Compare commits

..

6 commits

Author SHA1 Message Date
slaren
d4bdfc6314 better way to disable for arm 2025-02-09 17:20:13 +01:00
slaren
2d493d26ab Merge remote-tracking branch 'origin/master' into sl/mmid-cpu-perf 2025-02-09 16:27:24 +01:00
slaren
b26af62e7e cleanup 2025-02-09 16:27:19 +01:00
slaren
1b90527d78 disable for arm 2025-02-09 16:22:56 +01:00
slaren
0f0d8c3ae7 allocate chunk counter in wdata
parallelize src1 quantization by column to allows parallelization even when there is only one row
2025-02-09 16:20:20 +01:00
slaren
7fd0ae588b ggml-cpu : add chunking support to mul_mat_id 2025-02-05 03:30:04 +01:00
7 changed files with 227 additions and 150 deletions

View file

@ -249,30 +249,16 @@ class chat_template {
inputs.add_generation_prompt = false;
full = apply(inputs);
}
auto eos_pos_last = full.rfind(eos_token_);
if (eos_pos_last == prefix.size() - eos_token_.size() ||
(full[full.size() - 1] == '\n' && (eos_pos_last == full.size() - eos_token_.size() - 1))) {
full = full.substr(0, eos_pos_last);
}
size_t common_prefix_length = 0;
for (size_t i = 0; i < prefix.size() && i < full.size(); ++i) {
if (prefix[i] != full[i]) {
break;
if (full.find(prefix) != 0) {
if (prefix.rfind(eos_token_) == prefix.size() - eos_token_.size()) {
prefix = prefix.substr(0, prefix.size() - eos_token_.size());
}
if (prefix[i] == '<') {
// DeepSeek R1's template (as of 20250209) adds a trailing <think> if add_generation_prompt,
// but it removes thinking tags for past messages.
// The prefix and full strings diverge at <think> vs. <tool▁calls▁begin>, we avoid consuming the leading <.
continue;
}
common_prefix_length = i + 1;
}
auto example = full.substr(common_prefix_length);
if (example.find("tool_name") == std::string::npos && example.find("some_value") == std::string::npos) {
if (full.find(prefix) != 0) {
fprintf(stderr, "Failed to infer a tool call example (possible template bug)\n");
} else {
tool_call_example_ = example;
}
tool_call_example_ = full.substr(prefix.size());
}
} catch (const std::exception & e) {
fprintf(stderr, "Failed to generate tool call example: %s\n", e.what());
@ -377,7 +363,7 @@ class chat_template {
if (polyfill_tools) {
adjusted_messages = add_system(inputs.messages,
"You can call any of the following tools to satisfy the user's requests: " + minja::Value(inputs.tools).dump(2, /* to_json= */ true) +
(!polyfill_tool_call_example || tool_call_example_.empty() ? "" : "\n\nExample tool call syntax:\n\n" + tool_call_example_ + "\n\n"));
(!polyfill_tool_call_example || tool_call_example_.empty() ? "" : "\n\nExample tool call syntax:\n\n" + tool_call_example_));
} else {
adjusted_messages = inputs.messages;
}

View file

@ -1385,13 +1385,6 @@ static std::string strip(const std::string & s) {
return s.substr(start, end - start + 1);
}
static std::string capitalize(const std::string & s) {
if (s.empty()) return s;
auto result = s;
result[0] = std::toupper(result[0]);
return result;
}
static std::string html_escape(const std::string & s) {
std::string result;
result.reserve(s.size());
@ -1469,9 +1462,6 @@ public:
if (method->get_name() == "strip") {
vargs.expectArgs("strip method", {0, 0}, {0, 0});
return Value(strip(str));
} else if (method->get_name() == "capitalize") {
vargs.expectArgs("capitalize method", {0, 0}, {0, 0});
return Value(capitalize(str));
} else if (method->get_name() == "endswith") {
vargs.expectArgs("endswith method", {1, 1}, {0, 0});
auto suffix = vargs.args[0].get<std::string>();
@ -1802,7 +1792,7 @@ private:
auto left = parseStringConcat();
if (!left) throw std::runtime_error("Expected left side of 'logical compare' expression");
static std::regex compare_tok(R"(==|!=|<=?|>=?|in\b|is\b|not\s+in\b)");
static std::regex compare_tok(R"(==|!=|<=?|>=?|in\b|is\b|not[\r\n\s]+in\b)");
static std::regex not_tok(R"(not\b)");
std::string op_str;
while (!(op_str = consumeToken(compare_tok)).empty()) {
@ -2181,7 +2171,7 @@ private:
using TemplateTokenIterator = TemplateTokenVector::const_iterator;
std::vector<std::string> parseVarNames() {
static std::regex varnames_regex(R"(((?:\w+)(?:\s*,\s*(?:\w+))*)\s*)");
static std::regex varnames_regex(R"(((?:\w+)(?:[\r\n\s]*,[\r\n\s]*(?:\w+))*)[\r\n\s]*)");
std::vector<std::string> group;
if ((group = consumeTokenGroups(varnames_regex)).empty()) throw std::runtime_error("Expected variable names");
@ -2204,13 +2194,13 @@ private:
}
TemplateTokenVector tokenize() {
static std::regex comment_tok(R"(\{#([-~]?)([\s\S]*?)([-~]?)#\})");
static std::regex comment_tok(R"(\{#([-~]?)([\s\S\r\n]*?)([-~]?)#\})");
static std::regex expr_open_regex(R"(\{\{([-~])?)");
static std::regex block_open_regex(R"(^\{%([-~])?\s*)");
static std::regex block_open_regex(R"(^\{%([-~])?[\s\n\r]*)");
static std::regex block_keyword_tok(R"((if|else|elif|endif|for|endfor|generation|endgeneration|set|endset|block|endblock|macro|endmacro|filter|endfilter|break|continue)\b)");
static std::regex non_text_open_regex(R"(\{\{|\{%|\{#)");
static std::regex expr_close_regex(R"(\s*([-~])?\}\})");
static std::regex block_close_regex(R"(\s*([-~])?%\})");
static std::regex expr_close_regex(R"([\s\n\r]*([-~])?\}\})");
static std::regex block_close_regex(R"([\s\n\r]*([-~])?%\})");
TemplateTokenVector tokens;
std::vector<std::string> group;
@ -2294,7 +2284,7 @@ private:
auto post_space = parseBlockClose();
tokens.push_back(std::make_unique<EndGenerationTemplateToken>(location, pre_space, post_space));
} else if (keyword == "set") {
static std::regex namespaced_var_regex(R"((\w+)\s*\.\s*(\w+))");
static std::regex namespaced_var_regex(R"((\w+)[\s\n\r]*\.[\s\n\r]*(\w+))");
std::string ns;
std::vector<std::string> var_names;
@ -2346,11 +2336,6 @@ private:
throw std::runtime_error("Unexpected block: " + keyword);
}
} else if (std::regex_search(it, end, match, non_text_open_regex)) {
if (!match.position()) {
if (match[0] != "{#")
throw std::runtime_error("Internal error: Expected a comment");
throw std::runtime_error("Missing end of comment tag");
}
auto text_end = it + match.position();
text = std::string(it, text_end);
it = text_end;
@ -2415,7 +2400,7 @@ private:
auto text = text_token->text;
if (post_space == SpaceHandling::Strip) {
static std::regex trailing_space_regex(R"(\s+$)");
static std::regex trailing_space_regex(R"((\s|\r|\n)+$)");
text = std::regex_replace(text, trailing_space_regex, "");
} else if (options.lstrip_blocks && it != end) {
auto i = text.size();
@ -2425,7 +2410,7 @@ private:
}
}
if (pre_space == SpaceHandling::Strip) {
static std::regex leading_space_regex(R"(^\s+)");
static std::regex leading_space_regex(R"(^(\s|\r|\n)+)");
text = std::regex_replace(text, leading_space_regex, "");
} else if (options.trim_blocks && (it - 1) != begin && !dynamic_cast<ExpressionTemplateToken*>((*(it - 2)).get())) {
if (text.length() > 0 && text[0] == '\n') {

View file

@ -37,7 +37,7 @@ Once downloaded, place your model in the models folder in llama.cpp.
##### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --ignore-eos -n -1
./llama-cli -m models\gemma-1.1-7b-it.Q4_K_M.gguf --ignore-eos -n -1
```
### Windows:

View file

@ -10,6 +10,8 @@ extern "C" {
#define GGML_VK_NAME "Vulkan"
#define GGML_VK_MAX_DEVICES 16
GGML_BACKEND_API void ggml_vk_instance_init(void);
// backend API
GGML_BACKEND_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);

View file

@ -7,10 +7,8 @@
#include "ggml-cpu-impl.h"
#include "ggml-cpu.h"
#include "ggml-impl.h"
#include "ggml-quants.h"
#include "ggml-cpu-quants.h"
#include "ggml-threading.h"
#include "amx/amx.h"
#include "ggml.h"
#if defined(_MSC_VER) || defined(__MINGW32__)
@ -1291,7 +1289,7 @@ struct ggml_threadpool {
atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
atomic_int GGML_CACHE_ALIGN n_barrier;
atomic_int GGML_CACHE_ALIGN n_barrier_passed;
atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
atomic_int GGML_CACHE_ALIGN current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
// these are atomic as an annotation for thread-sanitizer
atomic_bool stop; // Used for stopping the threadpool altogether
@ -7490,6 +7488,7 @@ UseGgmlGemm1:;
if (src1->type != vec_dot_type) {
char * wdata = params->wdata;
const size_t nbw0 = ggml_type_size(vec_dot_type);
const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
const size_t nbw2 = nbw1*ne11;
const size_t nbw3 = nbw2*ne12;
@ -7497,6 +7496,7 @@ UseGgmlGemm1:;
assert(params->wsize >= ne13*nbw3);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
#if 0
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
@ -7506,6 +7506,20 @@ UseGgmlGemm1:;
}
}
}
#else
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
size_t bs = ggml_blck_size(vec_dot_type);
int64_t ne10_block_start = (ith * ne10/bs) / nth;
int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth;
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
(ne10_block_end - ne10_block_start) * bs);
}
}
}
#endif
}
if (ith == 0) {
@ -7593,7 +7607,6 @@ UseGgmlGemm2:;
if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) {
num_rows_per_vec_dot = 1;
}
ggml_compute_forward_mul_mat_one_chunk(params, dst, src0->type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
if (nth >= nchunk0 * nchunk1) {
@ -7606,6 +7619,84 @@ UseGgmlGemm2:;
// ggml_compute_forward_mul_mat_id
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ids->ne[0]*ids->ne[1] + (i1)]
struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};
static void ggml_compute_forward_mul_mat_id_one_chunk(
struct ggml_tensor * dst,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * ids,
const int64_t cur_a,
const int64_t ir0_start,
const int64_t ir0_end,
const int64_t ir1_start,
const int64_t ir1_end,
const char * src0_cur,
const struct mmid_row_mapping * matrix_rows,
const size_t row_size,
const bool src1_cont,
const void * wdata) {
GGML_TENSOR_BINARY_OP_LOCALS
const enum ggml_type type = src0->type;
ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
float tmp[16];
for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ++ir1) {
const int64_t _i12 = ir1; // logical row index for this expert
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
const int id = row_mapping.i1; // selected expert index
const int64_t i11 = id % ne11;
const int64_t i12 = row_mapping.i2; // row index in src1
const int64_t i1 = id; // selected expert index
const int64_t i2 = i12; // row
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly
// TODO: this is a bit of a hack, we should probably have a better way to handle this
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12*ne11)*row_size
: (i11*nb11 + i12*nb12));
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
}
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir0_end) - iir0)*sizeof(float));
}
}
}
}
static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
void * ptr = *p;
ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
*p = (void *) ((char *) ptr + size);
return ptr;
}
static void ggml_compute_forward_mul_mat_id(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
@ -7623,7 +7714,6 @@ static void ggml_compute_forward_mul_mat_id(
const bool src1_cont = ggml_is_contiguous(src1);
ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
@ -7641,21 +7731,27 @@ static void ggml_compute_forward_mul_mat_id(
const int n_ids = ids->ne[0]; // n_expert_used
const int n_as = ne02; // n_expert
char * wdata_src1_end = (src1->type == vec_dot_type) ?
(char *) params->wdata :
(char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
void * wdata_cur = params->wdata;
struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};
if (src1->type != vec_dot_type) {
incr_ptr_aligned(&wdata_cur, ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
}
int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
int64_t * matrix_row_counts = // [n_as]
incr_ptr_aligned(&wdata_cur, n_as*sizeof(int64_t), sizeof(int64_t));
struct mmid_row_mapping * matrix_rows = // [n_as][ids->ne[0]*ids->ne[1]]
incr_ptr_aligned(&wdata_cur, n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping), sizeof(int64_t));
char (*atomic_current_chunk)[CACHE_LINE_SIZE] = // [n_as]
incr_ptr_aligned(&wdata_cur, CACHE_LINE_SIZE * n_as, CACHE_LINE_SIZE);
GGML_ASSERT(params->wsize >= (size_t)((char *) wdata_cur - (char *) params->wdata));
if (src1->type != vec_dot_type) {
char * wdata = params->wdata;
const size_t nbw0 = ggml_type_size(vec_dot_type);
const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
const size_t nbw2 = nbw1*ne11;
const size_t nbw3 = nbw2*ne12;
@ -7663,19 +7759,32 @@ static void ggml_compute_forward_mul_mat_id(
assert(params->wsize >= ne13*nbw3);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
#if 0
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
for (int64_t i12 = ith; i12 < ne12; i12 += nth) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
ne10);
}
}
}
#else
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
size_t bs = ggml_blck_size(vec_dot_type);
int64_t ne10_block_start = (ith * ne10/bs) / nth;
int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth;
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
(ne10_block_end - ne10_block_start) * bs);
}
}
}
#endif
}
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
if (ith == 0) {
// initialize matrix_row_counts
memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
@ -7691,11 +7800,16 @@ static void ggml_compute_forward_mul_mat_id(
matrix_row_counts[i02] += 1;
}
}
} else {
// reset current_chunk
for (int cur_a = ith - 1; cur_a < n_as; cur_a += (nth - 1)) {
atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
*current_chunk_ctr = nth;
}
}
ggml_barrier(params->threadpool);
// compute each matrix multiplication in sequence
for (int cur_a = 0; cur_a < n_as; ++cur_a) {
const int64_t cne1 = matrix_row_counts[cur_a];
@ -7703,84 +7817,64 @@ static void ggml_compute_forward_mul_mat_id(
continue;
}
const char * src0_cur = (const char *) src0->data + cur_a*nb02;
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const char * src0_cur = (const char *) src0->data + cur_a * nb02;
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = cne1; // src1 rows
const int64_t nr0 = ne01;
const int64_t nr1 = cne1;
// distribute the thread work across the inner or outer loop based on which one is larger
int chunk_size = 16;
if (nr0 == 1 || nr1 == 1) {
chunk_size = 64;
}
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
#if defined(__aarch64__)
// disable for ARM
const bool disable_chunking = true;
#else
// disable for NUMA
const bool disable_chunking = ggml_is_numa();
#endif // defined(__aarch64__)
const int64_t ith0 = ith % nth0;
const int64_t ith1 = ith / nth0;
int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
if (nchunk0 * nchunk1 < nth * 4 || disable_chunking) {
nchunk0 = nr0 > nr1 ? nth : 1;
nchunk1 = nr0 > nr1 ? 1 : nth;
}
const int64_t ir010 = dr0*ith0;
const int64_t ir011 = MIN(ir010 + dr0, nr0);
const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
const int64_t ir110 = dr1*ith1;
const int64_t ir111 = MIN(ir110 + dr1, nr1);
int current_chunk = ith;
// threads with no work simply yield (not sure if it helps)
//if (ir010 >= ir011 || ir110 >= ir111) {
// sched_yield();
// continue;
//}
atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
// block-tiling attempt
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
while (current_chunk < nchunk0 * nchunk1) {
const int64_t ith0 = current_chunk % nchunk0;
const int64_t ith1 = current_chunk / nchunk0;
// attempt to reduce false-sharing (does not seem to make a difference)
float tmp[16];
const int64_t ir0_start = dr0 * ith0;
const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
const int64_t _i12 = ir1; // logical row index for this expert
const int64_t ir1_start = dr1 * ith1;
const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
const int id = row_mapping.i1; // selected expert index
ggml_compute_forward_mul_mat_id_one_chunk(
dst, src0, src1, ids, cur_a,
ir0_start, ir0_end, ir1_start, ir1_end,
src0_cur, matrix_rows, row_size, src1_cont, wdata
);
const int64_t i11 = id % ne11;
const int64_t i12 = row_mapping.i2; // row index in src1
const int64_t i1 = id; // selected expert index
const int64_t i2 = i12; // row
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly
// TODO: this is a bit of a hack, we should probably have a better way to handle this
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12*ne11)*row_size
: (i11*nb11 + i12*nb12));
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
//}
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
}
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
}
if (nth >= nchunk0 * nchunk1) {
break;
}
current_chunk = atomic_fetch_add_explicit(current_chunk_ctr, 1, memory_order_relaxed);
}
}
#undef MMID_MATRIX_ROW
}
// ggml_compute_forward_out_prod
@ -13717,14 +13811,19 @@ struct ggml_cplan ggml_graph_plan(
cur = 0;
const struct ggml_tensor * src0 = node->src[0];
const struct ggml_tensor * src1 = node->src[1];
const struct ggml_tensor * ids = node->src[2];
const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
if (src1->type != vec_dot_type) {
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
}
const int n_as = src0->ne[2];
cur += GGML_PAD(cur, sizeof(int64_t)); // align
cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
// src1
if (src1->type != vec_dot_type) {
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1)) + sizeof(int64_t);
}
// matrix_row_counts
cur += n_as * sizeof(int64_t) + sizeof(int64_t);
// matrix_rows
cur += n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping) + sizeof(int64_t);
// atomic_current_chunk
cur += CACHE_LINE_SIZE*n_as + CACHE_LINE_SIZE;
} break;
case GGML_OP_OUT_PROD:
{

View file

@ -167,7 +167,6 @@ struct vk_device_struct {
uint32_t subgroup_size;
uint32_t shader_core_count;
bool uma;
bool prefer_host_memory;
bool float_controls_rte_fp16;
bool subgroup_size_control;
@ -1295,9 +1294,7 @@ static vk_buffer ggml_vk_create_buffer_check(vk_device& device, size_t size, vk:
static vk_buffer ggml_vk_create_buffer_device(vk_device& device, size_t size) {
vk_buffer buf;
try {
if (device->prefer_host_memory) {
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal);
} else if (device->uma) {
if (device->uma) {
// Fall back to host memory type
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
} else {
@ -2202,9 +2199,6 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->physical_device = physical_devices[dev_num];
const std::vector<vk::ExtensionProperties> ext_props = device->physical_device.enumerateDeviceExtensionProperties();
const char* GGML_VK_PREFER_HOST_MEMORY = getenv("GGML_VK_PREFER_HOST_MEMORY");
device->prefer_host_memory = GGML_VK_PREFER_HOST_MEMORY != nullptr;
bool fp16_storage = false;
bool fp16_compute = false;
bool maintenance4_support = false;
@ -2793,12 +2787,14 @@ static void ggml_vk_print_gpu_info(size_t idx) {
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
static void ggml_vk_instance_init() {
void ggml_vk_instance_init() {
if (vk_instance_initialized) {
return;
}
VK_LOG_DEBUG("ggml_vk_instance_init()");
vk_instance_initialized = true;
uint32_t api_version = vk::enumerateInstanceVersion();
if (api_version < VK_API_VERSION_1_2) {
@ -2849,7 +2845,6 @@ static void ggml_vk_instance_init() {
GGML_LOG_DEBUG("ggml_vulkan: Validation layers enabled\n");
}
vk_instance.instance = vk::createInstance(instance_create_info);
vk_instance_initialized = true;
size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size();
@ -2874,7 +2869,7 @@ static void ggml_vk_instance_init() {
// Make sure at least one device exists
if (devices.empty()) {
std::cerr << "ggml_vulkan: Error: No devices found." << std::endl;
return;
GGML_ABORT("fatal error");
}
// Default to using all dedicated GPUs
@ -8349,13 +8344,8 @@ ggml_backend_reg_t ggml_backend_vk_reg() {
/* .iface = */ ggml_backend_vk_reg_i,
/* .context = */ nullptr,
};
try {
ggml_vk_instance_init();
return &reg;
} catch (const vk::SystemError& e) {
VK_LOG_DEBUG("ggml_backend_vk_reg() -> Error: System error: " << e.what());
return nullptr;
}
return &reg;
}
// Extension availability

View file

@ -4345,6 +4345,21 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
}
}
#if 0
for (int bs : {1, 64}) {
for (ggml_type type_a : {GGML_TYPE_Q4_0}) {
for (ggml_type type_b : {GGML_TYPE_F32}) {
int n_experts = 256;
int n_used = 8;
int n_embd = 7168;
int n_ff = 2048;
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_experts, n_used, true, n_embd, bs, n_ff));
//test_cases.emplace_back(new test_mul_mat(type_a, type_b, n_embd, bs, n_ff, {1, 1}, {1, 1}));
}
}
}
#endif
for (int K : {3, 5}) {
for (int IC : {256, 2560}) {
for (int IW_IH : {32, 64, 256}) {
@ -4478,7 +4493,7 @@ int main(int argc, char ** argv) {
auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
if (ggml_backend_set_n_threads_fn) {
// TODO: better value for n_threads
ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency() / 2);
}
printf(" Device description: %s\n", ggml_backend_dev_description(dev));