stderr, "actual_messages: %s\n", actual_messages.dump(2).c_str());
// fprintf(stderr, "apply: %s\n\n", ret.c_str());
return ret;
}
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
json messages_with_system = messages;
if (messages_with_system.size() > 0 && messages_with_system[0].at("role") == "system") {
std::string existing_system = messages_with_system.at(0).at("content");
messages_with_system[0] = json {
{"role", "system"},
{"content", existing_system + "\n\n" + system_prompt},
};
} else {
messages_with_system.insert(messages_with_system.begin(), json {
{"role", "system"},
{"content", system_prompt},
});
}
return messages_with_system;
}
};
} // namespace minja

View file

@ -1,966 +0,0 @@
#include "chat.hpp"
#include "chat-template.hpp"
#include "json-schema-to-grammar.h"
#include "log.h"
#include "minja.hpp"
std::string common_chat_format_name(common_chat_format format) {
switch (format) {
case COMMON_CHAT_FORMAT_CONTENT_ONLY: return "Content-only";
case COMMON_CHAT_FORMAT_GENERIC: return "Generic";
case COMMON_CHAT_FORMAT_MISTRAL_NEMO: return "Mistral Nemo";
case COMMON_CHAT_FORMAT_LLAMA_3_X: return "Llama 3.x";
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS: return "Llama 3.x with builtin tools";
case COMMON_CHAT_FORMAT_DEEPSEEK_R1: return "DeepSeek R1";
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2: return "FireFunction v2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
default:
throw std::runtime_error("Unknown chat format");
}
}
const common_grammar_options grammar_options {
/* .dotall = */ false,
/* .compact_spaces = */ false,
// /* .compact_spaces = */ true,
};
static bool parse_json(std::string::const_iterator & it, const std::string::const_iterator & end, json & out) {
// // https://json.nlohmann.me/features/parsing/sax_interface/
struct json_error_locator : public nlohmann::json_sax<json> {
std::size_t position;
bool found_error;
json_error_locator() : position(0), found_error(false) {}
bool parse_error(std::size_t position, const std::string &, const json::exception &) override {
this->position = position - 1;
this->found_error = true;
return false;
}
bool null() override { return true; }
bool boolean(bool) override { return true; }
bool number_integer(number_integer_t) override { return true; }
bool number_unsigned(number_unsigned_t) override { return true; }
bool number_float(number_float_t, const string_t &) override { return true; }
bool string(string_t &) override { return true; }
bool binary(binary_t &) override { return true; }
bool start_object(std::size_t) override { return true; }
bool key(string_t &) override { return true; }
bool end_object() override { return true; }
bool start_array(std::size_t) override { return true; }
bool end_array() override { return true; }
};
json_error_locator err_loc;
json::sax_parse(it, end, &err_loc);
std::string::const_iterator temptative_end;
if (err_loc.found_error) {
temptative_end = it + err_loc.position;
} else {
temptative_end = end;
}
std::string json_sub {it, temptative_end};
try {
out = json::parse(json_sub);
it = temptative_end;
return true;
} catch (const std::exception &) {
return false;
}
}
/**
* Takes a prefix regex that must have 1 group to capture the function name, a closing suffix, and expects json parameters in between.
* Aggregates the prefix, suffix and in-between text into the content.
*/
static common_chat_msg parse_json_tool_calls(
const std::string& input,
const std::optional<std::regex> & trigger_opt,
const std::regex & function_regex,
const std::regex & close_regex) {
std::smatch match;
common_chat_msg result;
result.role = "assistant";
auto end = input.end();
auto it = input.begin();
if (trigger_opt) {
if (!std::regex_search(it, end, match, *trigger_opt)) {
result.content = input;
return result;
}
result.content = match.prefix().str();
it = match.suffix().first;
}
while (it != end) {
std::sregex_iterator rend;
std::sregex_iterator rit(it, end, function_regex);
if (rit == rend) {
fprintf(stderr, "No more tool calls found\n");
result.content += std::string(it, end);
break;
}
auto name = rit->str(1);
result.content += std::string(it, rit->prefix().second);
it = rit->suffix().first;
json arguments;
if (!parse_json(it, end, arguments)) {
throw std::runtime_error("Failed to parse json tool call arguments");
}
if (!std::regex_search(it, end, match, close_regex)) {
throw std::runtime_error("Malformed input, missing closing pattern");
}
it = match.suffix().first;
result.tool_calls.push_back({name, arguments.is_string() ? arguments.get<std::string>() : arguments.dump(), /* id= */ ""});
}
return result;
}
static common_chat_msg parse_prefixed_json_tool_call_array(const std::string& input, const std::string & prefix, size_t rstrip_prefix = 0) {
auto content_end = input.find(prefix);
size_t tc_start = std::string::npos;
common_chat_msg result;
result.role = "assistant";
const auto process_tool_calls = [&](const json & tool_calls) {
for (const auto & tool_call : tool_calls) {
const auto & arguments = tool_call["arguments"];
result.tool_calls.push_back({
tool_call["name"],
arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
tool_call.contains("id") ? tool_call["id"] : "",
});
}
};
if (content_end == std::string::npos) {
result.content = input;
} else {
tc_start = content_end + prefix.size() - rstrip_prefix;
result.content = input.substr(0, content_end);
auto tool_calls = json::parse(input.substr(tc_start));
process_tool_calls(tool_calls);
}
return result;
}
static void foreach_function(const json & tools, const std::function<void(const json &)> & fn) {
for (const auto & tool : tools) {
if (!tool.contains("type") || tool["type"] != "function" || !tool.contains("function")) {
LOG_INF("Skipping tool without function: %s", tool.dump(2).c_str());
continue;
}
fn(tool);
}
}
static std::string apply(
const common_chat_template & tmpl,
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json())
{
minja::chat_template_inputs tmpl_inputs;
tmpl_inputs.messages = messages;
tmpl_inputs.tools = tools;
tmpl_inputs.add_generation_prompt = add_generation_prompt;
tmpl_inputs.extra_context = extra_context;
// TODO: add flag to control date/time, if only for testing purposes.
// tmpl_inputs.now = std::chrono::system_clock::now();
minja::chat_template_options tmpl_opts;
tmpl_opts.use_bos_token = false;
tmpl_opts.use_eos_token = false;
return tmpl.apply(tmpl_inputs, tmpl_opts);
}
static common_chat_params common_chat_params_init_generic(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
auto tool_call_schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
auto tool_schema = json {
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", function["name"]},
}},
{"arguments", function["parameters"]},
}},
{"required", json::array({"name", "arguments"})},
};
if (function.contains("description")) {
tool_schema["description"] = function["description"];
}
if (inputs.parallel_tool_calls) {
tool_schema["properties"]["id"] = {
{"type", "string"},
{"minLength", 4},
};
tool_schema["required"].push_back("id");
}
tool_call_schemas.emplace_back(tool_schema);
});
const auto tool_call =
inputs.parallel_tool_calls
? json {
{"type", "object"},
{"properties", {
{"tool_calls", {
{"type", "array"},
{"items", tool_call_schemas.size() == 1 ? tool_call_schemas[0] : json {
{"anyOf", tool_call_schemas},
}},
{"minItems", 1},
}},
}},
{"required", json::array({"tool_calls"})},
}
: json {
{"type", "object"},
{"properties", {
{"tool_call", tool_call_schemas.size() == 1 ? tool_call_schemas[0] : json {
{"anyOf", tool_call_schemas},
}},
}},
{"required", json::array({"tool_call"})},
};
const auto schema =
inputs.tool_choice != "required"
? json {
{"anyOf", json::array({
tool_call,
{
{"type", "object"},
{"properties", {
{"response", inputs.json_schema.is_null()
? json {{"type", "string"}}
: inputs.json_schema
},
}},
{"required", json::array({"response"})},
},
})}
}
: tool_call;
data.grammar_lazy = false;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
builder.add_schema("root", schema);
}, grammar_options);
auto tweaked_messages = common_chat_template::add_system(
inputs.messages,
"Respond in JSON format, either with `tool_call` (a request to call tools) or with `response` reply to the user's request");
data.prompt = apply(tmpl, tweaked_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_GENERIC;
return data;
}
static common_chat_msg common_chat_parse_generic(const std::string & input) {
json data = json::parse(input);
common_chat_msg result;
result.role = "assistant";
if (data.contains("tool_calls")) {
for (const auto & tool_call : data["tool_calls"]) {
result.tool_calls.push_back({
tool_call["name"],
tool_call["arguments"].dump(),
tool_call.contains("id") ? tool_call["id"] : "",
});
}
} else if (data.contains("tool_call")) {
result.tool_calls.push_back({
data["tool_call"]["name"],
data["tool_call"]["arguments"].dump(),
/* id= */ "",
});
} else if (data.contains("response")) {
const auto & response = data["response"];
result.content = response.is_string() ? response.get<std::string>() : response.dump(2);
}
return result;
}
static common_chat_params common_chat_params_init_mistral_nemo(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
schemas.push_back({
{"type", "object"},
{"properties", {
// Important note: the model is probably trained to take a JSON stringified arguments value.
// It's hard to constrain that for now (while reusing the JSON schema conversion), so we're just expecting a plain object.
{"name", {
{"type", "string"},
{"const", function["name"]},
}},
{"arguments", function["parameters"]},
{"id", {
{"type", "string"},
// Nemo's template expects a 9-character alphanumeric ID.
{"pattern", "^[a-zA-Z0-9]{9}$"},
}},
}},
{"required", json::array({"name", "arguments", "id"})},
});
});
auto schema = json {
{"type", "array"},
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
}, grammar_options);
data.grammar_triggers.push_back({"[TOOL_CALLS]", /* .at_start = */ true});
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
return data;
}
static common_chat_msg common_chat_parse_mistral_nemo(const std::string & input) {
return parse_prefixed_json_tool_call_array(input, "[TOOL_CALLS]");
}
static common_chat_params common_chat_params_init_command_r7b(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
schemas.push_back({
{"type", "object"},
{"properties", {
{"tool_call_id", {
{"type", "string"},
// Command-R's template expects an integer string.
{"pattern", "^[0-9]{1,10}$"},
}},
{"tool_name", {
{"type", "string"},
{"const", function["name"]},
}},
{"parameters", function["parameters"]},
}},
{"required", json::array({"tool_call_id", "tool_name", "parameters"})},
});
});
auto schema = json {
{"type", "array"},
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"<|START_ACTION|>\" " + builder.add_schema("tool_calls", schema) + " \"<|END_ACTION|>\"");
}, grammar_options);
data.grammar_triggers.push_back({"<|START_ACTION|>", /* .at_start = */ false});
data.preserved_tokens = {
"<|START_RESPONSE|>",
"<|END_RESPONSE|>",
"<|START_THINKING|>",
"<|END_THINKING|>",
"<|END_ACTION|>",
};
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_COMMAND_R7B;
return data;
}
static common_chat_msg common_chat_parse_command_r7b(const std::string & input) {
static std::regex response_regex("<\\|START_RESPONSE\\|>([\\s\\S\\n\\r]*?)<\\|END_RESPONSE\\|>");
static std::regex thought_action_regex("<\\|START_THINKING\\|>([\\s\\S\\n\\r]*?)<\\|END_THINKING\\|><\\|START_ACTION\\|>([\\s\\S\\n\\r]*?)<\\|END_ACTION\\|>");
std::smatch match;
common_chat_msg result;
result.role = "assistant";
if (std::regex_match(input, match, response_regex)) {
result.content = match[1].str();
} else if (std::regex_match(input, match, thought_action_regex)) {
result.tool_plan = match[1].str();
auto actions_str = match[2].str();
auto actions = json::parse(actions_str);
for (const auto & action : actions) {
result.tool_calls.push_back({
/* .name = */ action["tool_name"],
/* .arguments = */ action["parameters"].dump(),
/* .id = */ action["tool_call_id"],
});
}
} else {
LOG_ERR("Failed to parse command_r output");
result.content = input;
}
return result;
}
static void expect_tool_parameters(const std::string & name, const json & parameters, const std::vector<std::string> & expected_properties) {
if (!parameters.is_object() || !parameters.contains("type") || parameters["type"] != "object" || !parameters.contains("properties") || !parameters.contains("required")) {
throw std::runtime_error("Parameters of tool " + name + " must be an object w/ required properties");
}
const auto & parameters_properties = parameters.at("properties");
const auto & parameters_required = parameters.at("required");
for (const auto & prop : expected_properties) {
if (!parameters_properties.contains(prop)) {
throw std::runtime_error("Parameters of tool " + name + " is missing property: " + prop);
}
if (std::find(parameters_required.begin(), parameters_required.end(), json(prop)) == parameters_required.end()) {
throw std::runtime_error("Parameters of tool " + name + " must have property marked as required: " + prop);
}
}
if (parameters_properties.size() != expected_properties.size()) {
throw std::runtime_error("Parameters of tool " + name + " must only have these properties:" + string_join(expected_properties, ", "));
}
}
static common_chat_params common_chat_params_init_llama_3_1_tool_calls(const common_chat_template & tmpl, const struct common_chat_inputs & inputs, bool allow_python_tag_builtin_tools) {
auto builtin_tools = json::array();
common_chat_params data;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
auto handle_builtin_tool = [&](const std::string & name, const json & parameters) {
if (name == "wolfram_alpha") {
// https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/tool_runtime/wolfram_alpha/wolfram_alpha.py
expect_tool_parameters(name, parameters, {"query"});
} else if (name == "web_search" || name == "brave_search") {
// https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/tool_runtime/brave_search/brave_search.py
expect_tool_parameters(name, parameters, {"query"});
} else if (name == "python" || name == "code_interpreter") {
// https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/inline/tool_runtime/code_interpreter/code_interpreter.py
expect_tool_parameters(name, parameters, {"code"});
} else {
return false;
}
std::vector<std::string> kvs;
for (const auto & [key, value] : parameters.at("properties").items()) {
kvs.push_back("\"" + key + "=\" " + builder.add_schema(name + "-args-" + key, value));
}
tool_rules.push_back(
builder.add_rule(
name + "-call",
"\"<|python_tag|>" + name + ".call(\" " + string_join(kvs, " \", \" ") + " \")\""));
builtin_tools.push_back(name);
return true;
};
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
builder.resolve_refs(parameters);
// https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/tool_runtime
if (allow_python_tag_builtin_tools) {
handle_builtin_tool(name, parameters);
}
tool_rules.push_back(
builder.add_rule(
name + "-call",
"\"{\" space "
"( \"\\\"type\\\":\" space \"\\\"function\\\",\" space )? "
"\"\\\"name\\\": \\\"" + name + "\\\", \\\"parameters\\\": \" " +
builder.add_schema(name + "-args", parameters) +
" \"}\""));
data.grammar_triggers.push_back({"{\"name\": \"" + name + "\"", /* .at_start = */ true});
});
data.grammar_triggers.push_back({"{\"name\":", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"name\":", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"name\":", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\"type\": \"function\"", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"type\": \"function\"", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"type\": \"function\"", /* .at_start = */ true});
if (!builtin_tools.empty()) {
data.grammar_triggers.push_back({"<|python_tag|>", /* .at_start = */ false});
}
builder.add_rule("root", string_join(tool_rules, " | "));
}, grammar_options);
data.additional_stops.push_back("<|eom_id|>");
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {
{"tools_in_user_message", false},
{"builtin_tools", builtin_tools.empty() ? json() : builtin_tools},
});
data.format = allow_python_tag_builtin_tools && !builtin_tools.empty()
? COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS
: COMMON_CHAT_FORMAT_LLAMA_3_X;
return data;
}
static common_chat_msg common_chat_parse_llama_3_1(const std::string & input, bool with_builtin_tools = false) {
// TODO: tighten & simplify the parser, don't accept leading text context.
static std::regex function_regex("\\{[\\s\\n\\r]*(?:\"type\"[\\s\\n\\r]*:[\\s\\n\\r]*\"function\"[\\s\\n\\r]*,[\\s\\n\\r]*|[\\s\\n\\r]*)\"name\"[\\s\\n\\r]*:[\\s\\n\\r]*\"([^\"]+)\"[\\s\\n\\r]*,[\\s\\n\\r]*\"parameters\": ");
static std::regex close_regex("\\}");
static std::regex builtin_call_regex("<\\|python_tag\\|>([^.(]+)\\.call\\((.*)\\)");
if (with_builtin_tools) {
std::smatch match;
if (std::regex_match(input, match, builtin_call_regex)) {
auto name = match[1].str();
auto raw_args = match[2].str();
// TODO: if/when builtin tools start accepting more than 1 argument, use parse_json for real parsing.
auto it_eq = raw_args.find('=');
auto arg_name = raw_args.substr(0, it_eq);
auto arg_value_str = raw_args.substr(it_eq + 1);
auto arg_value = json::parse(arg_value_str);
return {
/* .role = */ "assistant",
/* .content = */ match.prefix().str(),
/* .tool_calls = */ {
{
/* .name = */ match[1],
/* .arguments = */ (json {
{arg_name, arg_value},
}).dump(),
/* .id = */ "",
},
},
};
}
}
return parse_json_tool_calls(input, std::nullopt, function_regex, close_regex);
}
static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
auto args_rule = builder.add_schema(name + "-args", parameters);
tool_rules.push_back(builder.add_rule(name + "-call",
"\"<tool▁call▁begin>function<tool▁sep>" + name + "\\n```json\\n\" " + args_rule + " \"```<tool▁call▁end>\""));
});
data.grammar_triggers.push_back({"<tool▁calls▁begin>", /* .at_start = */ false});
data.preserved_tokens = {
"<tool▁sep>",
"<tool▁call▁end>",
};
builder.add_rule("root", "\"<tool▁calls▁begin>\" (" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " space");
}, grammar_options);
auto prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.prompt = prompt;
data.format = COMMON_CHAT_FORMAT_DEEPSEEK_R1;
return data;
}
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input) {
static std::regex trigger_regex("<tool▁calls▁begin>");
static std::regex function_regex("<tool▁call▁begin>function<tool▁sep>([^\n]+)\n```json\n");
static std::regex close_regex("```<tool▁call▁end>");
return parse_json_tool_calls(input, trigger_regex, function_regex, close_regex);
}
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
fprintf(stderr, "%s\n", __func__);
common_chat_params data;
data.prompt = apply(tmpl, inputs.messages, /* tools= */ nullptr, inputs.add_generation_prompt, {
{"datetime", "Jan 29 2025 13:00:00 GMT"},
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
});
if (!inputs.tools.is_null() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
schemas.push_back({
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", function["name"]},
}},
{"arguments", function["parameters"]},
}},
{"required", json::array({"name", "arguments", "id"})},
});
});
auto schema = json {
{"type", "array"},
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\" functools\"? " + builder.add_schema("tool_calls", schema));
}, grammar_options);
data.grammar_triggers.push_back({" functools[", /* .at_start = */ false});
data.format = COMMON_CHAT_FORMAT_FIREFUNCTION_V2;
} else {
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
}
return data;
}
static common_chat_msg common_chat_parse_firefunction_v2(const std::string & input) {
return parse_prefixed_json_tool_call_array(input, " functools[", /* rstrip_prefix= */ 1);
}
static common_chat_params common_chat_params_init_functionary_v3_2(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
// >>>all\nlet's call functions>>>fn1\n{"arg1": 1...}\n>>>fn2\n{"arg1": 1...}...
// Using ">>>f1\n", ">>>f2\n"... as trigger words for the grammar
common_chat_params data;
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2;
if (!inputs.tools.is_null() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> first_tool_rules;
std::vector<std::string> subsequent_tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
auto args_rule = builder.add_schema(name + "-args", parameters);
first_tool_rules.push_back(builder.add_rule(name + "-call", "\"" + name + "\\n\" " + args_rule));
subsequent_tool_rules.push_back(builder.add_rule(name + "-call2", "\">>>" + name + "\\n\" " + args_rule));
data.grammar_triggers.push_back({name, /* .at_start = */ true});
data.grammar_triggers.push_back({">>>" + name, /* .at_start = */ false});
});
auto first_rule = first_tool_rules.empty() ? "" : builder.add_rule("first_tool_call", string_join(first_tool_rules, " | ")) + " space";
if (inputs.parallel_tool_calls) {
auto subsequent_rule = builder.add_rule("subsequent_tool_call", string_join(subsequent_tool_rules, " | ")) + " space";
builder.add_rule("root", first_rule + " (" + subsequent_rule + ")*");
} else {
builder.add_rule("root", first_rule);
}
}, grammar_options);
}
return data;
}
static bool consume(std::string::const_iterator & it, const std::string::const_iterator & end, const std::string & expected) {
auto expected_it = expected.begin();
auto tmp_it = it;
while (tmp_it != end && expected_it != expected.end() && *tmp_it == *expected_it) {
++tmp_it;
++expected_it;
}
if (expected_it == expected.end()) {
it = tmp_it;
return true;
}
return false;
}
static common_chat_msg common_chat_parse_functionary_v3_2(const std::string & input) {
static std::regex function_regex(R"((?:>>>)?(\w+)\n)");
static std::regex close_regex(R"($|(?=>>>))");
std::string content;
auto it = input.begin();
const auto end = input.end();
if (consume(it, end, "all\n")) {
std::smatch match;
if (std::regex_search(it, end, match, function_regex)) {
auto fun_it = match.prefix().second;
content = std::string(it, fun_it);
it = fun_it;
} else {
common_chat_msg res;
res.role = "assistant";
res.content = std::string(it, end);
return res;
}
}
// TODO: tighten & simplify.
try {
auto res = parse_json_tool_calls(std::string(it, end), std::nullopt, function_regex, close_regex);
res.content = content + res.content;
return res;
} catch (const std::exception & e) {
LOG_ERR("Failed to parse functionary v3.2 input: %s\n", e.what());
common_chat_msg res;
res.role = "assistant";
res.content = input;
return res;
}
}
static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
// https://github.com/MeetKai/functionary/blob/main/tests/prompt_test_v3-llama3.1.txt
common_chat_params data;
json tools = inputs.tools.is_null() ? inputs.tools : json::array();
std::string python_code_argument_name;
auto has_raw_python = false;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
const auto & parameters = function["parameters"];
std::string name = function["name"];
if (name == "python" || name == "ipython") {
if (!parameters.contains("type")) {
throw std::runtime_error("Missing type in python tool");
}
has_raw_python = true;
auto type = parameters.at("type");
if (type == "object") {
auto properties = parameters.at("properties");
for (auto it = properties.begin(); it != properties.end(); ++it) {
if (it.value().at("type") == "string") {
if (!python_code_argument_name.empty()) {
throw std::runtime_error("Multiple string arguments found in python tool");
}
python_code_argument_name = it.key();
}
}
if (python_code_argument_name.empty()) {
throw std::runtime_error("No string argument found in python tool");
}
} else if (type != "string") {
throw std::runtime_error("Invalid type in python tool: " + type.dump());
}
}
tool_rules.push_back(builder.add_rule(name + "-call", "\"<function=" + name + ">\" " + builder.add_schema(name + "-args", parameters) + " \"</function>\" space"));
});
if (has_raw_python) {
tool_rules.push_back(builder.add_rule("python-call", "\"<|python_tag|>\" .*"));
data.grammar_triggers.push_back({"<|python_tag|>", /* .at_start = */ false});
}
auto tool_call = builder.add_rule("tool_call", string_join(tool_rules, " | ")) + " space";
builder.add_rule("root", inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call);
data.grammar_triggers.push_back({"<function=", /* .at_start = */ false});
}, grammar_options);
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
// TODO: if (has_raw_python)
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1;
return data;
}
static common_chat_msg common_chat_parse_functionary_v3_1_llama_3_1(const std::string & input) {
// This version of Functionary still supports the llama 3.1 tool call format for the python tool.
static std::regex python_tag_regex(R"(<\|python_tag\|>([\s\S\n]*)$)");
std::smatch match;
if (std::regex_search(input, match, python_tag_regex)) {
auto code = match[1].str();
return {
/* .role = */ "assistant",
/* .content = */ match.prefix().str(),
/* .tool_calls = */ {
{
/* .name = */ "python",
/* .arguments = */ (json {{"code", code}}).dump(),
/* .id = */ "",
},
}
};
}
static std::regex function_regex(R"(<function=(\w+)>)");
static std::regex close_regex(R"(</function>)");
// TODO: tighten & simplify.
return parse_json_tool_calls(input, std::nullopt, function_regex, close_regex);
}
static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
// (content)?(<tool_call>{"name": "foo", "arguments": {"a": 1}}</tool_call>)*
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
builder.resolve_refs(parameters);
tool_rules.push_back(builder.add_schema(name + "-call", {
{"type", "object"},
{"properties", json {
{"name", json {{"const", name}}},
{"arguments", parameters},
}},
{"required", json::array({"name", "arguments"})},
}));
});
auto tool_call = "\"<tool_call>\" space " + builder.add_rule("tool_call", string_join(tool_rules, " | ")) + " \"</tool_call>\" space";
builder.add_rule("root", inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call);
data.grammar_triggers.push_back({"<tool_call>", /* .at_start = */ false});
data.preserved_tokens = { "</tool_call>" };
}, grammar_options);
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
return data;
}
static common_chat_msg common_chat_parse_hermes_2_pro(const std::string & input) {
try {
std::regex start_pattern(R"([\n\s]*<tool_call>)");
std::regex middle_pattern(R"([\n\s]*</tool_call>[\n\s]*<tool_call>)");
std::regex end_pattern(R"([\n\s]*</tool_call>[\n\s]*$)");
auto end = input.end();
std::sregex_iterator rend;
std::sregex_iterator rit(input.begin(), end, start_pattern);
if (rit == rend) {
return {
/* .role = */ "assistant",
/* .content = */ input,
/* .tool_calls = */ {},
};
}
common_chat_msg result;
result.role = "assistant";
result.content = rit->prefix();
auto it = rit->suffix().first;
while (it != end) {
json call;
if (!parse_json(it, end, call)) {
throw std::runtime_error("Failed to parse json tool call");
}
const auto & arguments = call["arguments"];
result.tool_calls.push_back({
call["name"],
arguments.dump(),
// arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
/* id= */ "",
});
rit = {it, end, middle_pattern};
if (rit != rend) {
it = rit->suffix().first;
} else {
rit = {it, end, end_pattern};
if (rit == rend) {
throw std::runtime_error("Malformed input, missing </tool_call>");
}
break;
}
}
return result;
} catch (const std::exception & e) {
return {
/* .role = */ "assistant",
/* .content = */ input,
/* .tool_calls = */ {},
};
}
}
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
data.grammar_lazy = false;
if (!inputs.json_schema.is_null()) {
if (!inputs.grammar.empty()) {
throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
}
data.grammar = json_schema_to_grammar(inputs.json_schema);
} else {
data.grammar = inputs.grammar.empty();
}
return data;
}
common_chat_params common_chat_params_init(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
auto has_tools = !inputs.tools.is_null() && inputs.tool_choice != "none";
LOG_DBG("[%s] has_tools=%s\n", __func__, has_tools ? "true" : "false");
if (has_tools && !inputs.grammar.empty()) {
throw std::runtime_error("Cannot specify grammar with tools");
}
const auto & src = tmpl.source();
if (src.find(">>>all") != std::string::npos) {
// Functionary prepends "all\n" to plain content outputs, so we use the parser no matter when
return common_chat_params_init_functionary_v3_2(tmpl, inputs);
}
if (src.find(" functools[") != std::string::npos) {
// Firefunction v2 requires datetime and functions in the context, even w/o tools.
return common_chat_params_init_firefunction_v2(tmpl, inputs);
}
if (!has_tools) {
return common_chat_params_init_without_tools(tmpl, inputs);
}
if (src.find("<tool_call>") != std::string::npos) {
return common_chat_params_init_hermes_2_pro(tmpl, inputs);
}
if (src.find("<|start_header_id|>") != std::string::npos
&& src.find("<function=") != std::string::npos) {
return common_chat_params_init_functionary_v3_1_llama_3_1(tmpl, inputs);
}
if (src.find("<|start_header_id|>ipython<|end_header_id|>") != std::string::npos) {
auto allow_python_tag_builtin_tools = src.find("<|python_tag|>") != std::string::npos;
return common_chat_params_init_llama_3_1_tool_calls(tmpl, inputs, allow_python_tag_builtin_tools);
}
if (src.find("<tool▁calls▁begin>") != std::string::npos) {
return common_chat_params_init_deepseek_r1(tmpl, inputs);
}
if (src.find("[TOOL_CALLS]") != std::string::npos) {
return common_chat_params_init_mistral_nemo(tmpl, inputs);
}
if (src.find("<|END_THINKING|><|START_ACTION|>") != std::string::npos) {
return common_chat_params_init_command_r7b(tmpl, inputs);
}
return common_chat_params_init_generic(tmpl, inputs);
}
static common_chat_msg common_chat_parse_content_only(const std::string & input) {
return {
/* .role = */ "assistant",
/* .content = */ input,
/* .tool_calls = */ {},
};
}
common_chat_msg common_chat_parse(const std::string & input, common_chat_format format) {
switch (format) {
case COMMON_CHAT_FORMAT_CONTENT_ONLY:
return common_chat_parse_content_only(input);
case COMMON_CHAT_FORMAT_GENERIC:
return common_chat_parse_generic(input);
case COMMON_CHAT_FORMAT_MISTRAL_NEMO:
return common_chat_parse_mistral_nemo(input);
case COMMON_CHAT_FORMAT_LLAMA_3_X:
return common_chat_parse_llama_3_1(input);
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS:
return common_chat_parse_llama_3_1(input, /* with_builtin_tools= */ true);
case COMMON_CHAT_FORMAT_DEEPSEEK_R1:
return common_chat_parse_deepseek_r1(input);
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2:
return common_chat_parse_functionary_v3_2(input);
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1:
return common_chat_parse_functionary_v3_1_llama_3_1(input);
case COMMON_CHAT_FORMAT_HERMES_2_PRO:
return common_chat_parse_hermes_2_pro(input);
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2:
return common_chat_parse_firefunction_v2(input);
case COMMON_CHAT_FORMAT_COMMAND_R7B:
return common_chat_parse_command_r7b(input);
default:
throw std::runtime_error("Unsupported format: " + common_chat_format_name(format));
}
}

View file

@ -1,52 +0,0 @@
// Chat support (incl. tool call grammar constraining & output parsing) w/ generic & custom template handlers.
#pragma once
#include "common.h"
#include <json.hpp>
#include <optional>
#include <string>
#include <vector>
using json = nlohmann::ordered_json;
struct common_chat_inputs {
json messages;
json tools;
json tool_choice;
json json_schema;
bool parallel_tool_calls;
bool stream;
std::string grammar;
bool add_generation_prompt = true;
};
enum common_chat_format {
COMMON_CHAT_FORMAT_CONTENT_ONLY,
COMMON_CHAT_FORMAT_GENERIC,
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
struct common_chat_params {
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
json prompt;
std::string grammar;
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
};
struct common_chat_params common_chat_params_init(const common_chat_template & tmpl, const struct common_chat_inputs & params);
std::string common_chat_format_name(common_chat_format format);
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);

File diff suppressed because it is too large Load diff

View file

@ -2,12 +2,20 @@
#pragma once
#include "llama-cpp.h"
#include "llama.h"
#include <set>
#include "sampling.h"
#define LOG_NO_FILE_LINE_FUNCTION
#include "log.h"
#include <cmath>
#include <string>
#include <vector>
#include <sstream>
#include <random>
#include <thread>
#include <unordered_map>
#include <tuple>
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
@ -19,699 +27,216 @@
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
#define print_build_info() do { \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_adapter_lora_info {
std::string path;
float scale;
struct llama_adapter_lora * ptr;
};
using llama_tokens = std::vector<llama_token>;
// build info
extern int LLAMA_BUILD_NUMBER;
extern const char * LLAMA_COMMIT;
extern const char * LLAMA_COMPILER;
extern const char * LLAMA_BUILD_TARGET;
struct common_control_vector_load_info;
extern char const *LLAMA_COMMIT;
extern char const *LLAMA_COMPILER;
extern char const *LLAMA_BUILD_TARGET;
//
// CPU utils
// CLI argument parsing
//
int32_t get_num_physical_cores();
struct cpu_params {
int n_threads = -1;
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
bool mask_valid = false; // Default: any CPU
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
bool strict_cpu = false; // Use strict CPU placement
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
};
struct gpt_params {
uint32_t seed = -1; // RNG seed
int32_t cpu_get_num_physical_cores();
int32_t cpu_get_num_math();
int32_t n_threads = get_num_physical_cores();
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_accept = 0.5f; // speculative decoding accept probability
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
// pinging @cebtenzzre
//
// Common params
//
// // sampling parameters
struct llama_sampling_params sparams;
enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_INFILL,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
LLAMA_EXAMPLE_PASSKEY,
LLAMA_EXAMPLE_IMATRIX,
LLAMA_EXAMPLE_BENCH,
LLAMA_EXAMPLE_SERVER,
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
LLAMA_EXAMPLE_EXPORT_LORA,
LLAMA_EXAMPLE_LLAVA,
LLAMA_EXAMPLE_LOOKUP,
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_TTS,
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string prompt = "";
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files
LLAMA_EXAMPLE_COUNT,
};
enum common_sampler_type {
COMMON_SAMPLER_TYPE_NONE = 0,
COMMON_SAMPLER_TYPE_DRY = 1,
COMMON_SAMPLER_TYPE_TOP_K = 2,
COMMON_SAMPLER_TYPE_TOP_P = 3,
COMMON_SAMPLER_TYPE_MIN_P = 4,
//COMMON_SAMPLER_TYPE_TFS_Z = 5,
COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
COMMON_SAMPLER_TYPE_XTC = 8,
COMMON_SAMPLER_TYPE_INFILL = 9,
COMMON_SAMPLER_TYPE_PENALTIES = 10,
};
// dimensionality reduction methods, used by cvector-generator
enum dimre_method {
DIMRE_METHOD_PCA,
DIMRE_METHOD_MEAN,
};
enum common_conversation_mode {
COMMON_CONVERSATION_MODE_DISABLED = 0,
COMMON_CONVERSATION_MODE_ENABLED = 1,
COMMON_CONVERSATION_MODE_AUTO = 2,
};
struct common_grammar_trigger {
std::string word;
bool at_start;
};
// sampling parameters
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float xtc_probability = 0.00f; // 0.0 = disabled
float xtc_threshold = 0.10f; // > 0.5 disables XTC
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool ignore_eos = false;
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TYPICAL_P,
COMMON_SAMPLER_TYPE_TOP_P,
COMMON_SAMPLER_TYPE_MIN_P,
COMMON_SAMPLER_TYPE_XTC,
COMMON_SAMPLER_TYPE_TEMPERATURE,
};
std::string grammar; // optional BNF-like grammar to constrain sampling
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
std::set<llama_token> preserved_tokens;
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
// print the parameters into a string
std::string print() const;
};
struct common_params_speculative {
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_ctx = 0; // draft context size
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string model_url = ""; // model url to download // NOLINT
};
struct common_params_vocoder {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
};
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 4096; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = 0.1f; // KV cache defragmentation threshold
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
struct common_params_sampling sampling;
struct common_params_speculative speculative;
struct common_params_vocoder vocoder;
std::string model = ""; // model path // NOLINT
std::string model_alias = ""; // model alias // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string hf_token = ""; // HF token // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string prompt = ""; // NOLINT
std::string prompt_file = ""; // store the external prompt file name // NOLINT
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
// TODO: avoid tuple, use struct
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
int32_t verbosity = 0;
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
bool kl_divergence = false; // compute KL divergence
bool usage = false; // print usage
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
bool special = false; // enable special token output
bool interactive = false; // interactive mode
bool interactive_first = false; // wait for user input immediately
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
bool embedding = false; // get only sentence embedding
bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
bool interactive_first = false; // wait for user input immediately
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool no_perf = false; // disable performance metrics
bool ctx_shift = true; // context shift on inifinite text generation
bool cont_batching = false; // insert new sequences for decoding on-the-fly
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
bool instruct = false; // instruction mode (used for Alpaca models)
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool numa = false; // attempt optimizations that help on some NUMA systems
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
bool infill = false; // use infill mode
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector // NOLINT
std::vector<std::string> image; // path to image file(s)
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std::string embd_sep = "\n"; // separator of embeddings
bool reranking = false; // enable reranking support on server
// server params
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
std::vector<std::string> api_keys;
std::string ssl_file_key = ""; // NOLINT
std::string ssl_file_cert = ""; // NOLINT
// "advanced" endpoints are disabled by default for better security
bool webui = true;
bool endpoint_slots = false;
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
bool log_json = false;
std::string slot_save_path;
float slot_prompt_similarity = 0.5f;
// batched-bench params
bool is_pp_shared = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
std::vector<int32_t> n_pl;
// retrieval params
std::vector<std::string> context_files; // context files to embed
int32_t chunk_size = 64; // chunk size for context embedding
std::string chunk_separator = "\n"; // chunk separator for context embedding
// passkey params
int32_t n_junk = 250; // number of times to repeat the junk text
int32_t i_pos = -1; // position of the passkey in the junk text
// imatrix params
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
int32_t i_chunk = 0; // start processing from this chunk
bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity
// cvector-generator params
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_outfile = "control_vector.gguf";
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
// batched-bench params
bool batched_bench_output_jsonl = false;
std::string mmproj = ""; // path to multimodal projector
std::string image = ""; // path to an image file
};
// call once at the start of a program if it uses libcommon
// initializes the logging system and prints info about the build
void common_init();
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
std::string common_params_get_system_info(const common_params & params);
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
bool set_process_priority(enum ggml_sched_priority prio);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string get_system_info(const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
void process_escapes(std::string& input);
//
// String utils
// String parsing
//
#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
#endif
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
std::string string_format(const char * fmt, ...);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
std::string string_repeat(const std::string & str, size_t n);
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
std::vector<T> values;
std::istringstream str_stream(str);
std::string token;
while (std::getline(str_stream, token, delim)) {
T value;
std::istringstream token_stream(token);
token_stream >> value;
values.push_back(value);
}
return values;
}
template<>
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
{
std::vector<std::string> parts;
size_t begin_pos = 0;
size_t separator_pos = input.find(separator);
while (separator_pos != std::string::npos) {
std::string part = input.substr(begin_pos, separator_pos - begin_pos);
parts.emplace_back(part);
begin_pos = separator_pos + 1;
separator_pos = input.find(separator, begin_pos);
}
parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
return parts;
}
static bool string_starts_with(const std::string & str,
const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
return str.rfind(prefix, 0) == 0;
}
static bool string_ends_with(const std::string & str,
const std::string & suffix) { // While we wait for C++20's std::string::ends_with...
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
}
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);
std::string string_from(bool value);
std::string string_from(const std::vector<int> & values);
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
//
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_create_directory_with_parents(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
std::string parse_samplers_input(std::string input);
//
// Model utils
//
// note: defines object's lifetime
struct common_init_result {
llama_model_ptr model;
llama_context_ptr context;
// TODO: avoid tuplue, use struct
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
std::vector<llama_adapter_lora_ptr> lora;
};
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
struct common_init_result common_init_from_params(common_params & params);
struct llama_model_params common_model_params_to_llama ( common_params & params);
struct llama_context_params common_context_params_to_llama(const common_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
std::pair<std::string, std::string> common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & hf_token);
// clear LoRA adapters from context, then apply new list of adapters
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
//
// Batch utils
//
void common_batch_clear(struct llama_batch & batch);
void llama_batch_clear(struct llama_batch & batch);
void common_batch_add(
void llama_batch_add(
struct llama_batch & batch,
llama_token id,
llama_pos pos,
const std::vector<llama_seq_id> & seq_ids,
bool logits);
//
// Token utils
//
// longest common prefix
size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
// longet common subsequence
size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
//
// Vocab utils
//
// tokenizes a string into a vector of tokens
// should work similar to Python's `tokenizer.encode`
std::vector<llama_token> common_tokenize(
std::vector<llama_token> llama_tokenize(
const struct llama_context * ctx,
const std::string & text,
bool add_special,
bool parse_special = false);
bool add_bos,
bool special = false);
std::vector<llama_token> common_tokenize(
const struct llama_vocab * vocab,
std::vector<llama_token> llama_tokenize(
const struct llama_model * model,
const std::string & text,
bool add_special,
bool parse_special = false);
bool add_bos,
bool special = false);
// tokenizes a token into a piece, optionally renders special/control tokens
// tokenizes a token into a piece
// should work similar to Python's `tokenizer.id_to_piece`
std::string common_token_to_piece(
std::string llama_token_to_piece(
const struct llama_context * ctx,
llama_token token,
bool special = true);
llama_token token);
std::string common_token_to_piece(
const struct llama_vocab * vocab,
llama_token token,
bool special = true);
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
// that takes into account the tokenizer type and decides how to handle the leading space
//
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
// removes the leading space from the first non-BOS token
std::string llama_detokenize_spm(
llama_context * ctx,
const std::vector<llama_token> & tokens);
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
// optionally renders special/control tokens
std::string common_detokenize(
const struct llama_context * ctx,
const std::vector<llama_token> & tokens,
bool special = true);
std::string llama_detokenize_bpe(
llama_context * ctx,
const std::vector<llama_token> & tokens);
std::string common_detokenize(
const struct llama_vocab * vocab,
const std::vector<llama_token> & tokens,
bool special = true);
// Uses the value from the model metadata if possible, otherwise
// defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model);
//
// Chat template utils
// YAML utils
//
struct common_tool_call {
std::string name;
std::string arguments;
std::string id;
};
bool create_directory_with_parents(const std::string & path);
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
std::string get_sortable_timestamp();
// same with llama_chat_message, but uses std::string
struct common_chat_msg {
std::string role;
std::string content;
std::vector<common_tool_call> tool_calls;
std::string tool_plan = "";
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
namespace minja {
class chat_template;
}
typedef minja::chat_template common_chat_template;
struct common_chat_templates {
bool has_explicit_template; // Model had builtin template or template overridde was specified.
std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
std::unique_ptr<common_chat_template> template_tool_use;
};
// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std::string common_chat_apply_template(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & chat,
bool add_ass,
bool use_jinja);
// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass,
bool use_jinja);
// Returns an example of formatted chat
std::string common_chat_format_example(
const common_chat_template & tmpl, bool use_jinja);
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override);
void dump_non_result_info_yaml(
FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
//
// Embedding utils
//
// TODO: repace embd_norm with an enum
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
//
// Control vector utils
//
struct common_control_vector_data {
int n_embd;
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
std::vector<float> data;
};
struct common_control_vector_load_info {
float strength;
std::string fname;
};
// Load control vectors, scale each by strength, and add them together.
// On error, returns {-1, empty}
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
//
// Split utils
//
namespace {
const char * const LLM_KV_SPLIT_NO = "split.no";
const char * const LLM_KV_SPLIT_COUNT = "split.count";
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
}
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);

View file

@ -94,9 +94,6 @@ namespace console {
simple_io = true;
}
}
if (simple_io) {
_setmode(_fileno(stdin), _O_U8TEXT);
}
#else
// POSIX-specific console initialization
if (!simple_io) {

424
common/grammar-parser.cpp Normal file
View file

@ -0,0 +1,424 @@
#include "grammar-parser.h"
#include <cstdint>
#include <cwchar>
#include <string>
#include <utility>
#include <stdexcept>
#include <exception>
namespace grammar_parser {
// NOTE: assumes valid utf8 (but checks for overrun)
// copied from llama.cpp
static std::pair<uint32_t, const char *> decode_utf8(const char * src) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t first_byte = static_cast<uint8_t>(*src);
uint8_t highbits = first_byte >> 4;
int len = lookup[highbits];
uint8_t mask = (1 << (8 - len)) - 1;
uint32_t value = first_byte & mask;
const char * end = src + len; // may overrun!
const char * pos = src + 1;
for ( ; pos < end && *pos; pos++) {
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
}
return std::make_pair(value, pos);
}
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
return result.first->second;
}
static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
return next_id;
}
static void add_rule(
parse_state & state,
uint32_t rule_id,
const std::vector<llama_grammar_element> & rule) {
if (state.rules.size() <= rule_id) {
state.rules.resize(rule_id + 1);
}
state.rules[rule_id] = rule;
}
static bool is_word_char(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9');
}
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
const char * pos = src;
const char * end = src + size;
uint32_t value = 0;
for ( ; pos < end && *pos; pos++) {
value <<= 4;
char c = *pos;
if ('a' <= c && c <= 'f') {
value += c - 'a' + 10;
} else if ('A' <= c && c <= 'F') {
value += c - 'A' + 10;
} else if ('0' <= c && c <= '9') {
value += c - '0';
} else {
break;
}
}
if (pos != end) {
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
}
return std::make_pair(value, pos);
}
static const char * parse_space(const char * src, bool newline_ok) {
const char * pos = src;
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
if (*pos == '#') {
while (*pos && *pos != '\r' && *pos != '\n') {
pos++;
}
} else {
pos++;
}
}
return pos;
}
static const char * parse_name(const char * src) {
const char * pos = src;
while (is_word_char(*pos)) {
pos++;
}
if (pos == src) {
throw std::runtime_error(std::string("expecting name at ") + src);
}
return pos;
}
static std::pair<uint32_t, const char *> parse_char(const char * src) {
if (*src == '\\') {
switch (src[1]) {
case 'x': return parse_hex(src + 2, 2);
case 'u': return parse_hex(src + 2, 4);
case 'U': return parse_hex(src + 2, 8);
case 't': return std::make_pair('\t', src + 2);
case 'r': return std::make_pair('\r', src + 2);
case 'n': return std::make_pair('\n', src + 2);
case '\\':
case '"':
case '[':
case ']':
return std::make_pair(src[1], src + 2);
default:
throw std::runtime_error(std::string("unknown escape at ") + src);
}
} else if (*src) {
return decode_utf8(src);
}
throw std::runtime_error("unexpected end of input");
}
const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested);
static const char * parse_sequence(
parse_state & state,
const char * src,
const std::string & rule_name,
std::vector<llama_grammar_element> & out_elements,
bool is_nested) {
size_t last_sym_start = out_elements.size();
const char * pos = src;
while (*pos) {
if (*pos == '"') { // literal string
pos++;
last_sym_start = out_elements.size();
while (*pos != '"') {
auto char_pair = parse_char(pos);
pos = char_pair.second;
out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '[') { // char range(s)
pos++;
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
if (*pos == '^') {
pos++;
start_type = LLAMA_GRETYPE_CHAR_NOT;
}
last_sym_start = out_elements.size();
while (*pos != ']') {
auto char_pair = parse_char(pos);
pos = char_pair.second;
enum llama_gretype type = last_sym_start < out_elements.size()
? LLAMA_GRETYPE_CHAR_ALT
: start_type;
out_elements.push_back({type, char_pair.first});
if (pos[0] == '-' && pos[1] != ']') {
auto endchar_pair = parse_char(pos + 1);
pos = endchar_pair.second;
out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
}
}
pos = parse_space(pos + 1, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
pos = parse_space(name_end, is_nested);
last_sym_start = out_elements.size();
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
} else if (*pos == '(') { // grouping
// parse nested alternates into synthesized rule
pos = parse_space(pos + 1, true);
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
last_sym_start = out_elements.size();
// output reference to synthesized rule
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
if (*pos != ')') {
throw std::runtime_error(std::string("expecting ')' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
// rewrite rules:
// S* --> S' ::= S S' |
// S+ --> S' ::= S S' | S
// S? --> S' ::= S |
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
std::vector<llama_grammar_element> sub_rule;
// add preceding symbol to generated rule
sub_rule.insert(
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
if (*pos == '*' || *pos == '+') {
// cause generated rule to recurse
sub_rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
}
// mark start of alternate def
sub_rule.push_back({LLAMA_GRETYPE_ALT, 0});
if (*pos == '+') {
// add preceding symbol as alternate only for '+' (otherwise empty)
sub_rule.insert(
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
}
sub_rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule(state, sub_rule_id, sub_rule);
// in original rule, replace previous symbol with reference to generated rule
out_elements.resize(last_sym_start);
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
pos = parse_space(pos + 1, is_nested);
} else {
break;
}
}
return pos;
}
const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested) {
std::vector<llama_grammar_element> rule;
const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
while (*pos == '|') {
rule.push_back({LLAMA_GRETYPE_ALT, 0});
pos = parse_space(pos + 1, true);
pos = parse_sequence(state, pos, rule_name, rule, is_nested);
}
rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule(state, rule_id, rule);
return pos;
}
static const char * parse_rule(parse_state & state, const char * src) {
const char * name_end = parse_name(src);
const char * pos = parse_space(name_end, false);
size_t name_len = name_end - src;
uint32_t rule_id = get_symbol_id(state, src, name_len);
const std::string name(src, name_len);
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
throw std::runtime_error(std::string("expecting ::= at ") + pos);
}
pos = parse_space(pos + 3, true);
pos = parse_alternates(state, pos, name, rule_id, false);
if (*pos == '\r') {
pos += pos[1] == '\n' ? 2 : 1;
} else if (*pos == '\n') {
pos++;
} else if (*pos) {
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
}
return parse_space(pos, true);
}
parse_state parse(const char * src) {
try {
parse_state state;
const char * pos = parse_space(src, true);
while (*pos) {
pos = parse_rule(state, pos);
}
return state;
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
return parse_state();
}
}
static void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
} else {
// cop out of encoding UTF-8
fprintf(file, "<U+%04X>", c);
}
}
static bool is_char_element(llama_grammar_element elem) {
switch (elem.type) {
case LLAMA_GRETYPE_CHAR: return true;
case LLAMA_GRETYPE_CHAR_NOT: return true;
case LLAMA_GRETYPE_CHAR_ALT: return true;
case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true;
default: return false;
}
}
static void print_rule_binary(FILE * file, const std::vector<llama_grammar_element> & rule) {
for (auto elem : rule) {
switch (elem.type) {
case LLAMA_GRETYPE_END: fprintf(file, "END"); break;
case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break;
case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
}
switch (elem.type) {
case LLAMA_GRETYPE_END:
case LLAMA_GRETYPE_ALT:
case LLAMA_GRETYPE_RULE_REF:
fprintf(file, "(%u) ", elem.value);
break;
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
case LLAMA_GRETYPE_CHAR_ALT:
fprintf(file, "(\"");
print_grammar_char(file, elem.value);
fprintf(file, "\") ");
break;
}
}
fprintf(file, "\n");
}
static void print_rule(
FILE * file,
uint32_t rule_id,
const std::vector<llama_grammar_element> & rule,
const std::map<uint32_t, std::string> & symbol_id_names) {
if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) {
throw std::runtime_error(
"malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id));
}
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
llama_grammar_element elem = rule[i];
switch (elem.type) {
case LLAMA_GRETYPE_END:
throw std::runtime_error(
"unexpected end of rule: " + std::to_string(rule_id) + "," +
std::to_string(i));
case LLAMA_GRETYPE_ALT:
fprintf(file, "| ");
break;
case LLAMA_GRETYPE_RULE_REF:
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
break;
case LLAMA_GRETYPE_CHAR:
fprintf(file, "[");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_NOT:
fprintf(file, "[^");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
fprintf(file, "-");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_ALT:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"LLAMA_GRETYPE_CHAR_ALT without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
print_grammar_char(file, elem.value);
break;
}
if (is_char_element(elem)) {
switch (rule[i + 1].type) {
case LLAMA_GRETYPE_CHAR_ALT:
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
break;
default:
fprintf(file, "] ");
}
}
}
fprintf(file, "\n");
}
void print_grammar(FILE * file, const parse_state & state) {
try {
std::map<uint32_t, std::string> symbol_id_names;
for (const auto & kv : state.symbol_ids) {
symbol_id_names[kv.second] = kv.first;
}
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
// fprintf(file, "%zu: ", i);
// print_rule_binary(file, state.rules[i]);
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
// fprintf(file, "\n");
}
} catch (const std::exception & err) {
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
}
}
std::vector<const llama_grammar_element *> parse_state::c_rules() {
std::vector<const llama_grammar_element *> ret;
ret.reserve(rules.size());
for (const auto & rule : rules) {
ret.push_back(rule.data());
}
return ret;
}
}

29
common/grammar-parser.h Normal file
View file

@ -0,0 +1,29 @@
// Implements a parser for an extended Backus-Naur form (BNF), producing the
// binary context-free grammar format specified by llama.h. Supports character
// ranges, grouping, and repetition operators. As an example, a grammar for
// arithmetic might look like:
//
// root ::= expr
// expr ::= term ([-+*/] term)*
// term ::= num | "(" space expr ")" space
// num ::= [0-9]+ space
// space ::= [ \t\n]*
#pragma once
#include "llama.h"
#include <vector>
#include <map>
#include <cstdint>
#include <string>
namespace grammar_parser {
struct parse_state {
std::map<std::string, uint32_t> symbol_ids;
std::vector<std::vector<llama_grammar_element>> rules;
std::vector<const llama_grammar_element *> c_rules();
};
parse_state parse(const char * src);
void print_grammar(FILE * file, const parse_state & state);
}

Some files were not shown because too many files have changed in this diff Show more