Compare commits

...
Sign in to create a new pull request.

768 commits

Author SHA1 Message Date
Olivier Chafik
d7b31a9d84
sync: minja (a72057e519) (#11774) 2025-02-10 09:34:09 +00:00
pascal-lc
9ac3457b39
Update README.md [no ci] (#11781)
typo: `\` -> `/`
Change the UNIX path separator to` \`.
2025-02-10 09:05:57 +01:00
Danny Milosavljevic
c2a67efe38
vulkan: Make Vulkan optional at runtime (#11493). (#11494)
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-02-10 07:17:21 +01:00
Wagner Bruna
b044a0fe3c
vulkan: add environment variable GGML_VK_PREFER_HOST_MEMORY to avoid VRAM allocation (#11592) 2025-02-10 07:08:22 +01:00
Eric Curtin
19d3c8293b
There's a better way of clearing lines (#11756)
Use the ANSI escape code for clearing a line.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-02-09 10:34:49 +00:00
Jeff Bolz
98f6b0fd1e
vulkan: account for lookup tables when checking shared memory size (#11502) 2025-02-09 08:43:51 +01:00
Xuan-Son Nguyen
55ac8c7791
server : (webui) revamp Settings dialog, add Pyodide interpreter (#11759)
* redo Settings modal UI

* add python code interpreter

* fix auto scroll

* build

* fix overflow for long output lines

* bring back sticky copy button

* adapt layout on mobile view

* fix multiple lines output and color scheme

* handle python exception

* better state management

* add webworker

* add headers

* format code

* speed up by loading pyodide on page load

* (small tweak) add small animation to make it feels like claude
2025-02-08 21:54:50 +01:00
Woof Dog
e6e6583199
server : (webui) increase edit textarea size (#11763) 2025-02-08 20:09:55 +01:00
Georgi Gerganov
aaa5505307
server : minor log updates (#11760)
ggml-ci
2025-02-08 18:08:43 +02:00
Georgi Gerganov
bdcf8b6a56
cont : fix mmap flag print (#11699) 2025-02-08 16:49:38 +02:00
Karol Kontny
4d3465c5ae
ggml: Fix data race in ggml threadpool (#11736)
After the barrier in last iteration is executed, still the loop termination
condition will be executed. However main thread can destroy the cgraph object
and its nodes already, then another thread will access it, but the thing is already gone.
Also trouble can happen when n_nodes == 0 or abort is called, but I'm not sure if the
prior situation is possible.

Last syncronization should be done after the loop to ensure the cgraph/cplan won't be
accessed after the main thread exits from the function.
2025-02-08 15:30:53 +01:00
Johannes Gäßler
d80be897ac
CUDA: fix min. version for movmatrix (#11751) 2025-02-08 10:46:07 +01:00
Nikolaos Pothitos
3ab410f55f
readme : update front-end framework (#11753)
After the migration to React with #11688
2025-02-08 10:43:04 +01:00
Xuan-Son Nguyen
0cf867160c
server : (webui) fix numeric settings being saved as string (#11739)
* server : (webui) fix numeric settings being saved as string

* add some more comments
2025-02-08 10:42:34 +01:00
Eric Curtin
d2fe216fb2
Make logging more verbose (#11714)
Debugged an issue with a user who was on a read-only filesystem.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-02-07 14:42:46 +00:00
Georgi Gerganov
ed926d8833
llama : fix defrag logic (#11707)
* llama : fix defrag logic

ggml-ci

* cont : better logic

ggml-ci

* cont : clamp fragmentation to 0.0

ggml-ci
2025-02-07 16:05:34 +02:00
Christian Fillion
2d219b389e
vocab : ignore invalid UTF-8 input in the BPE tokenizer (#11729)
Silently insert U+FFFD(s) (Unicode replacement character) instead until the
next valid codepoint can be found.

This fixes `llama_tokenize` throwing an exception across the C API boundary
or libllama's module boundary (the caller's runtime might be incompatible!)

Returing a proper error code might be desirable, however the signature
of `llama_tokenize` doesn't allow it as all return values already have
existing meaning.
2025-02-07 15:55:47 +02:00
magicse
333820d749
llama : fix progress dots (#11730)
* Update llama.cpp

For display progress dots in terminal.
Without this it didn't display dots progress during loading model from file.

* Update llama.cpp

removed trailing spaces
2025-02-07 15:48:47 +02:00
Jeff Bolz
c026ba3c23
vulkan: print shared memory size (#11719) 2025-02-07 11:26:03 +01:00
Christian Fillion
7ee953a64a
llama : add llama_sampler_init for safe usage of llama_sampler_free (#11727)
The C API in llama.h claims users can implement `llama_sampler_i` to
create custom `llama_sampler`. The sampler chain takes ownership and
calls `llama_sampler_free` on them. However, `llama_sampler_free` is
hard-coded to use `delete`. This is undefined behavior if the object
wasn't also allocated via `new` from libllama's C++ runtime. Callers
in C and C-compatible languages do not use C++'s `new` operator. C++
callers may not be sharing the same heap as libllama.
2025-02-07 11:33:27 +02:00
Akarshan Biswas
ec3bc8270b
SYCL: remove XMX info from print devices (#11712) 2025-02-07 09:27:53 +00:00
Daniel Bevenius
b7552cfcbc
common : add default embeddings presets (#11677)
* common : add default embeddings presets

This commit adds default embeddings presets for the following models:
- bge-small-en-v1.5
- e5-small-v2
- gte-small

These can be used with llama-embedding and llama-server.

For example, with llama-embedding:
```console
./build/bin/llama-embedding --embd-gte-small-default -p "Hello, how are you?"
```

And with llama-server:
```console
./build/bin/llama-server --embd-gte-small-default
```
And the embeddings endpoint can then be called with a POST request:
```console
curl --request POST \
    --url http://localhost:8080/embeddings \
    --header "Content-Type: application/json" \
    --data '{"input": "Hello, how are you?"}'
```

I'm not sure if these are the most common embedding models but hopefully
this can be a good starting point for discussion and further
improvements.

Refs: https://github.com/ggerganov/llama.cpp/issues/10932
2025-02-07 09:15:22 +01:00
Jinyang He
225bbbfa39
ggml : optimize and build warning fix for LoongArch (#11709)
* ggml : optimize convert f32<->f16 for loongarch_asx

* ggml : optimize loongarch_asx extend i16,i8,u8 to i32,i16

* ggml : Fix warnings when run cpu CI locally on LoongArch
2025-02-07 09:38:31 +02:00
tv1wnd
855cd0734a
llama : fix old glm4 models (#11670) 2025-02-06 22:48:51 +01:00
Georgi Gerganov
8a59053f63
sync : ggml 2025-02-06 21:23:03 +02:00
Patrick Peng
1d20e53c40
rpc: fix known RCE in rpc-server (ggml/1103)
Add bounds checking in `rpc_server::copy_tensor` to prevent out-of-bounds writes
+ Check if  `(uint8_t *)dst->data + ggml_nbytes(src)` remains within the destination buffer’s allocated region.
2025-02-06 21:22:54 +02:00
Xuan-Son Nguyen
2fb3c32a16
server : (webui) migrate project to ReactJS with typescript (#11688)
* init version

* fix auto scroll

* bring back copy btn

* bring back thought process

* add lint and format check on CI

* remove lang from html tag

* allow multiple generations at the same time

* lint and format combined

* fix unused var

* improve MarkdownDisplay

* fix more latex

* fix code block cannot be selected while generating
2025-02-06 17:32:29 +01:00
Tei Home
9ab42dc722
docs: update fedora cuda guide for 12.8 release (#11393)
* docs: update fedora cuda guide for 12.8 release

* docs: build cuda update
2025-02-06 12:16:15 +00:00
Akarshan Biswas
194b2e69f8
SYCL: Adjust support condition for norm operators (#11674)
SYCL does not support non contiguous tensors for norm operations
2025-02-06 11:42:35 +00:00
Georgi Gerganov
9dd7a0390f
llama : add log about loading model tensors (#11699) 2025-02-06 13:41:37 +02:00
Adrien Gallouët
c0d4843225
build : fix llama.pc (#11658)
Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>
2025-02-06 13:08:13 +02:00
junchao-zhao
8d4d2be143
ggml : fix LoongArch compile error with 128-bit SIMD (#11701) 2025-02-06 11:20:00 +02:00
Jeff Bolz
2c6c8df56d
vulkan: optimize coopmat2 iq2/iq3 callbacks (#11521)
* vulkan: optimize coopmat2 iq2/iq3 callbacks

* build: trigger CI on GLSL compute shader changes
2025-02-06 07:15:30 +01:00
Rémy O
8a7e3bf17a
vulkan: initial support for IQ4_XS quantization (#11501) 2025-02-06 07:09:59 +01:00
Jeff Bolz
1b598b3058
vulkan: use smaller combined allocations to avoid fragmentation (#11551) 2025-02-06 07:02:18 +01:00
Charles Duffy
902368a06b
metal : avoid breaking build when metal API predates TARGET_OS_VISION (#11690)
Avoids breakage in nix flake build introduced by b0569130c5
2025-02-06 09:52:31 +08:00
Matvey Soloviev
c3db0480bb
readme : add link to Autopen under UIs (#11684)
Autopen (https://github.com/blackhole89/autopen) is a graphical text editor that uses llama.cpp to tokenize the buffer on the fly, score the buffer, visualise token logits and allow you to switch back and forth between different possible completions at any point. It hopefully meets the criteria for inclusion, as the dependency on llama.cpp is stated prominently.
2025-02-06 01:55:25 +01:00
Georgi Gerganov
d774ab3acc
metal : adjust support conditions for norm operators (#11671)
cont #11659

ggml-ci
2025-02-05 10:57:42 +02:00
Johannes Gäßler
fa62da9b2d
CUDA: support for mat. mul. with ne03 != ne13 (#11656) 2025-02-05 08:58:31 +01:00
SAMI
1ec208083c
llava: add quantization for the visual projector LLAVA, Qwen2VL (#11644)
* Added quantization for visual projector
* Added README
* Fixed the clip quantize implementation in the file

* Fixed the gcc warning regarding minor linting

* Removed trailing whitespace
2025-02-05 10:45:40 +03:00
Olivier Chafik
9f4cc8f8d3
sync: minja (#11641)
* `sync`: minja

182de30cda

https://github.com/google/minja/pull/46

https://github.com/google/minja/pull/45
2025-02-05 01:00:12 +00:00
Johannes Gäßler
fd08255d0d
CUDA: non-contiguous (RMS) norm support (#11659)
* CUDA: non-contiguous (RMS) norm support

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-04 22:21:42 +01:00
fxzjshm
3ec9fd4b77
HIP: force max threads per block to be 1024 (#11621)
Some old/vendor forked version of llvm still use 256. Explicitly set it to 1024 to align with upstream llvm.

Signed-off-by: fxzjshm <fxzjshm@163.com>
2025-02-04 19:18:38 +01:00
Xuan-Son Nguyen
3962fc1a79
server : add try..catch to places not covered by set_exception_handler (#11620)
* server : add try..catch to places not covered by set_exception_handler

* log_server_request: rm try catch, add reminder
2025-02-04 18:25:42 +01:00
Radoslav Gerganov
1bef571f6a
arg : list RPC devices first when using --list-devices (#11655)
List devices in the same order as they appear when evaluating the model
and splitting tensors across devices, i.e. RPC devices come first in the
list.

ref #11435
2025-02-04 18:16:20 +02:00
Olivier Chafik
db288b60cb
tool-call: command r7b fix for normal responses (#11608)
* fix command r7b normal response regex + add to server test

* test multiline non-tool-call responses in test-chat
2025-02-04 15:48:53 +00:00
Shelby Jenkins
106045e7bb
readme : add llm_client Rust crate to readme bindings (#11628)
[This crate](https://github.com/ShelbyJenkins/llm_client) has been in a usable state for quite awhile, so I figured now is fair to add it.

It installs from crates.io, and automatically downloads the llama.cpp repo and builds it for the target platform - with the goal being the easiest user experience possible.

It also integrates model presets and choosing the largest quant given the target's available VRAM. So a user just has to specify one of the presets (I manually add the most popular models), and it will download from hugging face.

So, it's like a Rust Ollama, but it's not really for chatting. It makes heavy use of llama.cpp's grammar system to do structured output for decision making and control flow tasks.
2025-02-04 13:20:55 +02:00
Jhen-Jie Hong
f117d84b48
swift : fix llama-vocab api usage (#11645)
* swiftui : fix vocab api usage

* batched.swift : fix vocab api usage
2025-02-04 13:15:24 +02:00
Jhen-Jie Hong
534c46b53c
metal : use residency set for other platforms (#11648) 2025-02-04 13:07:18 +02:00
Georgi Gerganov
387a1598ca
authors : update 2025-02-04 13:04:10 +02:00
Georgi Gerganov
7c9e0ca520
sync : ggml 2025-02-04 12:59:21 +02:00
Christian Kastner
8f8290ada9
cmake: Add ability to pass in GGML_BUILD_NUMBER (ggml/1096)
This makes git as a dependency optional, and is useful in the case where
ggml is built not from git, but from a tarball, or a distribution source
package.

This conditional also affects GGML_BUILD_COMMIT. Nothing seems to be
using it, though, so there doesn't seem much value factor it out, or
even require it.
2025-02-04 12:59:15 +02:00
Georgi Gerganov
b34aedd558
ci : do not stale-close roadmap issues 2025-02-04 09:31:01 +02:00
Olivier Chafik
cde3833239
tool-call: allow --chat-template chatml w/ --jinja, default to chatml upon parsing issue, avoid double bos (#11616)
* tool-call: allow `--jinja --chat-template chatml`

* fix double bos issue (drop bos/eos tokens from jinja template)

* add missing try catch around jinja parsing to default to chatml

* Simplify default chatml logic
2025-02-03 23:49:27 +00:00
Xuan-Son Nguyen
b3451785ac
server : (webui) revert hacky solution from #11626 (#11634) 2025-02-04 00:10:52 +01:00
Woof Dog
1d1e6a90bc
server : (webui) allow typing and submitting during llm response (#11626) 2025-02-03 23:16:27 +01:00
Daniel Bevenius
5598f475be
server : remove CPPHTTPLIB_NO_EXCEPTIONS define (#11622)
This commit removes the CPPHTTPLIB_NO_EXCEPTIONS define from the server
code.

The motivation for this is that when using a debug build the server
would crash when an exception was throws and terminate the server
process, as it was unhandled. When CPPHTTPLIB_NO_EXCEPTIONS is set
cpp_httplib will not call the exception handler, which would normally
return a 500 error to the client. This caused tests to fail when using
a debug build.

Fixes: https://github.com/ggerganov/llama.cpp/issues/11613
2025-02-03 16:45:38 +01:00
Georgi Gerganov
8ec05832fa
sync : ggml 2025-02-03 14:57:08 +02:00
Johannes Gäßler
21c84b5d2d
CUDA: fix Volta FlashAttention logic (#11615) 2025-02-03 14:25:56 +02:00
mashdragon
d92cb67e37
server : (webui) Fix Shift+Enter handling (#11609)
* Fix Shift+Enter handling

`exact` on the Enter handler means the message is not sent when Shift+Enter is pressed anyway

* build index.html.gz

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-02-03 10:42:55 +01:00
Johannes Gäßler
6eecde3cc8
HIP: fix flash_attn_stream_k_fixup warning (#11604) 2025-02-02 23:48:29 +01:00
uvos
396856b400
CUDA/HIP: add support for selectable warp size to mmv (#11519)
CUDA/HIP: add support for selectable warp size to mmv
2025-02-02 22:40:09 +01:00
uvos
4d0598e144
HIP: add GGML_CUDA_CC_IS_* for amd familys as increasing cc archtectures for amd gpus are not supersets of eatch other (#11601)
This fixes a bug where RDNA1 gpus other than gfx1010 where not handled correctly
2025-02-02 22:08:05 +01:00
Olivier Chafik
90f9b88afb
nit: more informative crash when grammar sampler fails (#11593) 2025-02-02 19:58:34 +00:00
Johannes Gäßler
864a0b67a6
CUDA: use mma PTX instructions for FlashAttention (#11583)
* CUDA: use mma PTX instructions for FlashAttention

* __shfl_sync workaround for movmatrix

* add __shfl_sync to HIP

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-02 19:31:09 +01:00
Eric Curtin
84ec8a58f7
Name colors (#11573)
It's more descriptive, use #define's so we can use compile-time
concatenations.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-02-02 15:14:48 +00:00
Olivier Chafik
bfcce4d693
tool-call: support Command R7B (+ return tool_plan "thoughts" in API) (#11585)
* `tool-call`: support Command R7B (w/ tool_plan return)

* `tool-call`: cleaner preservation of tokens + warn when likely bad chat template override

* `tool-call`: test cleanup / handle lazy grammar triggers
2025-02-02 09:25:38 +00:00
Olivier Chafik
69804487e0
Fix exotic ci env that lacks ostringstream::str (#11581) 2025-02-02 09:10:15 +00:00
Michał Moskal
ff227703d6
sampling : support for llguidance grammars (#10224)
* initial porting of previous LLG patch

* update for new APIs

* build: integrate llguidance as an external project

* use '%llguidance' as marker to enable llg lark syntax

* add some docs

* clarify docs

* code style fixes

* remove llguidance.h from .gitignore

* fix tests when llg is enabled

* pass vocab not model to llama_sampler_init_llg()

* copy test-grammar-integration.cpp to test-llguidance.cpp

* clang fmt

* fix ref-count bug

* build and run test

* gbnf -> lark syntax

* conditionally include llguidance test based on LLAMA_LLGUIDANCE flag

* rename llguidance test file to test-grammar-llguidance.cpp

* add gh action for llg test

* align tests with LLG grammar syntax and JSON Schema spec

* llama_tokenizer() in fact requires valid utf8

* update llg

* format file

* add $LLGUIDANCE_LOG_LEVEL support

* fix whitespace

* fix warning

* include <cmath> for INFINITY

* add final newline

* fail llama_sampler_init_llg() at runtime

* Link gbnf_to_lark.py script; fix links; refer to llg docs for lexemes

* simplify #includes

* improve doc string for LLAMA_LLGUIDANCE

* typo in merge

* bump llguidance to 0.6.12
2025-02-02 09:55:32 +02:00
piDack
0cec062a63
llama : add support for GLM-Edge and GLM-Edge-V series models (#10573)
* add glm edge chat model

* use config partial_rotary_factor as rope ratio

* support for glm edge model

* vision model support

* remove debug info

* fix format

* llava.cpp trailing whitespace

* remove unused AutoTokenizer

* Update src/llama.cpp for not contain <|end|> or </s>

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* add edge template

* fix chat template

* fix confict

* fix confict

* fix ci err

* fix format err

* fix template err

* 9b hf chat support

* format

* format clip.cpp

* fix format

* Apply suggestions from code review

* Apply suggestions from code review

* Update examples/llava/clip.cpp

* fix format

* minor : style

---------

Co-authored-by: liyuhang <yuhang.li@zhipuai.cn>
Co-authored-by: piDack <pcdack@hotmail.co>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: liyuhang <yuhang.li@aminer.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-02 09:48:46 +02:00
Olivier Chafik
53debe6f3c
ci: use sccache on windows HIP jobs (#11553) 2025-02-01 18:22:38 +00:00
Olivier Chafik
cfd74c86db
sync: minja (418a2364b5) (#11574) 2025-02-01 12:24:51 +00:00
Eric Curtin
ecef206ccb
Implement s3:// protocol (#11511)
For those that want to pull from s3

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-02-01 10:30:54 +00:00
Olivier Chafik
5bbc7362cb
ci: simplify cmake build commands (#11548) 2025-02-01 00:01:20 +00:00
Olivier Chafik
aa6fb13213
ci: use sccache on windows instead of ccache (#11545)
* Use sccache on ci for windows

* Detect sccache in cmake
2025-01-31 17:12:40 +00:00
Olivier Chafik
a83f528688
tool-call: fix llama 3.x and functionary 3.2, play nice w/ pydantic_ai package, update readme (#11539)
* An empty tool_call_id is better than none!

* sync: minja (tool call name optional https://github.com/google/minja/pull/36)

* Force-disable parallel_tool_calls if template doesn't support it

* More debug logs

* Llama 3.x tools: accept / trigger on more varied spaced outputs

* Fix empty content for functionary v3.2 tool call

* Add proper tool call docs to server README

* readme: function calling *is* supported now

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-31 14:15:25 +00:00
Olivier Chafik
b1bcd309fc
fix stop regression (#11543) 2025-01-31 13:48:31 +00:00
Olivier Chafik
5783575c9d
Fix chatml fallback for unsupported builtin templates (when --jinja not enabled) (#11533) 2025-01-31 08:24:29 +00:00
Olivier Chafik
4a2b196d03
server : fix --jinja when there's no tools or schema (typo was forcing JSON) (#11531) 2025-01-31 10:12:40 +02:00
Steve Grubb
1bd3047a93
common: Add missing va_end (#11529)
The va_copy man page states that va_end must be called to revert
whatever the copy did. For some implementaions, not calling va_end
has no consequences. For others it could leak memory.
2025-01-31 07:58:55 +02:00
Daniel Bevenius
a2df2787b3
server : update help metrics processing/deferred (#11512)
This commit updates the help text for the metrics `requests_processing`
and `requests_deferred` to be more grammatically correct.

Currently the returned metrics look like this:
```console
\# HELP llamacpp:requests_processing Number of request processing.
\# TYPE llamacpp:requests_processing gauge
llamacpp:requests_processing 0
\# HELP llamacpp:requests_deferred Number of request deferred.
\# TYPE llamacpp:requests_deferred gauge
llamacpp:requests_deferred 0
```

With this commit, the metrics will look like this:
```console
\# HELP llamacpp:requests_processing Number of requests processing.
\# TYPE llamacpp:requests_processing gauge
llamacpp:requests_processing 0
\# HELP llamacpp:requests_deferred Number of requests deferred.
\# TYPE llamacpp:requests_deferred gauge
llamacpp:requests_deferred 0
```
This is also consistent with the description of the metrics in the
server examples [README.md](https://github.com/ggerganov/llama.cpp/tree/master/examples/server#get-metrics-prometheus-compatible-metrics-exporter).
2025-01-31 06:04:53 +01:00
Olivier Chafik
553f1e46e9
ci: ccache for all github worfklows (#11516) 2025-01-30 22:01:06 +00:00
Olivier Chafik
8b576b6c55
Tool call support (generic + native for Llama, Functionary, Hermes, Mistral, Firefunction, DeepSeek) w/ lazy grammars (#9639)
---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-01-30 19:13:58 +00:00
uvos
27d135c970 HIP: require at least HIP 5.5 2025-01-30 16:25:44 +01:00
uvos
6af1ca48cb HIP: Prepare reduction operators for wave 64 2025-01-30 16:25:44 +01:00
uvos
c300e68ef4 CUDA/HIP: add warp_size to cuda_device_info 2025-01-30 16:25:44 +01:00
Olivier Chafik
3d804dec76
sync: minja (#11499) 2025-01-30 10:30:27 +00:00
mgroeber9110
ffd0821c57
vocab : correctly identify LF token for GPT-2 style BPE tokenizer (#11496) 2025-01-30 12:10:59 +02:00
Daniel Bevenius
4314e56c4f
server : use lambda instead of std::bind (#11507)
This commit replaces the two usages of `std::bind` in favor of lambdas for
the callback functions for `callback_new_task` and
`callback_update_slots`.

The motivation for this changes is consistency with the rest of the code
in server.cpp (lambdas are used for all other callbacks/handlers). Also
lambdas are more readable (perhaps this is subjective) but also they are
recommended over `std::bind` in modern C++.

Ref: https://github.com/LithoCoders/dailycpp/blob/master/EffectiveModernC%2B%2B/chapter6/Item34_Prefer_lambdas_to_std::bind.md
2025-01-30 11:05:00 +01:00
Isaac McFadyen
496e5bf46b
server : (docs) added response format for /apply-template [no ci] (#11503) 2025-01-30 10:11:53 +01:00
Guspan Tanadi
7919256c57
readme : reference examples relative links (#11505) 2025-01-30 06:58:02 +01:00
Daniel Bevenius
e0449763a4
server : update json snippets in README.md [no ci] (#11492)
This commit updates some of JSON snippets in README.md file and
removes the `json` language tag from the code blocks.

The motivation for this changes is that if there is invalid json in a
code snippet these are highlighted in red which can make it somewhat
difficult to read and can be a little distracting.
2025-01-30 05:48:14 +01:00
Nigel Bosch
eb7cf15a80
server : add /apply-template endpoint for additional use cases of Minja functionality (#11489)
* add /apply-template endpoint to server

* remove unnecessary line

* add /apply-template documentation

* return only "prompt" field in /apply-template

* use suggested idea instead of my overly verbose way
2025-01-29 19:45:44 +01:00
Rémy Oudompheng
66ee4f297c
vulkan: implement initial support for IQ2 and IQ3 quantizations (#11360)
* vulkan: initial support for IQ3_S

* vulkan: initial support for IQ3_XXS

* vulkan: initial support for IQ2_XXS

* vulkan: initial support for IQ2_XS

* vulkan: optimize Q3_K by removing branches

* vulkan: implement dequantize variants for coopmat2

* vulkan: initial support for IQ2_S

* vulkan: vertically realign code

* port failing dequant callbacks from mul_mm

* Fix array length mismatches

* vulkan: avoid using workgroup size before it is referenced

* tests: increase timeout for Vulkan llvmpipe backend

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-01-29 18:29:39 +01:00
Daniel Bevenius
e51c47b401
server : update auto gen files comments [no ci] (#11484)
* server : update auto gen files comments

This commit updates the 'auto generated files' comments in server.cpp
and removes `deps.sh` from the comment.

The motivation for this change is that `deps.sh` was removed in
Commit 91c36c269b ("server : (web ui)
Various improvements, now use vite as bundler (#10599)").

* squash! server : update auto gen files comments [no ci]

Move comments about file generation to README.md.

* squash! server : update auto gen files comments [no ci]

Remove the comments in server.cpp that mention that information
can be found in the README.md file.
2025-01-29 16:34:18 +01:00
Jeff Bolz
2711d0215f
vulkan: Catch pipeline creation failure and print an error message (#11436)
* vulkan: Catch pipeline creation failure and print an error message

Also, fix some warnings from my on-demand compile change.

* vulkan: fix pipeline creation logging
2025-01-29 09:26:50 -06:00
Eric Curtin
f0d4b29edf
Parse https://ollama.com/library/ syntax (#11480)
People search for ollama models using the web ui, this change
allows one to copy the url from the browser and for it to be
compatible with llama-run.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-29 11:23:10 +00:00
Georgi Gerganov
815857791d
sync : ggml 2025-01-29 11:25:29 +02:00
William Tambellini
1a0e87d291
ggml : add option to not print stack on abort (ggml/1081)
* Add option to not print stack on abort

Add option/envvar to disable stack printing on abort.
Also link some unittests with Threads to fix link errors on
ubuntu/g++11.

* Update ggml/src/ggml.c

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-29 11:24:53 +02:00
issixx
d2e518e9b4
ggml-cpu : fix ggml_graph_compute_thread did not terminate on abort. (ggml/1065)
some threads kept looping and failed to terminate properly after an abort during CPU execution.

Co-authored-by: issi <issi@gmail.com>
2025-01-29 11:24:51 +02:00
Daniel Bevenius
b636228c0a
embedding : enable --no-warmup option (#11475)
This commit enables the `--no-warmup` option for the llama-embeddings.

The motivation for this change is to allow the user to disable the
warmup when running the the program.
2025-01-29 10:38:54 +02:00
Molly Sophia
325afb370a
llama: fix missing k_cache store for rwkv6qwen2 (#11445)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-01-29 12:07:21 +08:00
Emreerdog
794fe23f29
cmake: add hints for locating ggml on Windows using Llama find-package (#11466) 2025-01-28 19:22:06 -04:00
peidaqi
cf8cc856d7
server : Fixed wrong function name in llamacpp server unit test (#11473)
The test_completion_stream_with_openai_library() function is actually with stream=False by default, and test_completion_with_openai_library() with stream=True
2025-01-29 00:03:42 +01:00
Xuan-Son Nguyen
d0c08040b6
ci : fix build CPU arm64 (#11472)
* ci : fix build CPU arm64

* failed, trying ubuntu 22

* vulkan: ubuntu 24

* vulkan : jammy --> noble
2025-01-29 00:02:56 +01:00
uvos
be5ef7963f
HIP: Supress transformation warning in softmax.cu
loops with bounds not known at compile time can not be unrolled.
when ncols_template == 0, the bounds of the loop are not constexpr, thus llvm cant unroll the loops here.
2025-01-28 23:06:32 +01:00
Nikita Sarychev
cae9fb4361
HIP: Only call rocblas_initialize on rocblas versions with the multiple instantation bug (#11080)
This disables the workaround on rocblas fixed versions (>=4.0.0) to eliminate the runtime cost and unnecessary VRAM allocation of loading all tensile objects.
2025-01-28 16:42:20 +01:00
Eric Curtin
7fee2889e6
Add github protocol pulling and http:// (#11465)
As pulling protocols to llama-run

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-28 14:45:41 +00:00
Nuno
d7d1eccacc
docker: allow installing pip packages system-wide (#11437)
Signed-off-by: rare-magma <rare-magma@posteo.eu>
2025-01-28 14:17:25 +00:00
someone13574
4bf3119d61
cmake : don't fail on GGML_CPU=OFF (#11457) 2025-01-28 15:15:34 +01:00
Nuno
f643120bad
docker: add perplexity and bench commands to full image (#11438)
Signed-off-by: rare-magma <rare-magma@posteo.eu>
2025-01-28 10:42:32 +00:00
Akarshan Biswas
6e84b0ab8e
SYCL : SOFTMAX F16 mask support and other fixes (#11261)
Implemented ggml_sycl_op_soft_max() F16 src1(mask) support for which a pragma deprecation warning was added during #5021.
To do this, had to decouple it from ggml_sycl_op_flatten which always considered src1 to be of fp32 type(many OP functions are dependent on it).

* SYCL: SOFTMAX F16 mask support and other fixes

* test-backend-ops: Add F16 mask test cases
2025-01-28 09:56:58 +00:00
Michael Engel
2b8525d5c8
Handle missing model in CLI parameters for llama-run (#11399)
The HTTP client in llama-run only prints an error in case the download of
a resource failed. If the model name in the CLI parameter list is missing,
this causes the application to crash.
In order to prevent this, a check for the required model parameter has been
added and errors for resource downloads get propagated to the caller.

Signed-off-by: Michael Engel <mengel@redhat.com>
2025-01-28 08:32:40 +00:00
Eric Curtin
a4417ddda9
Add new hf protocol for ollama (#11449)
https://huggingface.co/docs/hub/en/ollama

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-27 19:36:10 +01:00
Haus1
d6d24cd9ed
AMD: parse the architecture as supplied by gcnArchName (#11244)
The value provided by minor doesn't include stepping for AMD, parse the value returned by gcnArchName instead to retrieve an accurate ID.
2025-01-27 14:58:17 +01:00
lexasub
a5203b4465
llama : minor fixes for up llama load model speed (#11448)
* impl::load change map bpe_ranks to onordered map for reduce time of impl::load on 30%

* llama_model_loader::init_mapping - replace new llama_mmap to std::make_unique<llama_mmap> for clean code & reduce (/2) time of running init_mappings

* Update src/llama-vocab.cpp

---------

Co-authored-by: lexasub <empty@empty.ru>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-27 14:42:09 +01:00
Johannes Gäßler
df984e0147
llama: refactor llama_decode_impl (#11381) 2025-01-27 12:07:12 +01:00
Ihar Hrachyshka
acd38efee3
metal: Handle null returned from MTLCreateSystemDefaultDevice() (#11441)
This fixes segmentation fault error when running tests when no metal
devices are available (for example, when not linked with Core Graphics
framework or otherwise).
2025-01-27 09:41:59 +02:00
Xuan Son Nguyen
caf773f249
docker : fix ARM build and Vulkan build (#11434)
* ci : do not fail-fast for docker

* build arm64/amd64 separatedly

* fix pip

* no fast fail

* vulkan: try jammy
2025-01-26 22:45:32 +01:00
Georgi Gerganov
178a7eb952
metal : use residency sets (#11427)
* metal : use residency sets

ggml-ci

* metal : restore commandBufferWithUnretainedReferences calls [no ci]

* metal : release descriptors

ggml-ci

* metal : check env GGML_METAL_NO_RESIDENCY

ggml-ci

* metal : fix build + clean-up

ggml-ci
2025-01-26 20:06:16 +02:00
Nuno
6f53d8a6b4
docker: add missing vulkan library to base layer and update to 24.04 (#11422)
Signed-off-by: rare-magma <rare-magma@posteo.eu>
2025-01-26 18:22:43 +01:00
bandoti
19f65187cb
cmake: add ggml find package (#11369)
* Add initial ggml cmake package

* Add build numbers to ggml find-package

* Expand variables with GGML_ prefix

* Guard against adding to cache variable twice

* Add git to msys2 workflow

* Handle ggml-cpu-* variants

* Link ggml/ggml-base libraries to their targets

* Replace main-cmake-pkg with simple-cmake-pkg

* Interface features require c_std_90

* Fix typo

* Removed unnecessary bracket from status message

* Update examples/simple-cmake-pkg/README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/simple-cmake-pkg/README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-26 12:07:48 -04:00
Frank Mai
1d8ee06000
rpc: fix register position (#11424)
Signed-off-by: thxCode <thxcode0824@gmail.com>
2025-01-26 16:20:34 +01:00
Georgi Gerganov
2cc9b8c32c
readme : update hot topics 2025-01-26 14:30:15 +02:00
Jeff Bolz
f35726c2fb
build: apply MSVC /bigobj option to c/cpp files only (#11423) 2025-01-26 03:10:03 +01:00
Jeff Bolz
4a75d19376
vulkan: compile shaders on-demand (#11406)
Reduce first-run startup time and memory consumption.

Should fix #11339.
2025-01-25 22:29:57 +01:00
uvos
26771a1491
Hip: disable VMM on hip as it seams that it dosent work in some configurations (#11420) 2025-01-25 21:01:12 +01:00
Jeff Bolz
ca6baf76c1
build: add /bigobj to MSVC build (#11407) 2025-01-25 11:26:37 -06:00
Diego Devesa
6e264a905b
docker : add GGML_CPU_ARM_ARCH arg to select ARM architecture to build for (#11419) 2025-01-25 17:22:41 +01:00
Xuan Son Nguyen
49b0e3cec4
server : fix cleaning up stream task (#11418)
* server : fix cleaning up stream task

* one more spot
2025-01-25 16:36:44 +01:00
Diego Devesa
20a758155b
docker : fix CPU ARM build (#11403)
* docker : fix CPU ARM build

* add CURL to other builds
2025-01-25 15:22:29 +01:00
Georgi Gerganov
00c24acb2a
ci : fix line breaks on windows builds (#11409)
* ci : fix line breaks on windows builds

* cont : another try

* ci : fix powershell line breaks
2025-01-25 13:36:48 +02:00
jiahao su
466ea66f33
CANN: Add Ascend CANN build ci (#10217)
* CANN: Add Ascend CANN build ci

* Update build.yml

* Modify cann image version

* Update build.yml

* Change to run on x86 system

* Update build.yml

* Update build.yml

* Modify format error

* Update build.yml

* Add 'Ascend NPU' label restrictions

* Exclude non PR event

Co-authored-by: Yuanhao Ji <jiyuanhao@apache.org>

* Update build.yml

---------

Co-authored-by: Yuanhao Ji <jiyuanhao@apache.org>
2025-01-25 00:26:01 +01:00
uvos
5f0db9522f
hip : Add hipGraph and VMM support to ROCM (#11362)
* Add hipGraph support

* Enable VMM on rocm
2025-01-25 00:02:23 +01:00
Johannes Gäßler
c5d9effb49
CUDA: fix FP16 cuBLAS GEMM (#11396) 2025-01-24 21:02:43 +01:00
uvos
9fbadaef4f
rocBLAS: Avoid fp32->fp16->fp32 conversion on cdna (#11356) 2025-01-24 17:50:49 +01:00
Georgi Gerganov
9755129c27
release : pack /lib in the packages (#11392)
* release : pack /lib and /include in the packages

* cmake : put libs in /bin

* TMP : push artifacts

* Revert "TMP : push artifacts"

This reverts commit 4decf2c4df.

* ci : fix HIP cmake compiler options to be on first line

* ci : restore the original HIP commands

* ci : change ubuntu build from latest to 20.04

* ci : try to fix macos build rpaths

* ci : remove obsolete MacOS build

* TMP : push artifacts

* ci : change back to ubuntu latest

* ci : macos set build rpath to "@loader_path"

* ci : fix typo

* ci : change ubuntu package to 22.04

* Revert "TMP : push artifacts"

This reverts commit 537b09e70f.
2025-01-24 18:41:30 +02:00
Jafar Uruç
a07c2c8a52
docs : Update readme to build targets for local docker build (#11368) 2025-01-24 14:30:13 +01:00
Johannes Gäßler
8137b4bb2b
CPU/CUDA: fix (GQA) mul mat back, add CUDA support (#11380) 2025-01-24 12:38:31 +01:00
Bernhard M. Wiedemann
1af6945eb0
cmake : avoid -march=native when reproducible build is wanted (#11366)
See https://reproducible-builds.org/ for why this is good
and https://reproducible-builds.org/specs/source-date-epoch/
for the definition of this variable.

Without this patch, compiling on different machines produced different binaries, which made verification of results difficult.

Fixes: #11317

This patch was done while working on reproducible builds for openSUSE.
2025-01-24 13:21:35 +02:00
Eric Curtin
01f37edf1a
Update llama-run README.md (#11386)
For consistency

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-24 09:39:24 +00:00
stduhpf
c07e87f38b
server : (webui) put DeepSeek R1 CoT in a collapsible <details> element (#11364)
* webui : put DeepSeek R1 CoT in a collapsible <details> element

* webui: refactor split

* webui: don't use regex to split cot and response

* webui: format+qol

* webui: no loading icon if the model isn't generating

* ui fix, add configs

* add jsdoc types

* only filter </think> for assistant msg

* build

* update build

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-01-24 09:02:38 +01:00
Jeff Bolz
564804b79b
tests: fix some mul_mat test gaps (#11375)
Now that we have batched mat-vec mul Vulkan shaders for up to n==8,
these tests weren't actually exercising the mat-mat mul path. Test
n==9 as well. Also, change to use all_types.
2025-01-23 14:51:24 -06:00
Eric Curtin
05f63cc9ee
Update documentation (#11373)
To show -n, -ngl, --ngl is acceptable.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-23 20:04:31 +00:00
Eric Curtin
f7fb43cd0b
Add -ngl (#11372)
Most other llama.cpp cli tools accept -ngl with a single dash.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-23 16:16:18 +00:00
Xuan Son Nguyen
5845661640
server : add more clean up when cancel_tasks is called (#11340)
* server : add more clean up when cancel_tasks is called

* fix recv_with_timeout

* std::remove_if

* fix std::remove_if
2025-01-23 13:56:05 +01:00
Eric Curtin
f211d1dc10
Treat hf.co/ prefix the same as hf:// (#11350)
ollama uses hf.co/ to specify huggingface prefix, like RamaLama
uses hf://

Treat them similarly.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-23 10:38:20 +00:00
amd-dwang
955a6c2d91
Vulkan-run-test: fix mmq_wg_denoms (#11343)
There should be a copy-and-paste error here.

*mmq_wg_denoms should be used together with *warptile_mmq, instead of
wg_denoms.
2025-01-23 08:14:28 +01:00
Jeff Bolz
1971adf55e
vulkan: sort shaders for more deterministic binary (#11315)
Fixes #11306.
2025-01-23 08:07:50 +01:00
Jeff Bolz
5245729e33
vulkan: fix diag_mask_inf (#11323)
With robustbufferaccess disabled, this shader was showing OOB stores. There
is a bounds check in the code, but the workgrouop dimensions were reversed vs
CUDA and it was running the wrong number of threads. So fix the workgroup
dimensions and disable robustness for this pipeline.
2025-01-23 08:01:17 +01:00
Diego Devesa
6152129d05
main : update README documentation for batch size (#11353)
* main : update README documentation for batch size

* fix formatting

* minor
2025-01-22 19:22:20 +01:00
Georgi Gerganov
16d3df7ab0
readme : add plugin links (#11355) 2025-01-22 19:44:26 +02:00
Diego Devesa
12c2bdf2de
server : fix draft context not being released (#11354) 2025-01-22 17:44:40 +01:00
Olivier Chafik
c64d2becb1
minja: sync at 0f5f7f2b37 (#11352) 2025-01-22 16:16:27 +00:00
Jiří Podivín
96f4053934
Adding logprobs to /v1/completions (#11344)
Signed-off-by: Jiri Podivin <jpodivin@redhat.com>
2025-01-22 12:51:32 +01:00
Olivier Chafik
a94f3b2727
common: utils to split / join / repeat strings (from json converter) (#11342)
* Factor string_join, string_split, string_repeat into common

* json: refactor to surface a versatile builder

* Update common.cpp
2025-01-22 09:51:44 +00:00
tc-mb
3e3357fd77
llava : support Minicpm-omni (#11289)
* init

* add readme

* update readme

* no use make

* update readme

* update fix code

* fix editorconfig-checker

* no change convert py

* use clip_image_u8_free
2025-01-22 09:35:48 +02:00
Olivier Chafik
6171c9d258
Add Jinja template support (#11016)
* Copy minja from 58f0ca6dd7

* Add --jinja and --chat-template-file flags

* Add missing <optional> include

* Avoid print in get_hf_chat_template.py

* No designated initializers yet

* Try and work around msvc++ non-macro max resolution quirk

* Update test_chat_completion.py

* Wire LLM_KV_TOKENIZER_CHAT_TEMPLATE_N in llama_model_chat_template

* Refactor test-chat-template

* Test templates w/ minja

* Fix deprecation

* Add --jinja to llama-run

* Update common_chat_format_example to use minja template wrapper

* Test chat_template in e2e test

* Update utils.py

* Update test_chat_completion.py

* Update run.cpp

* Update arg.cpp

* Refactor common_chat_* functions to accept minja template + use_jinja option

* Attempt to fix linkage of LLAMA_CHATML_TEMPLATE

* Revert LLAMA_CHATML_TEMPLATE refactor

* Normalize newlines in test-chat-templates for windows tests

* Forward decl minja::chat_template to avoid eager json dep

* Flush stdout in chat template before potential crash

* Fix copy elision warning

* Rm unused optional include

* Add missing optional include to server.cpp

* Disable jinja test that has a cryptic windows failure

* minja: fix vigogne (https://github.com/google/minja/pull/22)

* Apply suggestions from code review

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Finish suggested renamings

* Move chat_templates inside server_context + remove mutex

* Update --chat-template-file w/ recent change to --chat-template

* Refactor chat template validation

* Guard against missing eos/bos tokens (null token otherwise throws in llama_vocab::impl::token_get_attr)

* Warn against missing eos / bos tokens when jinja template references them

* rename: common_chat_template[s]

* reinstate assert on chat_templates.template_default

* Update minja to b8437df626

* Update minja to https://github.com/google/minja/pull/25

* Update minja from https://github.com/google/minja/pull/27

* rm unused optional header

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-21 13:18:51 +00:00
Xuan Son Nguyen
e28245f35f
export-lora : fix tok_embd tensor (#11330) 2025-01-21 14:07:12 +01:00
Radoslav Gerganov
6da5bec81c
rpc : better caching of the base buffer pointer (#11331)
There is no need to use map, just store the base pointer in the buffer
context.
2025-01-21 15:06:41 +02:00
Eric Curtin
2e2f8f093c
linenoise.cpp refactoring (#11301)
More RAII mainly

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-21 09:32:35 +00:00
Georgi Gerganov
2139667ec4
metal : fix out-of-bounds write (#11314)
ggml-ci
2025-01-21 08:48:13 +02:00
Georgi Gerganov
80d0d6b4b7
common : add -hfd option for the draft model (#11318)
* common : add -hfd option for the draft model

* cont : fix env var

* cont : more fixes
2025-01-20 22:29:43 +02:00
Jeff Bolz
aea8ddd516
vulkan: fix coopmat2 validation failures (#11284)
mul mat and flash attention shaders were loading f32 types directly into
A/B matrices, which happens to work but is technically invalid usage.
For FA, we can load it as an Accumulator matrix and convert and this
is not in the inner loop and is cheap enough. For mul mat, it's more
efficient to do this conversion in a separate pass and have the input(s)
be f16.

coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId
requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3.
2025-01-20 10:38:32 -06:00
Georgi Gerganov
9f7add1cde
examples : fix add_special conditions (#11311) 2025-01-20 16:36:08 +02:00
Christopher Nielsen
90d987b105
mmap: add include for cerrno (#11296)
ggml-ci

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-01-20 16:02:43 +02:00
Michael Podvitskiy
a4251edd6f
cmake: fix shell command quoting in build-info script (#11309) 2025-01-20 16:02:15 +02:00
Xuan Son Nguyen
ec7f3ac9ab
llama : add support for Deepseek-R1-Qwen distill model (#11310)
* llama : add support for Deepseek-R1-Qwen distill model

* coding style
2025-01-20 14:35:07 +01:00
Georgi Gerganov
ef6dada60c
cont : fix whitespaces (#11305) 2025-01-20 09:29:32 +02:00
Kyle Bruene
ae3c1db2f9
llama : re-add LLM_ARCH_PHIMOE (#11305)
Phi 3.5 MoE was partially removed during a refactor. The code was originally in llama.cpp and should be in llama-model.cpp after the refactor.
2025-01-20 09:21:01 +02:00
Georgi Gerganov
92bc493917
tests : increase timeout when sanitizers are enabled (#11300)
* tests : increase timeout when sanitizers are enabled

* tests : add DEFAULT_HTTP_TIMEOUT
2025-01-19 20:22:30 +02:00
Georgi Gerganov
b9daaffe02
simple-chat : fix BOS being added to each message (#11278) 2025-01-19 18:12:09 +02:00
Nicolò Scipione
99487b57d4
SYCL: Introducing memory host pool (#11251)
* Implement host pool for matrix_info

Creating a new memory pool on the host to store memory location for
matrix_info needed to launch gemm_batch from oneMKL/oneMath.
Removing complex support in gemm_batch since it is not used in llama.cpp

* Remove unnecessary headers and cast

* Reorder member variable to avoid warning on initialization

* Formatting

* Remove unused variable

* Address PR review feedback - remove warning

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2025-01-19 21:33:34 +08:00
Eric Curtin
a1649cc13f
Adding linenoise.cpp to llama-run (#11252)
This is a fork of linenoise that is C++17 compatible. I intend on
adding it to llama-run so we can do things like traverse prompt
history via the up and down arrows:

https://github.com/ericcurtin/linenoise.cpp

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-18 14:42:31 +00:00
Georgi Gerganov
4dd34ff831
cmake : add sanitizer flags for llama.cpp (#11279)
* cmake : add sanitizer flags for llama.cpp

ggml-ci

* tests : fix compile warnings

ggml-ci

* cmake : move sanitizer flags to llama_add_compile_flags

ggml-ci

* cmake : move llama.cpp compile flags to top level lists

ggml-ci

* cmake : apply only sanitizer flags at top level

ggml-ci

* tests : fix gguf context use in same_tensor_data

* gguf-test: tensor data comparison

* dummy : trigger ggml-ci

* unicode : silence gcc warnings

ggml-ci

* ci : use sanitizer builds only in Debug mode

ggml-ci

* cmake : add status messages [no ci]

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-01-18 16:18:15 +02:00
Xuan Son Nguyen
f30f099228
server : implement cancellable request (#11285)
* server : implement cancellable request

* fix typo

* httplib 0.18.5

* fix i underflow
2025-01-18 14:12:05 +01:00
Georgi Gerganov
f26c874179
scripts : restore hf.sh (#11288)
ggml-ci
2025-01-18 13:18:32 +02:00
LostRuins Concedo
6390a998bf
tts : add guide tokens support (#11186)
* Added the ability to use guide tokens for OuteTTS, greatly improving TTS recitation accuracy over long input sequences.

* applied linting suggestions, updated to latest llama_vocab changes, added a safety check, added newline to guide token start
2025-01-18 12:20:57 +02:00
Jeff Bolz
44e18ef939
vulkan: fix coopmat2 flash attention for non-contiguous inputs (#11281)
Add code similar to mul_mm_cm2 to force alignment of strides, to avoid
a performance regression.

Add noncontiguous FA tests in test-backend-ops.

Fixes #11268.
2025-01-18 09:26:50 +01:00
codezjx
3edfa7d375
llama.android: add field formatChat to control whether to parse special tokens when send message (#11270) 2025-01-17 14:57:56 +02:00
Radoslav Gerganov
667d72846c
rpc : early register backend devices (#11262)
Early register RPC devices and do not propagate RPC specifics in the
llama model structures.

ref: #10609
2025-01-17 10:57:09 +02:00
Georgi Gerganov
a133566d34
vocab : fix double-eos check (#11273)
ggml-ci
2025-01-17 09:28:00 +02:00
David Renshaw
960ec65273
llama : fix deprecation message: vocabable -> vocab (#11269) 2025-01-17 08:12:01 +01:00
musoles
7a689c415e
README : added kalavai to infrastructure list (#11216) 2025-01-17 01:10:49 +01:00
Jeff Bolz
bd38ddea01
vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl (#11166)
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl

Shaders are based on cpy.cu.

* vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32

* ggml: copy q->f32 assumes some contiguity in the destination
2025-01-16 22:47:10 +01:00
Jeff Bolz
466300fe14
vulkan: optimize coopmat2 q4_k/q5_k dequant functions. (#11206)
Do masking on whole dwords, fetch all scales at once.
2025-01-16 22:23:49 +01:00
Jeff Bolz
206bc53422
vulkan: optimize coopmat2 q2_k dequant function (#11130) 2025-01-16 22:16:39 +01:00
RunningLeon
4dbc8b9cb7
llama : add internlm3 support (#11233)
* support internlm3

* fix lint
2025-01-16 20:10:38 +02:00
Johannes Gäßler
9c8dcefe17
CUDA: backwards pass for misc. ops, add tests (#11257)
* CUDA: backwards pass for misc. ops, add tests

* remove restrict from pointers
2025-01-16 16:43:38 +01:00
Xuan Son Nguyen
681149ced2
llama : add llama_model_load_from_splits (#11255)
* llama : add `llama_model_load_from_splits`

* update
2025-01-16 13:54:08 +01:00
fj-y-saito
c67cc9837d
ggml: aarch64: implement SVE kernels for q4_K_q8_K vector dot (#11227)
* Add SVE support for q4_K_q8_K

* Update ggml/src/ggml-cpu/ggml-cpu-quants.c

change to use K_SCALE_SIZE

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-16 11:11:49 +02:00
Eve
adc5dd92e8
vulkan: scale caching for k quants + misc fixes (#11081)
* q6_k scale caching

* 16 bit unpack

* q4_k test (slow)

* revert it

* q3_k

* q2_k

* little stuff

* try precalculating products of a and q2_k scales

* Revert "try precalculating products of a and q2_k scales"

This reverts commit 65110b81f23f66331a50c6e889a7c1ab9470a86b.

* unpack should be u16, add vim swap to gitignore (about time)

* better q4_k scales

* q5_k

* better q6_k with separate paths for all threads and partial threads in use, plus some more optimizations

* q2_k better dequant

* q3_k optimizations

* q3_k use hmask simd from cpu avx version

* make the caches happy

* q3_k separate out calculation

* q2_k separate out

* little stuff

* use calc_superblock everywhere

* q2_k optimize scale calculation

* more barriers
2025-01-15 19:50:13 +00:00
Georgi Gerganov
f11cfdfd7f
ci : use -no-cnv in gguf-split tests (#11254)
* ci : use -no-cnv in gguf-split tests

ggml-ci

* ci : use -no-cnv in requantize tests

ggml-ci

* scripts : fix [no ci]
2025-01-15 18:28:35 +02:00
Junil Kim
1d8504338e
fix: ggml: fix vulkan-shaders-gen build (#10448)
* fix: ggml: fix vulkan-shaders-gen build

The vulkan-shaders-gen target was not being built correctly
in case of cross-compilation.
Other outputs need to be built for the cross compile target,
but vulkan-shaders-gen needs to be built for the host.

* refactor: ggml: Improve vulkan-shaders-gen toolchain setup

- Add GGML_SHADERS_GEN_TOOLCHAIN CMake option.
- Auto-detect host toolchain if not set.

* refactor: ggml: Improve vulkan-shaders-gen toolchain setup

Use configure_file to generate host_toolchain.cmake from template

* fix: ggml: Fix compile error

Fix compile error not finding vulkan-shaders-gen

* fix: vulkan-shaders-gen build and path handling

Fix build issues with vulkan-shaders-gen:
- Add target dependency for correct build order
- Use CMAKE_HOST_SYSTEM_NAME for executable suffix
- Fix MSVC output directory in host toolchain
- Normalize path handling for cross-compilation

* fix: improve host compiler detection in vulkan shader build

Improve host compiler detection for vulkan shader generation:
- Add NO_CMAKE_FIND_ROOT_PATH to all compiler searches
- Consolidate compiler detection logic
- Fix Windows-specific MSVC detection
- Ensure correct compiler search in cross-compilation

* refactor: Simplify CMake function for detecting host compiler

Simplified the CMake function to improve the process of detecting the host compiler.

* fix: Remove unnecessary Vulkan library linkage in CMakeLists.txt

Since `vulkan-shader-gen.cpp` only requires the `glslc` executable
and not the Vulkan headers or libraries, CMakeLists.txt needs to
be corrected.
(See: ecc93d0558)

* refactor: Rename host_toolchain.cmake.in

- Rename host_toolchain.cmake.in to cmake/host-toolchain.cmake.in

* refactor: GGML_VULKAN_SHADERS_GEN_TOOLCHAIN

Rename the macro GGML_SHADERS_GEN_TOOLCHAIN to GGML_VULKAN_SHADERS_GEN_TOOLCHAIN
2025-01-15 14:17:42 +01:00
Johannes Gäßler
432df2d5f9
RoPE: fix back, CUDA support for back + noncont. (#11240)
* RoPE: fix back, CUDA support for back + noncont.

* fix comments reg. non-cont. RoPE support [no-ci]
2025-01-15 12:51:37 +01:00
Daniel Bevenius
0ccd7f3eb2
examples : add embd_to_audio to tts-outetts.py [no ci] (#11235)
This commit contains a suggestion for adding the missing embd_to_audio
function from tts.cpp to tts-outetts.py. This introduces a depencency
numpy which I was not sure if that is acceptable or not (only PyTorch
was mentioned in referened PR).

Also the README has been updated with instructions to run the example
with llama-server and the python script.

Refs: https://github.com/ggerganov/llama.cpp/pull/10784#issuecomment-2548377734
2025-01-15 05:44:38 +01:00
Akarshan Biswas
f446c2cf6a
SYCL: Add gated linear attention kernel (#11175)
* SYCL: Add Gated Linear attention kernel

* glahpp: add a space at the end of file

* gla: Put the barrier inside the main logic loop
2025-01-15 11:20:17 +08:00
Xuan Son Nguyen
b4d92a59a2
ci : add -no-cnv for tests (#11238) 2025-01-14 16:42:23 +02:00
Georgi Gerganov
bbf3e55e35
vocab : add dummy tokens for "no_vocab" type (#11231)
* vocab : add dummy tokens for "no_vocab" type

ggml-ci

* vocab : minor [no ci]
2025-01-14 11:54:58 +01:00
ebraminio
c5bf0d1bd7
server : Improve code snippets direction between RTL text (#11221) 2025-01-14 11:39:33 +01:00
Olivier Chafik
091592d758
Refactor test-chat-template.cpp (#11224)
* Refactor test-chat-template

* Update test-chat-template.cpp
2025-01-14 10:16:41 +00:00
Georgi Gerganov
44d1e796d0
sync : ggml 2025-01-14 10:39:42 +02:00
Georgi Gerganov
a4f3f5d8e6
scripts : sync gguf (cont) 2025-01-14 09:40:52 +02:00
Georgi Gerganov
48e1ae0e61
scripts : sync gguf 2025-01-14 09:36:58 +02:00
Georgi Gerganov
d00a80e89d
scripts : sync opencl 2025-01-14 09:19:58 +02:00
ebraminio
504af20ee4
server : (UI) Improve messages bubble shape in RTL (#11220)
I simply have overlooked message bubble's tail placement for RTL
text as I use the dark mode and that isn't visible there and this
fixes it.
2025-01-13 20:23:31 +01:00
Xuan Son Nguyen
84a44815f7
cli : auto activate conversation mode if chat template is available (#11214)
* cli : auto activate conversation mode if chat template is detected

* add warn on bad template

* update readme (writing with the help of chatgpt)

* update readme (2)

* do not activate -cnv for non-instruct models
2025-01-13 20:18:12 +01:00
Andreas Kieslinger
39509fb082
cuda : CUDA Graph Compute Function Refactor (precursor for performance improvements) (#11042)
* Refactor: Moves cuda graph executable update step to separate function.

* Refactor: Moves cuda graph update check to separate function.

* Refactor: Moves cuda graph maintenance (update or adjusting copy parameters) to separate function for improved readability.

* Fix: Adds missing reference to maintain_cuda_graph() definition.

* Refactor: Improves structure and abstractions by moving CUDA graph evaluation and capture to its own function.

* Refactor: Moves node graph checks and copy ops into individual function for improved readability.

* Refactor: Removes code permanently excluded from compilation to increase readability.

* Style: Adds missing newline

* Style: Consolidates several neighboring '#ifdef USE_CUDA_GRAPH' into a single one

* Refactor: Makes 'cuda_graph_update_required' a local variable

* remove double lines between functions

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-01-13 16:45:53 +01:00
Georgi Gerganov
a29f0870d4
contrib : add naming guidelines (cont) (#11177) 2025-01-13 15:59:26 +02:00
ebraminio
437e05f714
server : (UI) Support for RTL text as models input or output (#11208) 2025-01-13 14:46:39 +01:00
Georgi Gerganov
ca001f6656
contrib : add naming guidelines (cont) (#11177) 2025-01-13 15:08:44 +02:00
Xuan Son Nguyen
00b4c3da62
common : support tag-based --hf-repo like on ollama (#11195)
* common : support tag-based hf_repo like on ollama

* fix build

* various fixes

* small fixes

* fix style

* fix windows build?

* move common_get_hf_file to common.cpp

* fix complain with noreturn
2025-01-13 13:56:23 +01:00
Georgi Gerganov
7426a26b24
contrib : add naming guidelines (#11177)
* contrib : add naming guidelines

* contrib : expand naming guidelines [no ci]

* contrib : cont [no ci]

* contrib : add `_t` suffix guideline [no ci]

* contrib : cont [no ci]

* minor [no ci]

* contrib : move coding guidelines to correct section [no ci]

* contrib : minor reword coding guidelines [no ci]

* contrib : add TODO for preprocessor directives [no ci]

* contrib : expand [no ci]

* minor [no ci]

* contrib : clarify `_context` suffix usage [no ci]

* contrib : filename guidelines [no ci]

* contrib : fix notes [no ci]
2025-01-13 14:46:36 +02:00
Daniel Bevenius
8f70fc3d1b
llama : remove 'd' from bad special token log (#11212)
This commit removes the 'd' from the log message in llama-vocab.cpp
when logging a bad special token.

The motivation for this is that currently the output can look something
like the following:
```console
load: bad special token:
    'tokenizer.ggml.image_token_id' = 128256d, using default id -1
```
2025-01-13 13:38:20 +01:00
Radoslav Gerganov
1244cdcf14
ggml : do not define GGML_USE_CUDA when building with GGML_BACKEND_DL (#11211)
Build fails when using HIP and GGML_BACKEND_DL:
```
/usr/bin/ld: ../ggml/src/libggml.so: undefined reference to `ggml_backend_cuda_reg'
collect2: error: ld returned 1 exit status
```
This patch fixes this.
2025-01-13 13:31:41 +02:00
Eric Curtin
924518e2e5
Reset color before we exit (#11205)
We don't want colors to leak post termination of llama-run.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-12 18:23:10 +00:00
Xuan Son Nguyen
9a483999a6
llama : fix chat template gguf key (#11201) 2025-01-12 13:45:14 +01:00
Georgi Gerganov
08f10f69c3
llama : remove notion of CLS token (#11064)
ggml-ci
2025-01-12 12:15:53 +02:00
Georgi Gerganov
afa8a9ec9b
llama : add llama_vocab, functions -> methods, naming (#11110)
* llama : functions -> methods (#11110)

* llama : add struct llama_vocab to the API (#11156)

ggml-ci

* hparams : move vocab params to llama_vocab (#11159)

ggml-ci

* vocab : more pimpl (#11165)

ggml-ci

* vocab : minor tokenization optimizations (#11160)

ggml-ci

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* lora : update API names (#11167)

ggml-ci

* llama : update API names to use correct prefix (#11174)

* llama : update API names to use correct prefix

ggml-ci

* cont

ggml-ci

* cont

ggml-ci

* minor [no ci]

* vocab : llama_vocab_add_[be]os -> llama_vocab_get_add_[be]os (#11174)

ggml-ci

* vocab : llama_vocab_n_vocab -> llama_vocab_n_tokens (#11174)

ggml-ci

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-12 11:32:42 +02:00
Vinesh Janarthanan
c05e8c9934
gguf-py: fixed local detection of gguf package (#11180)
* updated path to gguf package for non-installed setups

* added reader.py to readme

* Bumped gguf version to 0.15.0
2025-01-11 11:42:31 +02:00
Daniel Bevenius
2739a71e4b
convert : sort print supported models [no ci] (#11179)
This commit sorts the list of supported models when printing them out.

The motivation for this change is to make it easier to find a specific
model in the list of supported models. For example:
```console
$ ./convert_hf_to_gguf.py --print-supported-models
Supported models:
- ArcticForCausalLM
- BaiChuanForCausalLM
- BaichuanForCausalLM
- BertForMaskedLM
- BertModel
- BitnetForCausalLM
- BloomForCausalLM
- BloomModel
- CamembertModel
- ChameleonForCausalLM
- ChameleonForConditionalGeneration
- ChatGLMForConditionalGeneration
- ChatGLMModel
- CodeShellForCausalLM
- Cohere2ForCausalLM
- CohereForCausalLM
- DbrxForCausalLM
- DeciLMForCausalLM
- DeepseekForCausalLM
- DeepseekV2ForCausalLM
- DeepseekV3ForCausalLM
- ExaoneForCausalLM
- FalconForCausalLM
- FalconMambaForCausalLM
- GPT2LMHeadModel
- GPTBigCodeForCausalLM
- GPTNeoXForCausalLM
- GPTRefactForCausalLM
- Gemma2ForCausalLM
- GemmaForCausalLM
- GraniteForCausalLM
- GraniteMoeForCausalLM
- GrokForCausalLM
- InternLM2ForCausalLM
- JAISLMHeadModel
- JinaBertForMaskedLM
- JinaBertModel
- LLaMAForCausalLM
- LlamaForCausalLM
- LlavaStableLMEpochForCausalLM
- MPTForCausalLM
- MT5ForConditionalGeneration
- MambaForCausalLM
- MambaLMHeadModel
- MiniCPM3ForCausalLM
- MiniCPMForCausalLM
- MistralForCausalLM
- MixtralForCausalLM
- NemotronForCausalLM
- NomicBertModel
- OLMoForCausalLM
- Olmo2ForCausalLM
- OlmoForCausalLM
- OlmoeForCausalLM
- OpenELMForCausalLM
- OrionForCausalLM
- Phi3ForCausalLM
- PhiForCausalLM
- PhiMoEForCausalLM
- PlamoForCausalLM
- QWenLMHeadModel
- Qwen2ForCausalLM
- Qwen2MoeForCausalLM
- Qwen2VLForConditionalGeneration
- RWForCausalLM
- RWKV6Qwen2ForCausalLM
- RobertaModel
- Rwkv6ForCausalLM
- StableLMEpochForCausalLM
- StableLmForCausalLM
- Starcoder2ForCausalLM
- T5EncoderModel
- T5ForConditionalGeneration
- T5WithLMHeadModel
- UMT5ForConditionalGeneration
- WavTokenizerDec
- XLMRobertaForSequenceClassification
- XLMRobertaModel
- XverseForCausalLM
```
2025-01-11 05:50:33 +01:00
Daniel Bevenius
ba8a1f9c5b
examples : add README.md to tts example [no ci] (#11155)
* examples : add README.md to tts example [no ci]

* squash! examples : add README.md to tts example [no ci]

Fix heading to be consistent with other examples, and add a quickstart
section to README.md.

* squash! examples : add README.md to tts example [no ci]

Fix spelling mistake.
2025-01-10 13:16:16 +01:00
Daniel Bevenius
ff3fcabc72
convert : add --print-supported-models option (#11172)
* convert : add --print-supported-models option

This commit adds a new option to the convert_hf_to_gguf.py script to
print the supported models.

The motivation for this is that it can be useful to know which models
are supported by the script without having to look at the code.

Example usage:
```console
$ ./convert_hf_to_gguf.py --print-supported-models
Supported models:
- GPTNeoXForCausalLM
- BloomForCausalLM
- BloomModel
- MPTForCausalLM
- OrionForCausalLM
- BaichuanForCausalLM
- BaiChuanForCausalLM
- XverseForCausalLM
- FalconForCausalLM
- RWForCausalLM
- GPTBigCodeForCausalLM
- GPTRefactForCausalLM
- StableLmForCausalLM
- StableLMEpochForCausalLM
- LlavaStableLMEpochForCausalLM
- LLaMAForCausalLM
- LlamaForCausalLM
- MistralForCausalLM
- MixtralForCausalLM
- DeciLMForCausalLM
- BitnetForCausalLM
- GrokForCausalLM
- DbrxForCausalLM
- MiniCPMForCausalLM
- MiniCPM3ForCausalLM
- QWenLMHeadModel
- Qwen2ForCausalLM
- Qwen2VLForConditionalGeneration
- WavTokenizerDec
- Qwen2MoeForCausalLM
- GPT2LMHeadModel
- PhiForCausalLM
- Phi3ForCausalLM
- PhiMoEForCausalLM
- PlamoForCausalLM
- CodeShellForCausalLM
- InternLM2ForCausalLM
- BertModel
- BertForMaskedLM
- CamembertModel
- RobertaModel
- NomicBertModel
- XLMRobertaModel
- XLMRobertaForSequenceClassification
- GemmaForCausalLM
- Gemma2ForCausalLM
- Starcoder2ForCausalLM
- Rwkv6ForCausalLM
- RWKV6Qwen2ForCausalLM
- MambaForCausalLM
- MambaLMHeadModel
- FalconMambaForCausalLM
- CohereForCausalLM
- Cohere2ForCausalLM
- OLMoForCausalLM
- OlmoForCausalLM
- Olmo2ForCausalLM
- OlmoeForCausalLM
- JinaBertModel
- JinaBertForMaskedLM
- OpenELMForCausalLM
- ArcticForCausalLM
- DeepseekForCausalLM
- DeepseekV3ForCausalLM
- DeepseekV2ForCausalLM
- UMT5ForConditionalGeneration
- MT5ForConditionalGeneration
- T5ForConditionalGeneration
- T5WithLMHeadModel
- T5EncoderModel
- JAISLMHeadModel
- ChatGLMModel
- ChatGLMForConditionalGeneration
- NemotronForCausalLM
- ExaoneForCausalLM
- GraniteForCausalLM
- GraniteMoeForCausalLM
- ChameleonForCausalLM
- ChameleonForConditionalGeneration
```

* squash! convert : add --print-supported-models option

Fix flake8 error.
2025-01-10 11:30:53 +01:00
0cc4m
c3f9d25706
Vulkan: Fix float16 use on devices without float16 support + fix subgroup_size_control validation error (#11161)
* Vulkan: Remove float16 use in shaders

* Fix validation error about subgroup_size_control extension
2025-01-10 06:39:33 +01:00
Molly Sophia
ee7136c6d1
llama: add support for QRWKV6 model architecture (#11001)
llama: add support for QRWKV6 model architecture (#11001)

* WIP: Add support for RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV: Some graph simplification

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add support for RWKV6Qwen2 with cpu and cuda GLA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV6[QWEN2]: Concat lerp weights together to reduce cpu overhead

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix some typos

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix wkv test & add gla test

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix cuda warning

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update README.md

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update ggml/src/ggml-cuda/gla.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix fused lerp weights loading with RWKV6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* better sanity check skipping for QRWKV6 in llama-quant

thanks @compilade

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: compilade <git@compilade.net>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <git@compilade.net>
2025-01-10 09:58:08 +08:00
Akarshan Biswas
c6860cc734
SYCL: Refactor ggml_sycl_compute_forward (#11121)
* SYCL: refactor ggml_sycl_compute_forward

* SYCL: add back GGML_USED(dst) to ggml_sycl_cpy

* SYCL: add function name to noop debug

* SYCL: Some device info print refactoring and add details of XMX availability
2025-01-10 08:13:03 +08:00
Tei Home
1204f97270
doc: add cuda guide for fedora (#11135)
Since NVIDIA does not release CUDA for in-maintenance versions of Fedora, the process of setting up the CUDA toolkit on Fedora has become quite involved. This guide should help mere mortals install CUDA for development in a Fedora 39 toolbox environment, without affecting the host system.
2025-01-09 11:32:06 +00:00
Daniel Bevenius
8eceb888d7
server : add tooltips to settings and themes btn (#11154)
* server : add tooltips to settings and themes btn

This commit adds tooltips to the settings and themes buttons in the
webui. The tooltip will be displayed below the actual buttons when
hovered over.

The motivation for this change is to clarify the purpose of the themes
button.

* squash! server : add tooltips to settings and themes btn

This commit adds a tooltip to the '...' button when a chat has been
started. The tooltip is "Chat options" which think could be a good
description as the dropdown contains options to delete or download the
current chat.

* rm tooltip for 3 dots button

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-01-09 11:28:29 +01:00
Pierrick Hymbert
f8feb4b01a
model: Add support for PhiMoE arch (#11003)
* model: support phimoe

* python linter

* doc: minor

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>

* doc: minor

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>

* doc: add phimoe as supported model

ggml-ci

---------

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>
2025-01-09 11:21:41 +01:00
Georgi Gerganov
be0e950c91
media : remove old img [no ci] 2025-01-09 11:15:15 +02:00
Xuan Son Nguyen
d9feae1c06
llama-chat : add phi 4 template (#11148) 2025-01-09 10:07:33 +01:00
hydai
8d59d91171
fix: add missing msg in static_assert (#11143)
Signed-off-by: hydai <z54981220@gmail.com>
2025-01-08 20:03:28 +00:00
Vinesh Janarthanan
8a1d9c25fa
gguf-py : move scripts directory (#11116)
* Moved scripts dir and fixed pyproject.toml

* updated readme

* fixed README urls

* bump pypi gguf to v0.14.0

* retrigger ci

* empty commit - trigger ci
2025-01-08 20:54:58 +02:00
Eric Curtin
1bf839b1e8
Enhance user input handling for llama-run (#11138)
The main motivation for this change is it was not handing
ctrl-c/ctrl-d correctly. Modify `read_user_input` to handle EOF,
"/bye" command, and empty input cases. Introduce `get_user_input`
function to manage user input loop and handle different return
cases.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-08 18:47:05 +00:00
Xuan Son Nguyen
f7cd13301c
ci : use actions from ggml-org (#11140) 2025-01-08 16:09:20 +01:00
Xuan Son Nguyen
4d2b3d8804
lora : improve compat with mergekit-extract-lora (#11131)
* (wip) support mergekit-extracted lora

* support mergekit-extract-lora

* use lora->get_scale

* correct comment

* correct norm name & condition

* add some hints
2025-01-08 15:59:53 +01:00
Georgi Gerganov
c07d437bbd
llama : avoid hardcoded QK_K (#11061)
ggml-ci
2025-01-08 16:19:36 +02:00
Georgi Gerganov
99a3755a3c
sync : ggml 2025-01-08 13:40:30 +02:00
Radoslav Gerganov
c792dcf488
ggml : allow loading backend with env variable (ggml/1059)
ref: #1058
2025-01-08 13:40:18 +02:00
Xuan Son Nguyen
80ccf5d725
ci : pin dependency to specific version (#11137)
* ci : pin dependency to specific version

* will this fix ec?
2025-01-08 12:07:20 +01:00
Georgi Gerganov
a3c1232c3f
arg : option to exclude arguments from specific examples (#11136)
* arg : option to exclude arguments from specific examples

ggml-ci

* readme : remove old args [no ci]
2025-01-08 12:55:36 +02:00
amritahs-ibm
8cef75c743
llamafile : ppc64le MMA INT8 implementation (#10912)
This change upstreams llamafile's cpu matrix
multiplication kernels for ppc64le using MMA
builtins for quantised int8 datatype.

This change results in 10% - 70% improvement
in total speed(ie all tokens/total time), across
various batch sizes.

The patch is tested with Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf models on a
IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-01-08 12:54:19 +02:00
Georgi Gerganov
0d52a69e4b
ci : fix cmake option (#11125) 2025-01-08 11:29:34 +02:00
Mathieu Baudier
02f0430141
Disable GL_KHR_cooperative_matrix Vulkan extension if not available. (#11117)
* Disable GL_KHR_cooperative_matrix Vulkan extension if not available.

* Perform Vulkan extensions checks in a more sensible order

* Remove unnecessary #ifdef directive
2025-01-08 09:18:13 +01:00
ag2s20150909
bec2183f2c
fix: Vulkan shader gen binary path when Cross-compiling (#11096)
* fix: Vulkan shader gen binary path when cross compiling
2025-01-08 09:17:29 +01:00
Johannes Gäßler
53ff6b9b9f
GGUF: C++ refactor, backend support, misc fixes (#11030)
* GGUF: C++ refactor, backend support, misc fixes

remove ggml_tensor.backend

update CODEOWNERS [no ci]

remove gguf_get_data from API

revise GGUF API data types
2025-01-07 18:01:58 +01:00
Diego Devesa
017cc5f446
ggml-backend : only offload from host buffers (fix) (#11124) 2025-01-07 16:11:57 +01:00
Diego Devesa
a3d50bc022
ggml-backend : only offload from host buffers (#11120) 2025-01-07 12:38:05 +01:00
Radoslav Gerganov
a4dd490069
rpc : code cleanup (#11107)
Remove duplicated macros, use GGML_LOG_ERROR for errors
2025-01-07 08:37:02 +02:00
Akarshan Biswas
c0d6f790d0
SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6 (#11087)
* SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6

* Revert "SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6"

This reverts commit f62dc45f31.

* Reland: Use get_multi_ptr instead of deprecated get_pointer in wkv6
2025-01-07 14:26:07 +08:00
Eric Curtin
dc7cef9f37
llama-run : fix context size (#11094)
Set `n_ctx` equal to `n_batch` in `Opt` class. Now context size is
a more reasonable 2048.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-06 23:45:28 +01:00
Georgi Gerganov
ecebbd292d
llama : remove unused headers (#11109)
ggml-ci
2025-01-06 17:52:35 +02:00
Xuan Son Nguyen
96be8c3264
github : add cmd line field to bug report (#11090)
* github : cmd line to bug report

* codeowners : (@ngxson) only watch dockerfile

* Apply suggestions from code review [no ci]

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* rm cmd in log output [no ci]

* rm 2 [no ci]

* no need backticks [no ci]

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-01-06 16:34:49 +01:00
Georgi Gerganov
e6e7c75d94
server : fix extra BOS in infill endpoint (#11106)
* server : fix extra BOS in infill endpoing

ggml-ci

* server : update infill tests
2025-01-06 15:36:08 +02:00
Xuan Son Nguyen
09186fabbe
llama : remove check flash_attn with lora (#11104) 2025-01-06 13:41:12 +01:00
Asghar Ghorbani
96a1dc27c3
llama : prevent system info string accumulation across calls (#11101) 2025-01-06 13:21:46 +02:00
Daniel Bevenius
6369f867a4
llama : rename missed batch params/vars to ubatch (#10059)
This commit renames the `batch` parameter to `ubatch` in the
`llama_kv_cache_find_slot`, `llm_build_inp_embd`, and
`llm_build_mamba` functions.

The motivation for this is that this should have been done as part of
Commit 19d900a756 ("llama : rename batch
to ubatch (#9950)") but for some reason I missed these functions in
that commit and only noticed them now (sorry).
2025-01-06 11:28:17 +02:00
Georgi Gerganov
47182dd03f
llama : update llama_model API names (#11063)
* llama : deprecate llama_free_model, add llama_model_free

ggml-ci

* llama : change `llama_load_model_from_file` -> `llama_model_load_from_file`

ggml-ci
2025-01-06 10:55:18 +02:00
Georgi Gerganov
3e6e7a6bc2
tokenize : escape the prompt (#11058)
* tokenize : escape the prompt

* tokenize : update help
2025-01-06 10:54:25 +02:00
Georgi Gerganov
ae2f606bb5
mmap : fix fileno macro clash (#11076)
* mmap : fix fileno macro clash

ggml-ci

* cont

ggml-ci
2025-01-06 10:52:38 +02:00
Georgi Gerganov
727368c60f
llama : use LLAMA_TOKEN_NULL (#11062)
ggml-ci
2025-01-06 10:52:15 +02:00
Georgi Gerganov
5047dd3546
llama : use _impl suffix instead of _internal (#11060)
ggml-ci
2025-01-06 10:52:01 +02:00
Johannes Gäßler
46e3556e01
CUDA: add BF16 support (#11093)
* CUDA: add BF16 support
2025-01-06 02:33:52 +01:00
0cc4m
b56f079e28
Vulkan: Add device-specific blacklist for coopmat for the AMD proprietary driver (#11074)
* Vulkan: Add device-specific blacklist for coopmat for the AMD proprietary driver

* Add (TM) to AMD name check
2025-01-04 21:09:59 +01:00
fairydreaming
9394bbd484
llama : Add support for DeepSeek V3 (#11049)
* convert : extend DEEPSEEK2 model architecture to support DeepseekV3ForCausalLM by adding EXPERT_WEIGHTS_NORM and EXPERT_GATING_FUNC model parameters and FFN_EXP_PROBS_B tensor type

* vocab : add DeepSeek V3 pre-tokenizer regexes

* unicode : handle ACCENT_MARK and SYMBOL categories in regex

* llama : add DeepSeek V3 chat template, handle new model parameters and tensor types

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-01-04 21:06:11 +01:00
matt23654
f922a9c542
[GGML][RPC] Support for models with non-512-aligned tensors over RPC. (#11047)
* Added init tensor calling code

* Added get_alloc_size forwarding

* Cleaned up and improved type/error handling.

* fix: remove trailing whitespaces.

* Cleanup and use GGML error logging functions.

* Handle potentially dangerous edge cases.

* Apply suggestions from code review

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-04 17:10:30 +01:00
DAN™
46be942214
llama : add support for the cohere2 model architecture (#10900) 2025-01-04 16:33:31 +02:00
Georgi Gerganov
78c6785175 sync : ggml 2025-01-04 16:09:53 +02:00
Georgi Gerganov
5e3b08d606 ggml : do not install metal source when embed library (ggml/1054) 2025-01-04 16:09:53 +02:00
Daniel Bevenius
db68c93b57 ggml : improve inputs log sched_print_assignments (ggml/1053)
This commit attempts to improve the log message for the inputs of the
splits in the sched_print_assignments function.

The motivation for this change is that currently even if there are no
inputs a colon is displayed at the end of the line, which can make it a
little confusing when reading the output as it could be interpreted as
the line below are inputs when they are in fact nodes. With this change
the colon will only be printed if there actually are inputs.
2025-01-04 16:09:53 +02:00
Gilad S.
c31fc8b966
fix: Vulkan shader gen binary path (#11037) 2025-01-04 09:17:31 +01:00
Molly Sophia
4b0c638b9a
common : disable KV cache shifting automatically for unsupported models (#11053)
* Disable KV cache shifting automatically for unsupported models

instead of exiting directly

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update common/common.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-03 14:13:18 +02:00
Georgi Gerganov
e7da954ecc
metal : avoid uint (#11019) 2025-01-03 11:26:14 +02:00
Georgi Gerganov
f66f582927
llama : refactor src/llama.cpp (#10902)
* llama : scatter llama.cpp into multiple modules (wip)

* llama : control-vector -> adapter

* llama : arch

* llama : mmap

ggml-ci

* ci : remove BUILD_SHARED_LIBS=OFF

ggml-ci

* llama : arch (cont)

ggml-ci

* llama : chat

ggml-ci

* llama : model

ggml-ci

* llama : hparams

ggml-ci

* llama : adapter

ggml-ci

* examples : fix

ggml-ci

* rebase

ggml-ci

* minor

* llama : kv cache

ggml-ci

* llama : impl

ggml-ci

* llama : batch

ggml-ci

* cont

ggml-ci

* llama : context

ggml-ci

* minor

* llama : context (cont)

ggml-ci

* llama : model loader

ggml-ci

* common : update lora

ggml-ci

* llama : quant

ggml-ci

* llama : quant (cont)

ggml-ci

* minor [no ci]
2025-01-03 10:18:53 +02:00
Pierrick Hymbert
2f0ee84b9b
server: bench: minor fixes (#10765)
* server/bench:
- support openAI streaming standard output with [DONE]\n\n
- export k6 raw results in csv
- fix too many tcp idle connection in tcp_wait
- add metric time to emit first token

* server/bench:
- fix when prometheus not started
- wait for server to be ready before starting bench
2025-01-02 18:06:12 +01:00
Xuan Son Nguyen
0da5d86026
server : allow using LoRA adapters per-request (#10994)
* slot.can_batch_with

* lora per request

* test: force disable cache prompt

* move can_batch_with check

* fix condition

* add slow test with llama 8b

* update docs

* move lora change task to queue

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* lora_base

* remove redundant check

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-02 15:05:18 +01:00
Benson Wong
a45433ba20
readme : add llama-swap to infrastructure section (#11032)
* list llama-swap under tools in README

* readme: add llama-swap to Infrastructure
2025-01-02 09:14:54 +02:00
Srihari-mcw
0827b2c1da
ggml : fixes for AVXVNNI instruction set with MSVC and Clang (#11027)
* Fixes for clang AVX VNNI

* enable AVX VNNI and alder lake build for MSVC

* Apply suggestions from code review

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-12-31 15:23:33 +01:00
Xuan Son Nguyen
45095a61bf
server : clean up built-in template detection (#11026)
* server : clean up built-in template detection

* fix compilation

* add chat template test

* fix condition
2024-12-31 15:22:01 +01:00
Xuan Son Nguyen
5896c65232
server : add OAI compat for /v1/completions (#10974)
* server : add OAI compat for /v1/completions

* add test

* add docs

* better docs
2024-12-31 12:34:13 +01:00
ymcki
bc7b1f8632
convert : fix Llama-3_1-Nemotron-51B rope settings (#11008)
* conflict resolution

* move comments after bracket to its own line

* DeciLMCausalModel now reads rope_theta from config.json properly
2024-12-31 13:04:48 +02:00
Peter
6e1531aca5
common, examples, ggml : fix MSYS2 GCC compiler errors and warnings when building with LLAMA_CURL=ON and GGML_OPENCL=ON (#11013)
In common/common.cpp:
* Convert usage of stat() function call to check if file exists to standard library function std::filesystem::exists (error unable to match to correct function signature)
* Additional conditions to check if PATH_MAX is already defined in WIN32 environment (warning it is already defined in MSYS2)

In examples/run/run.cpp:
* Add io.h header inclusion (error cannot find function _get_osfhandle)
* Change initialisers for OVERLAPPED to empty struct (warning about uninitialised members)
* Add initialiser for hFile (warning it may be uninitialised)
* Add cast for curl_off_t percentage value to long int in generate_progress_prefix function (warning that curl_off_t is long long int)

In ggml/src/ggml-opencl/ggml-opencl.cpp:
* Initialise certain declared cl_mem variables to nullptr for greater safety (warning about B_d variable possibly used unassigned)
2024-12-31 01:46:06 +01:00
Jeff Bolz
716bd6dec3
vulkan: optimize mul_mat for small values of N (#10991)
Make the mul_mat_vec shaders support N>1 (as a spec constant, NUM_COLS) where
the batch_strides are overloaded to hold the row strides. Put the loads from the
B matrix in the innermost loop because it should cache better.

Share some code for reducing the result values to memory in mul_mat_vec_base.
2024-12-30 18:27:11 +01:00
ag2s20150909
c250ecb315
android : fix llama_batch free (#11014) 2024-12-30 14:35:13 +02:00
Jeff Bolz
a813badbbd
vulkan: im2col and matmul optimizations for stable diffusion (#10942)
* tests: Add im2col perf tests

* vulkan: optimize im2col, more elements per thread

* vulkan: increase small tile size for NV_coopmat2

* vulkan: change im2col to 512 elements per workgroup
2024-12-29 10:16:34 +01:00
Jeff Bolz
fdd2188912
vulkan: Use push constant offset to handle misaligned descriptors (#10987) 2024-12-29 09:35:11 +01:00
Isaac McFadyen
f865ea149d
server: added more docs for response_fields field (#10995) 2024-12-28 16:09:19 +01:00
Alexey Parfenov
16cdce7b68
server : fix token duplication when streaming with stop strings (#10997) 2024-12-28 16:08:54 +01:00
Eve
d79d8f39b4
vulkan: multi-row k quants (#10846)
* multi row k quant shaders!

* better row selection

* more row choices

* readjust row selection

* rm_kq=2 by default
2024-12-26 16:54:44 +01:00
Peter
d283d02bf2
examples, ggml : fix GCC compiler warnings (#10983)
Warning types fixed (observed under MSYS2 GCC 14.2.0):
* format '%ld' expects argument of type 'long int', but argument has type 'size_t'
* llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp:81:46: warning: missing initializer for member '_STARTUPINFOA::lpDesktop' [-Wmissing-field-initializers]  (emitted for all struct field except first)
2024-12-26 14:59:11 +01:00
Reza Kakhki
9ba399dfa7
server : add support for "encoding_format": "base64" to the */embeddings endpoints (#10967)
* add support for base64

* fix base64 test

* improve test

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-12-24 21:33:04 +01:00
Djip007
2cd43f4900
ggml : more perfo with llamafile tinyblas on x86_64 (#10714)
* more perfo with llamafile tinyblas on x86_64.

- add bf16 suport
- change dispache strategie (thanks:
https://github.com/ikawrakow/ik_llama.cpp/pull/71 )
- reduce memory bandwidth

simple tinyblas dispache and more cache freindly

* tinyblas dynamic dispaching

* sgemm: add M blocs.

* - git 2.47 use short id of len 9.
- show-progress is not part of GNU Wget2

* remove not stable test
2024-12-24 18:54:49 +01:00
NeverLucky
09fe2e7613
server: allow filtering llama server response fields (#10940)
* llama_server_response_fields

* llama_server_response_fields_fix_issues

* params fixes

* fix

* clarify docs

* change to "response_fields"

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-12-24 17:39:49 +01:00
Georgi Gerganov
30caac3a68
llama : the WPM vocabs use the CLS token as BOS (#10930)
* llama : the WPM vocabs use the CLS token as BOS

ggml-ci

* llama : add comment
2024-12-24 09:44:20 +02:00
Diego Devesa
60cfa728e2
ggml : use wstring for backend search paths (#10960)
ggml-ci
2024-12-24 04:05:27 +01:00
Diego Devesa
3327bb0f8d
ggml : fix arm enabled features check (#10961) 2024-12-24 04:05:17 +01:00
Diego Devesa
32d6ee6385
ggml : fix const usage in SSE path (#10962) 2024-12-23 20:25:52 +01:00
Xuan Son Nguyen
14b699ecde
server : fix missing model id in /model endpoint (#10957)
* server : fix missing model id in /model endpoint

* fix ci
2024-12-23 12:52:25 +01:00
Xuan Son Nguyen
485dc01214
server : add system_fingerprint to chat/completion (#10917)
* server : add system_fingerprint to chat/completion

* update README
2024-12-23 12:02:44 +01:00
Radoslav Gerganov
86bf31cfe6
rpc-server : add support for the SYCL backend (#10934) 2024-12-23 10:39:30 +02:00
Yun Dou
b92a14a841
llama : support InfiniAI Megrez 3b (#10893)
* Support InfiniAI Megrez 3b

* Fix tokenizer_clean_spaces for megrez
2024-12-23 01:35:44 +01:00
ymcki
6f0c9e034b
llama : support for Llama-3_1-Nemotron-51B (#10669)
* conflict resolution

* move comments after bracket to its own line
2024-12-23 01:22:33 +01:00
Eric Curtin
dab76c92cc
llama-run : include temperature option (#10899)
This commit updates the `examples/run/README.md` file to include a new
option for setting the temperature and updates the `run.cpp` file to
parse this option.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2024-12-23 01:21:40 +01:00
yuri@FreeBSD
7024d59e6a
ggml : fix run-time on FreeBSD in get_executable_path() (#10948) 2024-12-23 01:20:11 +01:00
Rudi Servo
7c0e285858
devops : add docker-multi-stage builds (#10832) 2024-12-22 23:22:58 +01:00
Billel Mokeddem
7ae33a616f
llama : add Falcon3 support (#10883)
* Add Falcon3 model support

* Add fix for adding bos to added special tokens

* Add comment explaining the logic behind the if statement

* Add a log message to better track the when the following line of code is triggered

* Update log to only print when input and output characters are different

* Fix handling pre-normalized tokens

* Refactoring
2024-12-23 00:09:58 +02:00
Jeff Bolz
ebdee9478c
vulkan: build fixes for 32b (#10927)
* vulkan: build fixes for 32b

Should fix #10923

* vulkan: initialize some buffer/offset variables
2024-12-22 10:44:01 +01:00
Georgi Gerganov
5cd85b5e00
convert : add BertForMaskedLM (#10919) 2024-12-21 10:10:18 +02:00
Jeff Bolz
a91a41364b
vulkan: optimize coopmat2 dequant functions (#10855)
Change the code to do 16b loads when possible and extract the appropriate
component late, so the code is effectively decoding a pair of elements and
then selecting one. This can allow more commoning to happen in the compiler
when neighboring elements are loaded.
2024-12-21 08:04:45 +01:00
Adrien Gallouët
e34c5af43f
ggml-cpu: replace NEON asm with intrinsics in ggml_gemv_q4_0_4x8_q8_0() (#10874)
* ggml-cpu: replace NEON asm with intrinsics in ggml_gemv_q4_0_4x8_q8_0()

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* ggml-cpu: format code

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2024-12-21 00:33:37 +01:00
Akarshan Biswas
eb5c3dc64b
SYCL: Migrate away from deprecated ggml_tensor->backend (#10840)
* Migrate to tensor->buffer for checking backend buffer type: 1

* SYCL: common.cpp try to migrate away from tensor->backend

* SYCL: fix assertions and add proper comments

* SYCL: remove extra space

* SYCL: Add back static to ggml_backend_buffer_is_sycl_split function

* SYCL: Add pragma directive to suppress warning spam

* SYCL: Integrate debug logs with GGML_LOG and other fixes

* Revert "SYCL: Integrate debug logs with GGML_LOG and other fixes"

This reverts commit 2607b7de0f.
Let's keep the current SYCL specific logging mechanism for now

* SYCL: Use GGML_SYCL_DEBUG after reverting

* SYCL: reg_get_proc_address func, update to the current func signature

* SYCL: Refactor SYCL buffer checks in ggml_sycl_cpy_tensor_2d
2024-12-20 23:31:28 +08:00
Xuan Son Nguyen
0ca416c91a
server : (UI) fix copy to clipboard function (#10916) 2024-12-20 14:12:06 +01:00
Diego Devesa
21ae3b9be8
ggml : add test for SVE and disable when it fails (#10906) 2024-12-20 13:31:28 +01:00
Molly Sophia
0a11f8b7b5
convert : fix RWKV v6 model conversion (#10913)
* Enable --no-context-shift for llama-perplexity example

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV 6: Fix error in ggml_cuda_op_bin_bcast

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-12-20 11:44:58 +02:00
Georgi Gerganov
d408bb9268
clip : disable GPU support (#10896)
ggml-ci
2024-12-19 18:47:15 +02:00
Georgi Gerganov
5cab3e4aaa
llama : minor grammar refactor (#10897)
ggml-ci
2024-12-19 17:42:13 +02:00
Georgi Gerganov
36319dec5d
tts : small QoL for easy model fetch (#10903) 2024-12-19 17:35:15 +02:00
Xuan Son Nguyen
57bb2c40cd
server : fix logprobs, make it OAI-compatible (#10783)
* server : fix logprobs, make it openai-compatible

* update docs

* add std::log

* return pre-sampling p

* sort before apply softmax

* add comment

* fix test

* set p for sampled token

* update docs

* add --multi-token-probs

* update docs

* add `post_sampling_probs` option

* update docs [no ci]

* remove --multi-token-probs

* "top_probs" with "post_sampling_probs"

* resolve review comments

* rename struct token_prob to prob_info

* correct comment placement

* fix setting prob for sampled token
2024-12-19 15:40:08 +01:00
Adrien Gallouët
a3c33b1dce
ggml: fix arm build with gcc (#10895)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2024-12-19 14:20:41 +01:00
Sukriti Sharma
2fffc52b50
llama : fix Roberta embeddings (#10856)
* fix: Use gpt2 tokenizer for roberta and add eos/bos tokens

Branch: RobertaTokenizer

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fixes to position embeddings

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* map roberta-bpe to gpt-2

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix linting

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
2024-12-19 15:04:51 +02:00
fairydreaming
7585edbdeb
convert : Add support for Microsoft Phi-4 model (#10817)
* convert : use GPT2 vocab for Phi-4 model

* convert : use null value of sliding_window to distinguish Phi-4 from other PHI3-based models

* llama : do not use sliding window attention mask for Phi-4 model

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-12-19 10:37:12 +01:00
Johannes Gäßler
cd920d0ac3
tests: disable GGUF test for bad value size (#10886) 2024-12-19 08:53:58 +01:00
Eric Curtin
7909e8588d
llama-run : improve progress bar (#10821)
Set default width to whatever the terminal is. Also fixed a small bug around
default n_gpu_layers value.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2024-12-19 03:58:00 +01:00
Diego Devesa
9177484f58
ggml : fix arm build (#10890)
* ggml: GGML_NATIVE uses -mcpu=native on ARM

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* ggml: Show detected features with GGML_NATIVE

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* remove msvc support, add GGML_CPU_ARM_ARCH option

* disable llamafile in android example

* march -> mcpu, skip adding feature macros

ggml-ci

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Co-authored-by: Adrien Gallouët <angt@huggingface.co>
2024-12-18 23:21:42 +01:00
Georgi Gerganov
0bf2d10c55
tts : add OuteTTS support (#10784)
* server : add "tokens" output

ggml-ci

* server : output embeddings for all tokens when pooling = none

ggml-ci

* server : be explicit about the pooling type in the tests

ggml-ci

* server : do not normalize embeddings when there is no pooling

ggml-ci

* llama : add OuteTTS support (wip)

* wip

* extract features

* first conv

* group norm

* resnet conv

* resnet

* attn

* pos net

* layer norm

* convnext

* head

* hann window

* fix n_embd + remove llama.cpp hacks

* compute hann window

* fft

* spectrum processing

* clean-up

* tts : receive input text and generate codes

* clip : fix new conv name

* tts : minor fix

* tts : add header + minor fixes

ggml-ci

* tts : add matchematical constant

ggml-ci

* tts : fix sampling + cut initial noise

* tts : fixes

* tts : update default samplers

ggml-ci

* tts : text pre-processing

* tts : outetts-voc -> wavtokenizer-dec

* tts : remove hardcoded constants

ggml-ci

* tts : fix tensor shapes

* llama : refactor wavtokenizer tensors

ggml-ci

* cont

ggml-ci

* cont [no ci]

* llama : update WavTokenizer to non-causal attn

* llama : handle no-vocab detokenization

* tts : add Python example for OuteTTS (wip)

* tts : extend python example to generate spectrogram

ggml-ci

* server : fix rebase artifacts

* tts : enable "return_tokens" in Python example

ggml-ci

* tts : minor fixes

* common : support HF download for vocoder
2024-12-18 19:27:21 +02:00
Gaetan Bisson
7bbb5acf12
server: avoid overwriting Authorization header (#10878)
* server: avoid overwriting Authorization header

If no API key is set, leave the Authorization header as is. It may be
used by another part of the Web stack, such as an authenticating proxy.

Fixes https://github.com/ggerganov/llama.cpp/issues/10854

* rebuild

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-12-18 15:00:07 +01:00
Georgi Gerganov
152610eda9
server : output embeddings for all tokens when pooling = none (#10861)
* server : add "tokens" output

ggml-ci

* server : output embeddings for all tokens when pooling = none

ggml-ci

* server : update readme [no ci]

* server : fix spacing [no ci]

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* server : be explicit about the pooling type in the tests

ggml-ci

* server : update /embeddings and /v1/embeddings endpoints

ggml-ci

* server : do not normalize embeddings when there is no pooling

ggml-ci

* server : update readme

ggml-ci

* server : fixes

* tests : update server tests

ggml-ci

* server : update readme [no ci]

* server : remove rebase artifact

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-12-18 13:01:41 +02:00
Georgi Gerganov
0e70ba686e
server : add "tokens" output (#10853)
* server : add "tokens" output

ggml-ci

* server : update readme

ggml-ci

* server : return tokens ids only if requested

ggml-ci

* tests : improve "tokens" type check

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* server : remove "tokens" from the OAI endpoint

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-12-18 11:05:29 +02:00
Xuan Son Nguyen
46828872c3
server : (embeddings) using same format for "input" and "content" (#10872)
* server : (embeddings) using same format for "input" and "content"

* fix test case

* handle empty input case

* fix test
2024-12-18 10:55:09 +02:00
redbeard
6b064c92b4
docs: Fix HIP (née hipBLAS) in README (#10880)
Related to #10524 / be0e350c references to hipBLAS have been removed
across the repository.  This fixes the link from the repositories
`README.md`.

Signed-off-by: Brian 'redbeard' Harrington <redbeard@dead-city.org>
2024-12-18 10:35:00 +02:00
Diego Devesa
4da69d1abd
Revert "llama : add Falcon3 support (#10864)" (#10876)
This reverts commit 382bc7f2e8.
2024-12-18 01:36:46 +01:00
DAN™
d62b532c52
Use model->gguf_kv for loading the template instead of using the C API. (#10868)
* Bump model_template to 16384 bytes to support larger chat templates.

* Use `model->gguf_kv` for efficiency.
2024-12-17 23:24:22 +01:00
Johannes Gäßler
081b29bd2a
tests: add tests for GGUF (#10830) 2024-12-17 19:09:35 +01:00
Georgi Gerganov
5437d4aaf5
sync : ggml 2024-12-17 18:36:02 +02:00
Georgi Gerganov
78f766768d
cmake : fix "amd64" processor string (whisper/2638) 2024-12-17 18:35:49 +02:00
gn64
8dd19a4812
vulkan : fix soft_max.comp division by zero (whisper/2633)
This change prevents a division by zero error when p.KY is 0.
2024-12-17 18:35:49 +02:00
Daniel Bevenius
130d0c90bd
ggml : remove return from ggml_gallocr_allocate_node (ggml/1048)
This commit removes the return statement from ggml_gallocr_allocate_node
function.

The motivation behind this change is to make the code more readable and
consistent.
2024-12-17 18:35:49 +02:00
Daniel Bevenius
3919da8e33
ggml : add check for grad_accs (ggml/1046)
* ggml : add check for grad_accs

This commit adds a check for grad_accs in ggml_graph_get_grad and
ggml_graph_get_grad_acc functions. This is necessary to avoid segfaults
when grad_accs is not initialized.

The motivation for this change is that I find it nice to be able to
print out a computation graph using ggml_graph_print but this function
segfaults when grad_accs is not initialized:
```console
(gdb) p g1
$2 = (ggml_cgraph *) 0x7ffff66004b0
(gdb) p *g1
$3 = {size = 2048, n_nodes = 1, n_leafs = 2, nodes = 0x7ffff6600500,
grads = 0x0, grad_accs = 0x0, leafs = 0x7ffff6604500,
visited_hash_set = {size = 4099, used = 0x7ffff6610518,
keys = 0x7ffff6608500}, order = GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT}
(gdb) p ggml_graph_print(g1)
=== GRAPH ===
n_nodes = 1

Program received signal SIGSEGV, Segmentation fault.
0x0000555555579775 in ggml_graph_get_grad
(cgraph=0x7ffff66004b0,node=0x7ffff6600340)
    at /ggml/ggml/src/ggml.c:5990
5990  return igrad != GGML_HASHSET_FULL &&
          ggml_bitset_get(cgraph->visited_hash_set.used, igrad) ?
          cgraph->grads[igrad] : NULL;
```

* squash! ggml : add check for grad_accs

Fix the check in ggml_graph_get_grad. The check was incorrectly using
cgraph->grad_accs instead of cgraph->grads.
2024-12-17 18:35:48 +02:00
Georgi Gerganov
0006f5a74a
ggml : update ggml_backend_cpu_device_supports_op (#10867)
* ggml : fix cpy op for IQ-quants to use reference impl

ggml-ci

* ggml : disable tests involving i-matrix quantization

* ggml : update ggml_backend_cpu_device_supports_op

ggml-ci
2024-12-17 18:35:42 +02:00
krystiancha
05c3a444b8
server : fill usage info in embeddings and rerank responses (#10852)
* server : fill usage info in embeddings response

* server : fill usage info in reranking response
2024-12-17 18:00:24 +02:00
Billel Mokeddem
382bc7f2e8
llama : add Falcon3 support (#10864) 2024-12-17 17:24:56 +02:00
Ruan
4f51968aca
readme : update typos (#10863) 2024-12-17 11:47:20 +02:00
Xuan Son Nguyen
227d7c5a7f
server : (UI) fix missing async generator on safari (#10857)
* server : (UI) fix missing async generator on safari

* fix
2024-12-17 09:52:09 +01:00
Eve
7b1ec53f56
vulkan: bugfixes for small subgroup size systems + llvmpipe test (#10809)
* ensure mul mat shaders work on systems with subgroup size less than 32

more fixes

add test

* only s_warptile_mmq needs to be run with 32 threads or more
2024-12-17 06:52:55 +01:00
Zhiyuan Li
160bc039c8
rwkv6: add wkv6 support for Vulkan backend (#10829)
* rwkv_wkv6 vulkan shader

* RWKV_WKV6 Vulkan op tests passed

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* add [[unroll]] and remove unnecessary conditions

* add uma support

* fix erros in EditorConfig Checker

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Molly Sophia <mollysophia379@gmail.com>
2024-12-16 22:00:46 +01:00
Georgi Gerganov
08ea539df2
unicode : improve naming style (#10838)
* unicode : improve naming style

ggml-ci

* cont [no ci]
2024-12-16 12:31:45 +02:00
Georgi Gerganov
644fd71b44
sampling : refactor + optimize penalties sampler (#10803)
* sampling : refactor + optimize penalties sampler

ggml-ci

* common : apply ignore_eos as logit bias

ggml-ci

* batched : remove penalties sampler

* params : allow penalty_last_n == -1 to be equal to context size

ggml-ci

* common : by default, move the penalties at the end of the sampling chain

ggml-ci

* common : ignore all EOG tokens

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* common : move back the penalties at the front of the sampling chain

ggml-ci

* readme : restore hint about --ignore-eos flag [no ci]

* llama : minor

ggml-ci

* webui : update

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-16 12:31:14 +02:00
Bartowski
4ddd199f6f
llava : Allow locally downloaded models for QwenVL (#10833)
* Allow locally downloaded models for QwenVL

* Define model_path

* rm trailing space

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-12-15 21:43:25 +01:00
Valentin Mamedov
a0974156f3
llama : add Deepseek MoE v1 & GigaChat models (#10827)
* Add deepseek v1 arch & gigachat template

* improve template code

* add readme

* delete comments

* remove comment

* fix format

* lint llama.cpp

* fix order of deepseek and deepseek2, move gigachat temlate to the end of func

* fix order of deepseek and deepseek2 in constants; mark shared exp as deepseek arch need

* remove comments

* move deepseek above deepseek2

* change placement of gigachat chat template
2024-12-15 19:02:46 +02:00
Georgi Gerganov
87cf323cef
scripts : change build path to "build-bench" for compare-commits.sh (#10836) 2024-12-15 18:44:47 +02:00
Vinesh Janarthanan
5478bbcd17
server: (UI) add syntax highlighting and latex math rendering (#10808)
* add code highlighting and math formatting

* code cleanup

* build public/index.html

* rebuild public/index.html

* fixed coding style

* fixed coding style

* style fixes

* highlight: smaller bundle size, fix light & dark theme

* remove katex

* add bundle size check

* add more languages

* add php

* reuse some langs

* use gzip

* Revert "remove katex"

This reverts commit c0e5046acc.

* use better maintained @vscode/markdown-it-katex

* fix gzip non deterministic

* ability to add a demo conversation for dev

* fix latex rendering

* add comment

* latex codeblock as code

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-12-15 12:55:54 +01:00
Georgi Gerganov
b5ae1ddff9
gguf-py : bump to v0.13.0 2024-12-15 13:16:42 +02:00
Michelle Tan
89d604f2c8
server: Fix has_next_line in JSON response (#10818)
* Update server JSON response.

* Add unit test to check `has_new_line` JSON response

* Remove `has_new_line` unit test changes.

* Address code review comment: type check for `has_new_line` in unit test
2024-12-14 23:29:45 +01:00
Evgeny Kurnevsky
e52aba537a
nix: allow to override rocm gpu targets (#10794)
This allows to reduce compile time when you are building for a single GPU.
2024-12-14 10:17:36 -08:00
HimariO
ba1cb19cdd
llama : add Qwen2VL support + multimodal RoPE (#10361)
* Barebone Qwen2VL LLM convertor

* Add Qwen2VL cli entrypoint

* [WIP] add qwen2vl arch

* Verify m-rope output

* Add vl-rope/2d-rope support for qwen2vl ViT

* update qwen2vl cli tool

* update 5D tensor op workaround

* [WIP] qwen2vl vision model

* make batch and clip utils compatible with qwen2vl

* [WIP] create inference workflow, gguf convert script but fix

* correcting vision-rope behavior, add the missing last layer back to ViT

* add arg parser to qwen2vl_surgery

* replace variable size array with vector

* cuda-gdb cmake preset

* add fp32 mrope, vision rope kernel

* add fp16 support for qwen2vl and m-rope

* add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION`

* fix rope op mode switching, out dated func args

* update `llama_hparams`

* update to keep up stream changes

* resolve linter, test errors

* add makefile entry, update speical image padding token

* add mrope unit test, fix few compiler warnings

* rename `mrope` related function, params

* minor updates on debug util, bug fixs

* add `m-rope` testcase to `test-backend-ops`

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix traililng whitespce

* store `llama_hparams.rope_sections` with fixed size array

* update position id tensor size check in GGML_OP_ROPE

* minor updates

* update `ggml_backend_*_supports_op` of unsupported backends

* remote old `rope_section` compare operator

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-14 14:43:46 +02:00
cduk
56eea0781c
Removes spurious \r in output that causes logging in journalctl to treat lines as binary and therefore hidden by default (#10771)
Signed-off-by: Charles Darke <s.cduk@toodevious.com>
Co-authored-by: Charles Darke <s.cduk@toodevious.com>
2024-12-13 23:21:49 +01:00
lhez
a76c56fa1a
Introducing experimental OpenCL backend with support for Qualcomm Adreno GPUs (#10693)
* [cl][adreno] Add Adreno GPU support

Add new OpenCL backend to support Adreno GPUs

---------

Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
Co-authored-by: Alexander Angus <quic_aangus@quicinc.com>
Co-authored-by: Hongqiang Wang <quic_wangh@quicinc.com>
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>

* [cl][ci] Add workflow for CL

* [cl][adreno] Fix memory leak for non SMALL_ALLOC path

* opencl: integrate backend dyn.load interface and fix compiler and format warnings

* opencl: remove small-alloc support and fix build errors for non-opencl platforms

* opencl: fixed merge conflict (MUSA added twice in cmake)

* opencl-ci: use RUNNER_TEMP instead of github.workspace

* opencl: fix embed tool invocation with python3

* opencl: CI workflow fixes

* opencl: Clean up small-alloc in CMake files

* opencl: cleanup ggml-opencl2 header file

* opencl: use ulong for offsets and strides in ADD kernel

* opencl: use cl_ulong for all offsets

* opencl: use cl_ulong for sizes and strides

* opencl: use `GGML_LOG_xxx` instead of `fprintf(stderr, ...)`

* opencl: rename backend `opencl2` -> `opencl`

* opencl: rename kernel files `ggml-opencl2` -> `ggml-opencl`

* opencl: make OpenCL required, remove redundant lib and inc directories

* `ggml-base`, `..` and `.` are added by `ggml_add_backend_library`

* opencl: rename backend - funcs, structs, etc `opencl2` -> `opencl`

* opencl: remove copyright marker since main license already covers

* opencl: replace some more OPENCL2 leftovers

* opencl: remove limits on `tensor_extra`

* opencl: use pools for `tensor_extra`

* opencl: fix compiler warnings with GCC and Clang

Still getting the warning about clCreateCmdQueue being obsolete.
Will fix that separately.

* opencl: fail gracefully if opencl devices are not available

Also for unsupported GPUs.

* opencl: fix MSVC builds (string length error)

* opencl: check for various requirements, allow deprecated API

* opencl: update log message for unsupported GPUs

---------

Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
Co-authored-by: Alexander Angus <quic_aangus@quicinc.com>
Co-authored-by: Hongqiang Wang <quic_wangh@quicinc.com>
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2024-12-13 12:23:52 -08:00
Eric Curtin
c27ac678dd
Opt class for positional argument handling (#10508)
Added support for positional arguments `model` and `prompt`. Added
functionality to download via strings like:

  llama-run llama3
  llama-run ollama://granite-code
  llama-run ollama://granite-code:8b
  llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf
  llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf
  llama-run https://example.com/some-file1.gguf
  llama-run some-file2.gguf
  llama-run file://some-file3.gguf

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2024-12-13 19:34:25 +01:00
Corentin REGAL
11e07fd63b
fix: graceful shutdown for Docker images (#10815) 2024-12-13 18:23:50 +01:00
Jett Janiak
4601a8bb67
gguf-py : numpy 2 newbyteorder fix (#9772) 2024-12-13 16:48:44 +02:00
谢乃闻
9f35e44592
Fix crash caused by ggml_backend_load_all when launching on Android Activity (#10812)
* Fix crash caused by ggml_backend_load_all when launching on AndroidActivity.

Details:
Calling ggml_backend_load_all during initialization in the AndroidActivity project leads to a crash with the error:
terminating with uncaught exception of type std::__ndk1::__fs::filesystem::filesystem_error: filesystem error: in directory_iterator::directory_iterator(...): Permission denied [./].
This issue occurs because AndroidActivity restricts file access due to sandboxing.

Reproduction:
In the example folder, the LlamaAndroid project can reproduce the crash by calling ggml_backend_load_all first in Java_android_llama_cpp_LLamaAndroid_backend_1init.

* Update ggml/src/ggml-backend-reg.cpp

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-13 13:56:07 +01:00
Eve
64ae065511
vulkan: small mul_mat_vec optimizations (#10665)
* double the number of rows per workgroup

* Update ggml-vulkan.cpp

* Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats

* only increase the number of rows for amd and subgroup size 64

* fix missing NUM_ROWS for mul_mat_vec_iq4_nl_f16_f32, untested

* use subgroup min and max to check for gcn (requires https://github.com/ggerganov/llama.cpp/pull/10721)

* manual merge ggml-vulkan.cpp

* set min and max subgroup size in any case

* Also double the number of rows for Intel GPUs
2024-12-13 09:42:04 +01:00
Akarshan Biswas
83ed24a97b
SYCL: Reduce most of the compiler warnings (#10748)
* Try to reduce some unused and typecast warnings

* Reduce compiler warnings step 2

* add a newline at the end of the file

* Initialize nreduce as size_t

* [SYCL] Remove pragma directives from mmq.cpp

* SYCL: mmq add condition to prevent blocks_per_tile_x_row variable from becoming 0

* SYCL softmax: Initialize nreduce as size_t

* ggml-sycl.cpp: fix some trailing whitespaces

* SYCL: remove the unused variables instead of commenting it out

* SYCL poo2d kernel: set NAN for invalid pooling op

* SYCL gemm.hpp: remove pragma directives

* SYCL gemm.hpp: use const cast to properly support dnnl::memory

* SYCL: wkv6 remove a comment

* SYCL: clean comments step 2

* SYCL: clean comments and variables step 3

* SYCL: Use GGML_UNUSED for unused variables

* SYCL: remove extra empty lines and a comment

* Remove TODO

* cleanup spaces

* add a stdout for unsupported op

* use sycl printf over fprintf

* remove prints for CI

* SYCL ggml-sycl: pool2D use sycl::nan and remove if-else block

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-12-13 12:12:15 +05:30
Karol Kontny
d583cd03f6
ggml : Fix compilation issues on ARM platform when building without fp16 (#10811) 2024-12-13 01:04:19 +01:00
Xuan Son Nguyen
adffa6ffd5
common : improve -ctv -ctk CLI arguments (#10806)
* common : improve ctv ctk cli argument

* regenerate docs

* even better approach

* use std::vector
2024-12-12 22:53:05 +01:00
Xuan Son Nguyen
274ec65af6
contrib : add ngxson as codeowner (#10804) 2024-12-12 20:52:28 +01:00
a3sh
8faa1d4dd4
CUDA: faster non-contiguous concat (#10760)
* faster uncontiguous concat

* Use a lambda to avoid code duplication

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update ggml/src/ggml-cuda/concat.cu

* add constexpr  and static assert

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-12 19:09:50 +01:00
Diego Devesa
cb13ef85a4
remove CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS (#10797)
other windows build fixes
2024-12-12 19:02:49 +01:00
0cc4m
4064c0e3b6
Vulkan: Use improved q4_k and q5_k dequant code in dequant shaders (#10798) 2024-12-12 18:36:00 +01:00
0cc4m
dc5301d565
Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats (#10721)
* Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats

* Fix subgroup size control extension support check

Add accf32 and accf16 checks for coopmats

* Also disable coopmats on amdvlk
2024-12-12 18:35:37 +01:00
Xuan Son Nguyen
9fdb124304
common : add missing env var for speculative (#10801) 2024-12-12 16:57:32 +01:00
CentricStorm
5555c0c1f6
docs: update server streaming mode documentation (#9519)
Provide more documentation for streaming mode.
2024-12-11 23:40:40 +01:00
Georgi Gerganov
973f328b1e
Merge pull request #10788 from ggerganov/gg/gguf-py-0.11.0 2024-12-11 23:14:46 +02:00
Georgi Gerganov
fb18934a97
gguf-py : bump version to 0.11.0 2024-12-11 23:13:31 +02:00
Xuan Son Nguyen
235f6e14bf
server : (UI) add tok/s, get rid of completion.js (#10786)
* get rid of completion.js

* extract chat bubble to a component

* add tok/s info

* sync

* fix BASE_URL

* only extract timings when it's enabled

* fix auto scroll
2024-12-11 20:52:14 +01:00
qingy1337
1a31d0dc00
Update README.md (#10772) 2024-12-11 16:16:32 +01:00
Xuan Son Nguyen
92f77a640f
ci : pin nodejs to 22.11.0 (#10779) 2024-12-11 14:59:41 +01:00
kallewoof
484d2f31ae
bug-fix: snprintf prints NULL in place of the last character (#10419)
* bug-fix: snprintf prints NULL in place of the last character

We need to give snprintf enough space to print the last character and the null character, thus we allocate one extra byte and then ignore it when converting to std::string.

* add comment about extra null-term byte requirement
2024-12-11 14:48:04 +01:00
CentricStorm
4b4d92b098
docs: fix server documentation formatting (#10776) 2024-12-11 11:47:43 +01:00
Gilad S.
43041d2eb3
ggml: load all backends from a user-provided search path (#10699)
* feat: load all backends from a user-provided search path

* fix: Windows search path

* refactor: rename `ggml_backend_load_all_in_search_path` to `ggml_backend_load_all_from_path`

* refactor: rename `search_path` to `dir_path`

* fix: change `NULL` to `nullptr`

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* fix: change `NULL` to `nullptr`

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-11 01:47:21 +01:00
Jeff Bolz
b685daf386
vulkan: request round-to-even for fp16 in im2col/rope_head (#10767)
Vulkan doesn't mandate a specific rounding mode, but the shader_float_controls
feature allows rounding mode to be requested if the implementation supports it.
2024-12-10 21:23:17 +01:00
Eve
dafae66cc2
vulkan: dynamic subgroup size for the remaining k quants (#10745)
* q5_k

q4_k

q3_k

q2_k

q6_k multi row example

* revert as multi row isnt faster for k quants
2024-12-10 20:33:23 +01:00
Bartowski
ae4b922614
imatrix : Add imatrix to --no-context-shift (#10766)
This allows for setting the --no-context-shift value in llama-imatrix which is required for models like DeepSeek
2024-12-10 18:23:50 +01:00
Andreas Kieslinger
750cb3e246
CUDA: rename macros to avoid conflicts with WinAPI (#10736)
* Renames NVIDIA GPU-architecture flags to avoid name clashes with WinAPI. (e.g. CC_PASCAL, GPU architecture or WinAPI pascal compiler flag?)

* Reverts erroneous rename in SYCL-code.

* Renames GGML_CUDA_MIN_CC_DP4A to GGML_CUDA_CC_DP4A.

* Renames the rest of the compute capability macros for consistency.
2024-12-10 18:23:24 +01:00
Yüg
a86ad841f1
server : add flag to disable the web-ui (#10762) (#10751)
Co-authored-by: eugenio.segala <esegala@deloitte.co.uk>
2024-12-10 18:22:34 +01:00
Jeff Bolz
a05e2afcc2
vulkan: disable spirv-opt for coopmat shaders (#10763)
There are some bugs in the 1.3.296 SDK, so disable this. It isn't strictly
necessary anyway.

Add missing dependency on vulkan-shaders-gen, so shaders get recompiled when it
changes.

Fix coopmat support reporting when glslc doesn't support NV_coopmat2.
2024-12-10 18:22:20 +01:00
Johannes Gäßler
26a8406ba9
CUDA: fix shared memory access condition for mmv (#10740) 2024-12-09 20:07:12 +01:00
Srihari-mcw
c37fb4cf62
Changes to CMakePresets.json to add ninja clang target on windows (#10668)
* Update cmakepreset.json to use clang with ninja by default

* Update cmakepreset.json to add clang and ninja based configs

* Updates to build.md file

* Make updates to rename preset targets

* Update with .cmake file

* Remove additional whitespaces

* Add .cmake file for x64-windows-llvm

* Update docs/build.md

* Update docs/build.md

---------

Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
2024-12-09 09:40:19 -08:00
Jeff Bolz
3d98b4cb22
vulkan: fix compile warnings (#10731) 2024-12-09 08:24:01 +01:00
Borislav Stanimirov
1a05004743
cmake : simplify msvc charsets (#10672) 2024-12-09 09:15:13 +02:00
Xuan Son Nguyen
ce8784bdb1
server : fix format_infill (#10724)
* server : fix format_infill

* fix

* rename

* update test

* use another model

* update test

* update test

* test_invalid_input_extra_req
2024-12-08 23:04:29 +01:00
Xuan Son Nguyen
e52522b869
server : bring back info of final chunk in stream mode (#10722)
* server : bring back into to final chunk in stream mode

* clarify a bit

* traling space
2024-12-08 20:38:51 +01:00
stduhpf
06d70147e6
Vulkan: fix NaN in tanh.comp with AMD proprietary driver on Windows (#10723)
* Vulkan: fix NaN in tanh.comp

* Faster NaN-free tanh
2024-12-08 19:19:19 +01:00
Diego Devesa
43ed389a3f
llama : use cmake for swift build (#10525)
* llama : use cmake for swift build

* swift : <> -> ""

* ci : remove make

* ci : disable ios build

* Revert "swift : <> -> """

This reverts commit d39ffd9556.

* ci : try fix ios build

* ci : cont

* ci : cont

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-08 13:14:54 +02:00
Jeff Bolz
ecc93d0558
vulkan: compile a test shader in cmake to check for coopmat2 support (#10713) 2024-12-08 09:05:55 +01:00
Robert Collins
62e84d9848
llama : add 128k yarn context for Qwen (#10698)
* add 128k yarn context for Qwen

* added property for model tensors

* removing useless line
2024-12-07 23:12:27 +02:00
Xuan Son Nguyen
3573fa8e7b
server : (refactor) no more json in server_task input (#10691)
* server : (refactor) no more json in server_task input

* add test for slots endpoint

* add tests for /props and /slots

* remove task inf_type

* fix CI by adding safe_json_to_str

* add "model_path" to /props

* update readme
2024-12-07 20:21:09 +01:00
Georgi Gerganov
d9c3ba2b77
ggml : disable iq4_nl interleave size 8 (#10709)
ggml-ci
2024-12-07 18:38:15 +02:00
Georgi Gerganov
ce4a7b8493
server : various fixes (#10704)
* server : various fixes

ggml-ci

* server : show curent seed in slot_params

ggml-ci

* fix /slots endpoint

* Update examples/server/server.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server : reflect endpoint response changes in the readme

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-12-07 18:02:05 +02:00
Djip007
19d8762ab6
ggml : refactor online repacking (#10446)
* rename ggml-cpu-aarch64.c to .cpp

* reformat extra cpu backend.

- clean Q4_0_N_M and IQ4_0_N_M
  - remove from "file" tensor type
  - allow only with dynamic repack

- extract cpu extra bufts and convert to C++
  - hbm
  - "aarch64"

- more generic use of extra buffer
  - generalise extra_supports_op
  - new API for "cpu-accel":
     - amx
     - aarch64

* clang-format

* Clean Q4_0_N_M ref

Enable restrict on C++

* add op GGML_OP_MUL_MAT_ID for Q4_0_N_M with runtime repack

* added/corrected control on tensor size for Q4 repacking.

* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add debug logs on repacks.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-07 14:37:50 +02:00
Georgi Gerganov
c2a16c0bdb
server : fix free of spec context and batch (#10651)
ggml-ci
2024-12-07 11:52:44 +02:00
0cc4m
3df784b305
Vulkan: VK_KHR_cooperative_matrix support to speed up prompt processing (#10597)
* Vulkan: Implement VK_KHR_cooperative_matrix support in the matrix matrix multiplication shader

* Improve performance with better q4_k and q5_k dequant and store unrolling

* Add Vulkan MUL_MAT and MUL_MAT_ID accumulator precision selection

* Rework mulmat shader selection and compilation logic, avoid compiling shaders that won't get used by device

* Vulkan: Implement accumulator switch for specific mul mat mat shaders

* Vulkan: Unroll more loops for more mul mat mat performance

* Vulkan: Add VK_AMD_shader_core_properties2 support to read Compute Unit count for split_k logic

* Disable coopmat support on AMD proprietary driver

* Remove redundant checks

* Add environment variable GGML_VK_DISABLE_COOPMAT to disable VK_KHR_cooperative_matrix support

* Fix rebase typo

* Fix coopmat2 MUL_MAT_ID pipeline selection
2024-12-07 10:24:15 +01:00
Robert Ormandi
86a1934978
metal : Extend how Llama.cpp locates metal resources (#10676)
* metal : Extend how Llama.cpp locates metal resources (#10675)

  * It searches the resource file in the directory where the current
    binary is located as well.
  * Resolves symbolic links.

Rationale:

When we plug this dependency into a Bazel build and run it in the
context of Bazel (e.g. testing):

  * the execution directory is often very different from where the files
    are located and no direct control over this (Bazel sandboxing),
  * the Bazel sandbox often use symbolic links to make files available.

With this patch, we can have the resource file added to the target,
can build and run tests in the context of Bazel.

* Update ggml/src/ggml-metal/ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-metal/ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-07 09:55:01 +02:00
Sukriti Sharma
784a14aa49
convert : add support for Roberta embeddings (#10695) 2024-12-07 09:02:14 +02:00
Georgi Gerganov
c5ede3849f
convert : add custom attention mapping 2024-12-06 21:33:49 +02:00
Xuan Son Nguyen
f162d45a21
common : bring back --no-warmup to server (#10686) 2024-12-06 13:29:05 +01:00
Xuan Son Nguyen
6c5bc0625f
server : (refactoring) do not rely on JSON internally (#10643)
* server : (refactoring) reduce usage of json internally

* move all response types to struct

* wip [no ci]

* many fixes

* add virtual function

* fix index

* minor style fix

* add std::move

* refactor handle_completions_generic

* add virtual functions

* remove server.hpp

* clarify server_sent_event RFC specs

* apply review comments

* fix model_alias and completion_probabilities

* small clean up

* remove virtual for to_json_oai_compat()

* naming oai_compat --> oaicompat

* fix unwanted recursive call

* update docs
2024-12-06 11:14:32 +01:00
Plamen Minev
7736837d62
fix(server) : not show alert when DONE is received (#10674) 2024-12-05 22:36:41 +01:00
Jeff Bolz
c9c6e01dae
vulkan: Add VK_NV_cooperative_matrix2 support for mul_mat and flash attention (#10206) 2024-12-05 20:15:05 +01:00
Riccardo Orlando
6fe6247831
llama : add Minerva 7B model support (#10673)
* Support for Minerva 7B

* Update convert_hf_to_gguf_update.py
2024-12-05 20:30:59 +02:00
Georgi Gerganov
0cd182ebcc
sync : ggml 2024-12-05 13:27:42 +02:00
PAB
a8cbab201d
ggml: add GGML_SET Metal kernel + i32 CPU kernel (ggml/1037)
* implemented cpu kernel

* add i32 test cases in test-backend-ops

* typedef `ggml_metal_kargs_set`

* implemented `kernel_set`

* memcpy
2024-12-05 13:27:33 +02:00
PAB
c2082d93a8
ggml : add GGML_PAD_REFLECT_1D operation (ggml/1034)
* ggml_pad_reflect_1d defined in header

* implemented on CPU

* called the forward pass

* impl Metal kernel

* added Metal kernel

* added OP_PAD_REFLECT_1D in test-backend-ops.cpp

* add test-pad-reflect-1d test case

* test case support multiple backend
2024-12-05 13:27:31 +02:00
Daniel Bevenius
d405804be8
py : update outdated copy-paste instructions [no ci] (#10667)
This commit updates the copy-paste instruction in
convert_hf_to_gguf_update.py to reflect that convert_hf_to_gguf.py
will have already been updated with the new get_vocab_base_pre()
function when this script completes.
2024-12-05 09:47:55 +02:00
aryantandon01
f112d198cd
Update deprecation-warning.cpp (#10619)
Fixed Path Separator Handling for Cross-Platform Support (Windows File Systems)
2024-12-04 23:19:20 +01:00
Georgi Gerganov
1da7b76569
server : fix speculative decoding with context shift (#10641)
* server : fix speculative decoding with context shift

ggml-ci

* server : take into account speculative limits

ggml-ci

* server : add tests
2024-12-04 22:38:20 +02:00
Diego Devesa
59f4db1088
ggml : add predefined list of CPU backend variants to build (#10626)
* ggml : add predefined list of CPU backend variants to build

* update CPU dockerfiles
2024-12-04 14:45:40 +01:00
Diego Devesa
2803540814
ggml-cpu : fix HWCAP2_I8MM value (#10646) 2024-12-04 14:40:44 +01:00
ltoniazzi
253b7fde91
Fix HF repo commit to clone lora test models (#10649) 2024-12-04 10:45:48 +01:00
JFLFY2255
8d0cfd554a
llama: Support MiniCPM-1B (with & w/o longrope) (#10559) 2024-12-04 11:42:50 +02:00
Jeff Bolz
2759916d86
vulkan: Implement "fast divide" (mul+shift) for unary ops like copy (#10642) 2024-12-04 08:28:59 +01:00
Nicolò Scipione
40c6d79fb5
SYCL : Move to compile time oneMKL interface backend selection for NVIDIA backend (#10584)
* [SYCL] Move to Compile Time backend selection on oneMKL Interface for NVIDIA backend

Move to compile time selection to backend to avoid latency at run time.
Add it to all mkl gemm calls and only for NVIDIA backend.

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>

* Formatting

* Address PR comments to increase readibility

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2024-12-04 09:29:20 +08:00
Wang Ran (汪然)
98036d5670
fix typo of README.md (#10605) 2024-12-04 02:22:50 +01:00
Frankie Robertson
cd2f37b304
Avoid using __fp16 on ARM with old nvcc (#10616) 2024-12-04 01:41:37 +01:00
Benson Wong
da6aac91f1
Add docs for creating a static build (#10268) (#10630)
* Add notes for a static build

* Update docs/build.md

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-04 01:40:36 +01:00
piDack
01e6d9bb71
clip : add sycl support (#10574)
Co-authored-by: piDack <pcdack@hotmail.co>
2024-12-04 01:26:37 +01:00
Jeff Bolz
cc98896db8
vulkan: optimize and reenable split_k (#10637)
Use vector loads when possible in mul_mat_split_k_reduce. Use split_k
when there aren't enough workgroups to fill the shaders.
2024-12-03 20:29:54 +01:00
Xuan Son Nguyen
91c36c269b
server : (web ui) Various improvements, now use vite as bundler (#10599)
* hide buttons in dropdown menu

* use npm as deps manager and vite as bundler

* fix build

* fix build (2)

* fix responsive on mobile

* fix more problems on mobile

* sync build

* (test) add CI step for verifying build

* fix ci

* force rebuild .hpp files

* cmake: clean up generated files pre build
2024-12-03 19:38:44 +01:00
Georgi Gerganov
1cd3df46bd scripts : remove amx sync
ggml-ci
2024-12-03 20:04:49 +02:00
Georgi Gerganov
c505471857 sync : ggml 2024-12-03 20:04:49 +02:00
mahorozte
e9e661bd59 CUDA: remove unnecessary warp reduce in FA (ggml/1032)
* kqmax_new_j in every thread within warp is same after operate at line 199,this reduce can be omit

* same problem in vec32

---------

Co-authored-by: ZhaoXiaoYu <zhao.xiaoyu@zte.com.cn>
2024-12-03 20:04:49 +02:00
PAB
efb6ae9630 feat: add GGML_UNARY_OP_ARGMAX Metal kernel (ggml/1019)
* implemented argmax kernel

* tpig -> tgpig

* change to strides

* contiguous assertions

* kernel working and tested

* argmax simd parallel implementation

* added 2 new tests for argmax in test-backend-ops

* cosmit

* added 3 tests cases for perf eval

* add test_argmax in make_test_cases_perf

* Update test-backend-ops.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-03 20:04:49 +02:00
PAB
667d70d170 metal : add GGML_OP_CONV_TRANSPOSE_1D kernels (ggml/1026)
* wip

* wip implementation f32

* kernel conv transpose 1d f32 working

* initial commit
2024-12-03 20:04:49 +02:00
Xuan Son Nguyen
3b4f2e33e2
llama : add missing LLAMA_API for llama_chat_builtin_templates (#10636) 2024-12-03 12:54:30 +01:00
Nikolaos Pothitos
82bca2257b
readme : add option, update default value, fix formatting (#10271)
* readme : document --no-display-prompt

* readme : update default prompt context size

* readme : remove unnecessary indentation

Indenting a line with four spaces makes Markdown treat that section as
plain text.

* readme : indent commands under bullets

* readme : indent commands in lettered list
2024-12-03 12:50:08 +02:00
Georgi Gerganov
0115df2f65
metal : small-batch mat-mul kernels (#10581)
* metal : small-batch mat-mul kernels

ggml-ci

* metal : add rest of types

ggml-ci

* metal : final adjustments

ggml-ci

* metal : add comments

ggml-ci
2024-12-03 11:52:33 +02:00
Georgi Gerganov
515d4e5372
github : minify link [no ci] (revert)
this doesn't work as expected
2024-12-03 11:21:43 +02:00
Georgi Gerganov
844e2e1fee
github : minify link [no ci] 2024-12-03 11:20:35 +02:00
Georgi Gerganov
70b98fadbc
server : fix default draft model parameters (#10586)
* server : force F16 KV cache for the draft model

ggml-ci

* server : fix draft params

ggml-ci

* server : various params fixes

ggml-ci
2024-12-03 11:20:00 +02:00
Xuan Son Nguyen
642330ac7c
llama : add enum for built-in chat templates (#10623)
* llama : add enum for supported chat templates

* use "built-in" instead of "supported"

* arg: print list of built-in templates

* fix test

* update server README
2024-12-02 22:10:19 +01:00
Georgi Gerganov
8648c52101
make : deprecate (#10514)
* make : deprecate

ggml-ci

* ci : disable Makefile builds

ggml-ci

* docs : remove make references [no ci]

* ci : disable swift build

ggml-ci

* docs : remove obsolete make references, scripts, examples

ggml-ci

* basic fix for compare-commits.sh

* update build.md

* more build.md updates

* more build.md updates

* more build.md updates

* Update Makefile

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-12-02 21:22:53 +02:00
haopeng
64ed2091b2
server: Add "tokens per second" information in the backend (#10548)
* add cmake rvv support

* add timings

* remove space

* update readme

* fix

* fix code

* remove empty line

* add test

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-12-02 14:45:54 +01:00
Akarshan Biswas
991f8aabee
SYCL: Fix and switch to GGML_LOG system instead of fprintf (#10579)
* Switched to GGML_LOG

* Fix missing semicolon
2024-12-02 15:04:11 +08:00
Georgi Gerganov
4cb003dd8d
contrib : refresh (#10593)
* contrib : refresh

* contrib : expand [no ci]

* contrib : expand test-backend-ops instructions

* contrib : add CODEOWNERS

* prs : update template to not have checkbox [no ci]
2024-12-02 08:53:27 +02:00
Juk Armstrong
917786f43d
Add mistral-v1, mistral-v3, mistral-v3-tekken and mistral-v7 chat template types (#10572)
* Templates: `mistral-v1`, `mistral-v2`, `mistral-v3`, `mistral-v3-tekken`

* Changed system message logic and added tests for all 4

* Invalid `system_message` instead of `content` fixed

* Removed tab-indented lines

* Added template code and test for `mistral-v7`

* Added all tests. Fixed bug with `tmpl == "llama2"` test.

* Replaced tabs with spaces.

* Removed `'mistral-v2'` option as no (open) models ever used it

* Removed all references to 'v2' template from comments

* Update llama.cpp

Fixed `trim_assistant_message` bug
2024-12-01 23:09:49 +01:00
Georgi Gerganov
5e1ed95583
grammars : add English-only grammar (#10612) 2024-12-01 21:37:54 +02:00
Wang Qin
5c7a5aa0c3
ci: add error handling for Python venv creation in run.sh (#10608) 2024-12-01 20:11:42 +02:00
Diego Devesa
3420909dff
ggml : automatic selection of best CPU backend (#10606)
* ggml : automatic selection of best CPU backend

* amx : minor opt

* add GGML_AVX_VNNI to enable avx-vnni, fix checks
2024-12-01 16:12:41 +01:00
alek3y
86dc11c5bc
server : bind to any port when specified (#10590) 2024-12-01 13:33:12 +02:00
Georgi Gerganov
6acce39710
readme : update the usage section with examples (#10596)
* readme : update the usage section with examples

* readme : more examples
2024-12-01 11:25:17 +02:00
Wang Qin
43957ef203
build: update Makefile comments for C++ version change (#10598) 2024-12-01 04:19:44 +01:00
Adrien Gallouët
0c39f44d70
ggml-cpu: replace AArch64 NEON assembly with intrinsics in ggml_gemv_q4_0_4x4_q8_0() (#10567)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2024-11-30 09:13:18 -08:00
Georgi Gerganov
3e0ba0e604
readme : remove old badge 2024-11-30 10:09:21 +02:00
Georgi Gerganov
abadba05be
readme : refresh (#10587)
* readme : refresh

* readme : move section [no ci]

* readme : clarify [no ci]

* readme : fixes [no ci]

* readme : more fixes [no ci]

* readme : simplify [no ci]

* readme : clarify GGUF
2024-11-30 09:47:07 +02:00
Eve
0533e7fb38
vulkan: Dynamic subgroup size support for Q6_K mat_vec (#10536)
* subgroup 64 version with subgroup add. 15% faster

scalable version

tested for subgroup sizes 16-128

* check for subgroup multiple of 16 and greater than 16

* subgroup sizes are always a power of 2 (https://github.com/KhronosGroup/GLSL/issues/45)

* force 16 sequential threads per block

* make 16 subgroup size a constant
2024-11-30 08:00:02 +01:00
Diego Devesa
7cc2d2c889
ggml : move AMX to the CPU backend (#10570)
* ggml : move AMX to the CPU backend

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-11-29 21:54:58 +01:00
Xuan Son Nguyen
b782e5c7d4
server : add more test cases (#10569)
* server : add split model test

* add test speculative

* add invalid cases
2024-11-29 21:48:56 +01:00
Robert Collins
3a8e9af402
imatrix : support combine-only (#10492)
* imatrix-combine-only idea

* ensured that behavior consistent with log
2024-11-29 19:21:37 +02:00
Diego Devesa
a3a3048e7a
cleanup UI link list (#10577)
* cleanup UI link list

* sort list alphabetically

* add missing licenses
2024-11-29 17:45:08 +01:00
Georgi Gerganov
f0678c5ff4
ggml : fix I8MM Q4_1 scaling factor conversion (#10562)
ggml-ci
2024-11-29 16:25:39 +02:00
Shupei Fan
4b3242bbea
ggml-cpu: fix typo in gemv/gemm iq4_nl_4_4 (#10580) 2024-11-29 14:49:02 +01:00
Alberto Cabrera Pérez
0f77aae560
sycl : offload of get_rows set to 0 (#10432) 2024-11-29 20:38:45 +08:00
Alberto Cabrera Pérez
266b8519ee
sycl : Reroute permuted mul_mats through oneMKL (#10408)
This PR fixes the failing MUL_MAT tests for the sycl backend.
2024-11-29 09:49:43 +00:00
Chenguang Li
938f608742
CANN: RoPE operator optimization (#10563)
* [cann] RoPE operator optimization

* [CANN]Code Formatting

---------

Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-11-29 14:46:55 +08:00
Jeff Bolz
f095a649ec
vulkan: get the first command buffer submitted sooner (#10499)
This is an incremental improvement over #9118 to get work to the GPU a bit
sooner. The first part is to start with a smaller number of nodes before
the first submit, and ramp it up to the current 100 nodes/submit. The
second part is to reduce the dryrun overhead for all the nodes that just
need to request descriptor space.

With these changes I get around 1-2% speedup on RTX 4070 combined with my
old Haswell-era CPU.
2024-11-29 07:18:02 +01:00
Ting Lou
678d7994f4
llava: return false instead of exit (#10546) 2024-11-29 01:09:46 +01:00
Georgi Gerganov
dc22344088
ggml : remove redundant copyright notice + update authors 2024-11-28 20:46:40 +02:00
Georgi Gerganov
4c0a95b107
llama : add missing model types 2024-11-28 20:45:07 +02:00
Xuan Son Nguyen
6c59567689
server : (tests) don't use thread for capturing stdout/stderr, bump openai client library (#10568)
* server : (tests) don't use thread for capturing stdout/stderr

* test: bump openai to 1.55.2

* bump openai to 1.55.3
2024-11-28 19:17:49 +01:00
Johannes Gäßler
890719311b
common: fix warning message when no GPU found (#10564) 2024-11-28 18:15:25 +01:00
Random Fly
7281cf13ad
docs: fix outdated usage of llama-simple (#10565) 2024-11-28 16:03:11 +01:00
Diego Devesa
e90688edd0
ci : fix tag name in cuda and hip releases (#10566) 2024-11-28 15:58:54 +01:00
Georgi Gerganov
76b27d29c2
ggml : fix row condition for i8mm kernels (#10561)
ggml-ci
2024-11-28 14:56:37 +02:00
Georgi Gerganov
eea986f215
cmake : fix ARM feature detection (#10543)
ggml-ci
2024-11-28 14:56:23 +02:00
Shupei Fan
c202cef168
ggml-cpu: support IQ4_NL_4_4 by runtime repack (#10541)
* ggml-cpu: support IQ4_NL_4_4 by runtime repack

* ggml-cpu: add __ARM_FEATURE_DOTPROD guard
2024-11-28 13:52:03 +01:00
Sergio López
2025fa67e9
kompute : improve backend to pass test_backend_ops (#10542)
* kompute: op_unary: reject unsupported parameters

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: softmax: implement ALiBi support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: rope: implement neox and phi3 support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_q4_k permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_[q4_0|q4_1|q8_0] permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_f16 permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_q6_k permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

---------

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-11-28 12:51:38 +01:00
Ruixin Huang
c6bc73951e
CANN: Update cann.md to display correctly in CLion (#10538) 2024-11-28 15:27:11 +08:00
leo-pony
605fa66c50
CANN: Fix SOC_TYPE compile bug (#10519)
* CANN: Fix the bug build fail on Ascend310P under two cases:
1) Manual specify SOC_TYPE
2) Under some unusual compile environment

* Update the cann backend News content: Support F16 and F32 data type model for Ascend 310P NPU.

* fix CANN  compile fail bug: the assert in ascend kernel function doesn't supportted on some CANN version
2024-11-28 15:25:24 +08:00
Chenguang Li
b7420131bf
CANN: ROPE operator optimization (#10540)
* [cann] ROPE operator optimization

Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-11-28 14:24:46 +08:00
Xuan Son Nguyen
9f912511bc
common : fix duplicated file name with hf_repo and hf_file (#10550) 2024-11-27 22:30:52 +01:00
uvos
3ad5451f3b
Add some minimal optimizations for CDNA (#10498)
* Add some minimal optimizations for CDNA

* ggml_cuda: set launch bounds also for GCN as it helps there too
2024-11-27 17:10:08 +01:00
Diego Devesa
46c69e0e75
ci : faster CUDA toolkit installation method and use ccache (#10537)
* ci : faster CUDA toolkit installation method and use ccache

* remove fetch-depth

* only pack CUDA runtime on master
2024-11-27 11:03:25 +01:00
Georgi Gerganov
9e2301f4a4
metal : fix group_norm support condition (#0) 2024-11-27 11:22:14 +02:00
Georgi Gerganov
fee824a1a1
sync : ggml 2024-11-27 11:10:42 +02:00
Frankie Robertson
9150f8fef9
Do not include arm_neon.h when compiling CUDA code (ggml/1028) 2024-11-27 11:10:27 +02:00
Jeff Bolz
c31ed2abfc
vulkan: define all quant data structures in types.comp (#10440) 2024-11-27 08:32:54 +01:00
Jeff Bolz
5b3466bedf
vulkan: Handle GPUs with less shared memory (#10468)
There have been reports of failure to compile on systems with <= 32KB
of shared memory (e.g. #10037). This change makes the large tile size
fall back to a smaller size if necessary, and makes mul_mat_id fall
back to CPU if there's only 16KB of shared memory.
2024-11-27 08:30:27 +01:00
Jeff Bolz
249a7902ec
vulkan: further optimize q5_k mul_mat_vec (#10479) 2024-11-27 08:21:59 +01:00
Jeff Bolz
71a64989a5
vulkan: skip integer div/mod in get_offsets for batch_idx==0 (#10506) 2024-11-27 08:08:54 +01:00
Jeff Bolz
4a57d362e1
vulkan: optimize Q2_K and Q3_K mul_mat_vec (#10459) 2024-11-27 08:00:50 +01:00
Diego Devesa
c9b00a70b0
ci : fix cuda releases (#10532) 2024-11-26 22:12:10 +01:00
Shane A
de5097351c
Add OLMo 2 model in docs (#10530)
* Add link to OLMo 2 model in docs

* Change link to landing page
2024-11-26 21:55:29 +01:00
Diego Devesa
5a349f2809
ci : remove nix workflows (#10526) 2024-11-26 21:13:54 +01:00
Diego Devesa
30ec398321
llama : disable warnings for 3rd party sha1 dependency (#10527) 2024-11-26 21:01:47 +01:00
Tristan Druyen
be0e350c8b
Fix HIP flag inconsistency & build docs (#10524)
* Fix inconsistency of HIP flags in cmake & make

* Fix docs regarding GGML_HIP
2024-11-26 19:27:28 +01:00
R0CKSTAR
249cd93da3
mtgpu: Add MUSA_DOCKER_ARCH in Dockerfiles && update cmake and make (#10516)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-11-26 17:00:41 +01:00
Jeff Bolz
904109ed0d
vulkan: fix group_norm (#10496)
Fix bad calculation of the end of the range. Add a backend test that
covers the bad case (taken from stable diffusion).

Fixes https://github.com/leejet/stable-diffusion.cpp/issues/439.
2024-11-26 16:45:05 +01:00
Xuan Son Nguyen
45abe0f74e
server : replace behave with pytest (#10416)
* server : replace behave with pytest

* fix test on windows

* misc

* add more tests

* more tests

* styling

* log less, fix embd test

* added all sequential tests

* fix coding style

* fix save slot test

* add parallel completion test

* fix parallel test

* remove feature files

* update test docs

* no cache_prompt for some tests

* add test_cache_vs_nocache_prompt
2024-11-26 16:20:18 +01:00
Neo Zhang Jianyu
0bbd2262a3
restore the condistion to build & update pacakge when merge (#10507)
Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2024-11-26 21:43:47 +08:00
Georgi Gerganov
ab96610b1e
cmake : enable warnings in llama (#10474)
* cmake : enable warnings in llama

ggml-ci

* cmake : add llama_get_flags and respect LLAMA_FATAL_WARNINGS

* cmake : get_flags -> ggml_get_flags

* speculative-simple : fix warnings

* cmake : reuse ggml_get_flags

ggml-ci

* speculative-simple : fix compile warning

ggml-ci
2024-11-26 14:18:08 +02:00
Diego Devesa
7db3846a94
ci : publish the docker images created during scheduled runs (#10515) 2024-11-26 13:05:20 +01:00
Diego Devesa
c6807b3f28
ci : add ubuntu cuda build, build with one arch on windows (#10456) 2024-11-26 13:05:07 +01:00
Charles Xu
25669aa92c
ggml-cpu: cmake add arm64 cpu feature check for macos (#10487)
* ggml-cpu: cmake add arm64 cpu feature check for macos

* use vmmlaq_s32 for compile option i8mm check
2024-11-26 13:37:05 +02:00
Georgi Gerganov
84e1c33cde
server : fix parallel speculative decoding (#10513)
ggml-ci
2024-11-26 13:36:40 +02:00
Georgi Gerganov
811872a59d
speculative : simplify the implementation (#10504)
ggml-ci
2024-11-26 12:29:38 +02:00
Shanshan Shen
9a4b79bcfa
CANN: Improve the Inferencing Performance for Ascend NPU Device (#10454)
* improve inferencing performance for ascend npu.

Co-authored-by: Frank Mai <thxCode@thxcode0824@gmail.com>

* some modification after review

* some modifications after review

* restore some modifications

* restore some modifications

---------

Co-authored-by: shanshan shen <shanshanshen333@gmail.com>
Co-authored-by: Frank Mai <thxCode@thxcode0824@gmail.com>
2024-11-26 18:08:37 +08:00
Chenguang Li
7066b4cce2
CANN: RoPE and CANCAT operator optimization (#10488)
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-11-26 17:31:05 +08:00
Junil Kim
0eb4e12bee
vulkan: Fix a vulkan-shaders-gen arugment parsing error (#10484)
The vulkan-shaders-gen was not parsing the --no-clean argument correctly.
Because the previous code was parsing the arguments which have a value only
and the --no-clean argument does not have a value, it was not being parsed
correctly. This commit can now correctly parse arguments that don't have values.
2024-11-26 01:47:20 +00:00
Eric Curtin
0cc63754b8
Introduce llama-run (#10291)
It's like simple-chat but it uses smart pointers to avoid manual
memory cleanups. Less memory leaks in the code now. Avoid printing
multiple dots. Split code into smaller functions. Uses no exception
handling.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2024-11-25 22:56:24 +01:00
Diego Devesa
50d5cecbda
ci : build docker images only once daily (#10503) 2024-11-25 22:05:39 +01:00
Georgi Gerganov
9fd8c2687f
server : add more information about error (#10455) 2024-11-25 22:28:59 +02:00
Georgi Gerganov
47f931c8f9
server : enable cache_prompt by default (#10501)
ggml-ci
2024-11-25 21:50:07 +02:00
Georgi Gerganov
106964e3d2
metal : enable mat-vec kernels for bs <= 4 (#10491) 2024-11-25 21:49:31 +02:00
Shane A
80acb7b430
Rename Olmo1124 to Olmo2 (#10500) 2024-11-25 19:36:09 +01:00
Diego Devesa
10bce0450f
llama : accept a list of devices to use to offload a model (#10497)
* llama : accept a list of devices to use to offload a model

* accept `--dev none` to completely disable offloading

* fix dev list with dl backends

* rename env parameter to LLAMA_ARG_DEVICE for consistency
2024-11-25 19:30:06 +01:00
Johannes Gäßler
1f922254f0
Github: update issue templates [no ci] (#10489) 2024-11-25 19:18:37 +01:00
brucepro
a9a678a6b2
Add download chat feature to server chat (#10481)
* Add download chat feature to server chat

Add a download feature next to the delete chat feature in the server vue chat interface.

* code style

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-11-25 17:11:55 +01:00
Georgi Gerganov
9ca2e67762
server : add speculative decoding support (#10455)
* server : add speculative decoding support

ggml-ci

* server : add helper function slot.can_speculate()

ggml-ci
2024-11-25 16:31:38 +02:00
Diego Devesa
5931c1f233
ggml : add support for dynamic loading of backends (#10469)
* ggml : add support for dynamic loading of backends

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-11-25 15:13:39 +01:00
Georgi Gerganov
f6d12e7df8
tests : fix compile warning 2024-11-25 15:17:32 +02:00
Georgi Gerganov
b756441104
metal : minor code formatting 2024-11-25 15:08:04 +02:00
Neo Zhang Jianyu
5a8987793f
[SYCL] Fix building Win package for oneAPI 2025.0 update (#10483)
* fix build package for 2025.0

* debug

* debug

* fix

* rm debug

---------

Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2024-11-25 17:31:10 +08:00
Georgi Gerganov
d9d54e498d
speculative : refactor and add a simpler example (#10362)
* speculative : refactor and add a simpler example

ggml-ci

* speculative : clean-up and add comments and TODOs [no ci]

* speculative : manage context in common_speculative

ggml-ci

* speculative : simplify

ggml-ci

* speculative : simplify (cont)

ggml-ci

* speculative : add --draft-min CLI arg

* speculative : minor fixup

* make : build fixes

* speculative : do not redraft previous drafts

ggml-ci

* speculative : fix the draft sampling

ggml-ci

* speculative : fix compile warning

* common : refactor args

ggml-ci

* common : change defaults [no ci]

* common : final touches

ggml-ci
2024-11-25 09:58:41 +02:00
Georgi Gerganov
cce5a90075
flake.lock: Update (#10470)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/5e4fbfb6b3de1aa2872b76d49fafc942626e2add?narHash=sha256-OZiZ3m8SCMfh3B6bfGC/Bm4x3qc1m2SVEAlkV6iY7Yg%3D' (2024-11-15)
  → 'github:NixOS/nixpkgs/23e89b7da85c3640bbc2173fe04f4bd114342367?narHash=sha256-y/MEyuJ5oBWrWAic/14LaIr/u5E0wRVzyYsouYY3W6w%3D' (2024-11-19)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-11-24 08:03:25 -08:00
Diego Devesa
dc39012cba
llama : fix op mul check with command-r-plus (#10476) 2024-11-24 16:10:26 +01:00
Gabe Goodhart
9336db462c
convert : XLMRoberta Type Vocab Size (#10458)
This matches the key in common bert-based embedding models and may have a
value other than 1 in it.

Branch: XLMRobertaTypeVocabSize

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-11-24 11:02:34 +02:00
momonga
96fa2c5e2d
fix gguf-py: Conversion error when multiple licenses are configured (#9807)
* fix general.license list to str

* fix join license list

---------

Co-authored-by: momonga <115213907+mmnga@users.noreply.github.com>
2024-11-24 01:09:22 +01:00
Diego Devesa
55ed008b2d
ggml : do not use ARM features not included in the build (#10457) 2024-11-23 14:41:12 +01:00
蕭澧邦
6dfcfef078
ci: Update oneAPI runtime dll packaging (#10428)
This is the minimum runtime dll dependencies for oneAPI 2025.0
2024-11-22 10:44:08 +01:00
Johannes Gäßler
599b3e0cd4
GitHub: ask for more info in issue templates (#10426)
* GitHub: ask for more info in issues [no ci]

* refactor issue templates to be component-specific

* more understandable issue description

* add dropdown for llama.cpp module
2024-11-22 08:32:40 +01:00
leo-pony
c18610b4ee
CANN: Support Ascend310P to accelerate F32 and F16 Model (#10216)
* CANN Support Ascend310P to accelerate F32 and F16 Model

* Add compile option soc type macro ASCEND_310P to ggml-cann lib

* Remove unused code

* Remove the ascend soc_type hard code compile option in CMakelist.txt
2024-11-22 14:07:20 +08:00
Diego Devesa
a5e47592b6
cuda : optimize argmax (#10441)
* cuda : optimize argmax

* remove unused parameter

ggml-ci

* fixup : use full warps

ggml-ci

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* fix ub

* ggml : check ne00 <= INT32_MAX in argmax and argsort

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-11-21 18:18:50 +01:00
Georgi Gerganov
1bb30bf28c
llama : handle KV shift for recurrent models (#10402)
ggml-ci
2024-11-21 10:22:47 +02:00
Georgi Gerganov
87a533be57
sync : ggml 2024-11-21 09:22:11 +02:00
slaren
59b9172822
ggml/sched : do not skip views in pre-assignments 2024-11-21 09:22:05 +02:00
Johannes Gäßler
02e4eaf22f
ggml-opt: fix data corruption (ggml/1022) 2024-11-21 09:22:02 +02:00
Jeff Bolz
9abe9eeae9
vulkan: predicate max operation in soft_max shaders/soft_max (#10437)
Fixes #10434
2024-11-20 20:47:36 +01:00
bandoti
f95caa7954
cmake: add link dependencies to cmake find pkg (#10433)
* cmake pkg: find accelerate, openmp, memkind libs

* cmake pkg: find BLAS libs

* try BLAS_LIBRARIES instead

* Add BLAS link opts

* Add more link deps. and set GGML_ vars
2024-11-20 17:22:19 +01:00
Diego Devesa
fab5d30ff6
llama : add .clang-format file (#10415) 2024-11-20 12:57:53 +01:00
Jeff Bolz
8fd4b7fa29
vulkan: copy iq4_nl LUT into shared memory (#10409) 2024-11-20 08:40:18 +01:00
Jeff Bolz
1bacb9f625
vulkan: further optimize mul_mat_vec using larger loads (#10387)
* vulkan: Use pipeline_robustness to disable robustness in mul_mat_vec.

Add some early returns for nonexistent rows in mul_mat_vec shaders. These
can only be hit when dispatching a 2D grid of workgroups. Fix the logic
for the 2D grid of workgroups to round up.

Enable the pipeline robustness extension if it's available, and use it to
disable robustness for these pipelines. The instructions to do the bounds
checking contend for the same ALU resources as the bit twiddling dequant
instructions.

* vulkan: Add GLSL structure aliases for quant types to allow larger loads

In Vulkan it's not possible to cast pointer types, so instead you have to
declare an aliased binding for the memory with a different type. This
commit adds aliases for the quant formats using 16b ints, and in a few
places where the struct size is a multiple of 4 also using 32b ints.
Currently only q4_k's aliases are used, but others will be used in
subsequent commits.

* vulkan: use larger loads in q5_k and q6_k shaders.

Similar to the optimization I did in q4_k recently, this vectorizes some loads
and reduces the number of bit twiddling instructions.

* vulkan: use larger K step per iteration in mul_mat_vec.

Add vec4 dequantization functions, and use them to do K=8 per iteration in
mul_mat_vec. This uses 16b loads for the quant values and 128b loads for B
which helps reduce the load on the memory system.

The K_PER_ITER==2 logic is still there, just for F16/F32, and really only
because they support unaligned sizes.

Tweak the num_iters/unrolling logic to be simpler and catch a couple missed
unrolling opportunities.
2024-11-20 08:11:00 +01:00
Neo Zhang Jianyu
ad21c9e1f1
update rel to 4040 (#10395)
Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2024-11-20 13:54:25 +08:00
Anthony Van de Gejuchte
3952a221af
Fix missing file renames in Makefile due to changes in commit ae8de6d50a (#10413) 2024-11-19 23:18:17 +01:00
haopeng
42ae10bbcd
add cmake rvv support (#10411) 2024-11-19 21:10:31 +01:00
Georgi Gerganov
9fe0fb0626 sync : ggml 2024-11-19 20:03:21 +02:00
Plamen Minev
611fabd792 metal : fox offset integer overflows in im2col (ggml/1015)
-- While running StableDiffusion.cpp locally with Metal some offsets overflow and results in incorrect calculations
2024-11-19 20:03:21 +02:00
PAB
12b0ad953a metal : add GGML_UNARY_OP_ELU kernel (ggml/1018) 2024-11-19 20:03:21 +02:00
蕭澧邦
342397dc7e
cmake: force MSVC compiler charset to utf-8 (#9989) 2024-11-19 18:42:00 +01:00
bandoti
2a11b6b094
Add required ggml-base and backend libs to cmake pkg (#10407) 2024-11-19 17:10:30 +01:00
Diego Devesa
3ee6382d48
cuda : fix CUDA_FLAGS not being applied (#10403) 2024-11-19 14:29:38 +01:00
Georgi Gerganov
8e752a777b
llama : add check for KV cache shifts (#10401)
ggml-ci
2024-11-19 13:29:26 +02:00
Shane A
a88ad007de
llama : add OLMo November 2024 support (#10394)
* Add OLMo November 2024 constants

* Add OLMo November 2024 converter

* Add loading of OLMo November 2024 tensors and hyper parameters

* Add building of OLMo November 2024 model
2024-11-19 11:04:08 +02:00
Romain Biessy
2a1507c162
sycl : Add option to set the SYCL architecture for all targets (#10266)
* Add option to set the SYCL architecture for all targets
* Convert GGML_SYCL_HIP_TARGET to the more generic GGML_SYCL_ARCH option
* Document that setting GGML_SYCL_ARCH can improve the performance
2024-11-19 08:02:23 +00:00
Jeff Bolz
b3e585988f
vulkan: Optimize soft_max (#10301)
* vulkan: Optimize soft_max

Large soft_max could already saturate memory, but small/medium sizes were
pretty slow. The bulk of the gains for them comes from using a smaller
workgroup size, and making the workgroup size match the subgroup size also
makes the barriers much cheaper.

Cache some values in locals to avoid refetching/recomputing. And stamp
out a few "template instantiations" so smaller cases will fully unroll.

Add a missing early return for OOB rows. This happens when there are more
than 512 rows and the dispatch is 512 x H.

* vulkan: Further soft_max optimizations

Restore the workgroup size of 512 case, use it for >1024.

Use unrollable loops for more iteration counts.
2024-11-19 08:25:17 +01:00
Alberto Cabrera Pérez
557924f222
sycl: Revert MUL_MAT_OP support changes (#10385) 2024-11-19 08:50:04 +08:00
Diego Devesa
d3481e6316
cuda : only use native when supported by cmake (#10389) 2024-11-18 18:43:40 +01:00
bandoti
531cb1c233
Skip searching root path for cross-compile builds (#10383) 2024-11-18 16:23:58 +01:00
Jeff Bolz
f139d2ea61
vulkan: remove use of null initializer (#10372)
Seems like this isn't working for vulkan-over-metal when the array is sized
by a spec constant. Maybe a spirv-cross limitation?
2024-11-18 08:28:42 -06:00
Georgi Gerganov
2eb76b2a5e
flake.lock: Update (#10346)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/4aa36568d413aca0ea84a1684d2d46f55dbabad7?narHash=sha256-Zwl8YgTVJTEum%2BL%2B0zVAWvXAGbWAuXHax3KzuejaDyo%3D' (2024-11-05)
  → 'github:NixOS/nixpkgs/5e4fbfb6b3de1aa2872b76d49fafc942626e2add?narHash=sha256-OZiZ3m8SCMfh3B6bfGC/Bm4x3qc1m2SVEAlkV6iY7Yg%3D' (2024-11-15)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-11-18 06:08:20 -08:00
0cc4m
9b75f03cd2
Vulkan: Fix device info output format specifiers (#10366)
* Vulkan: Fix device info output format specifiers

* Vulkan: Use zu printf specifier for size_t instead of ld
2024-11-18 11:02:43 +01:00
Johannes Gäßler
75207b3a88
docker: use GGML_NATIVE=OFF (#10368) 2024-11-18 00:21:53 +01:00
Johannes Gäßler
76e9e58b78
CUDA: fix MMV kernel being used for FP16 src1 (#10357) 2024-11-17 23:20:42 +01:00
Johannes Gäßler
ce2e59ba10
CMake: fix typo in comment [no ci] (#10360) 2024-11-17 12:59:38 +01:00
Diego Devesa
be5caccef9
llama : only use default buffer types for the KV cache (#10358) 2024-11-17 12:25:45 +01:00
Georgi Gerganov
20a780c7b6
gitignore : ignore local run scripts [no ci] 2024-11-17 13:12:22 +02:00
Georgi Gerganov
cf32a9b93a
metal : refactor kernel args into structs (#10238)
* metal : add kernel arg structs (wip)

* metal : fattn args

ggml-ci

* metal : cont + avoid potential int overflow [no ci]

* metal : mul mat struct (wip)

* cont : mul mat vec

* cont : pass by reference

* cont : args is first argument

* cont : use char ptr

* cont : shmem style

* cont : thread counters style

* cont : mul mm id

ggml-ci

* cont : int safety + register optimizations

ggml-ci

* metal : GGML_OP_CONCAT

ggml-ci

* metal : GGML_OP_ADD, GGML_OP_SUB, GGML_OP_MUL, GGML_OP_DIV

* metal : GGML_OP_REPEAT

* metal : GGML_OP_CPY

* metal : GGML_OP_RMS_NORM

* metal : GGML_OP_NORM

* metal : add TODOs for rest of ops

* ggml : add ggml-metal-impl.h

ggml-ci
2024-11-17 11:23:01 +02:00
FirstTimeEZ
a43178299c
ggml : fix undefined reference to 'getcpu' (#10354)
https://github.com/ggerganov/llama.cpp/issues/10352
2024-11-17 10:39:22 +02:00
Johannes Gäßler
c3ea58aca4
CUDA: remove DMMV, consolidate F16 mult mat vec (#10318) 2024-11-17 09:09:55 +01:00
Johannes Gäßler
467576b6cc
CMake: default to -arch=native for CUDA build (#10320) 2024-11-17 09:06:34 +01:00
Diego Devesa
eda7e1d4f5
ggml : fix possible buffer use after free in sched reserve (#9930) 2024-11-17 08:31:17 +02:00
Georgi Gerganov
24203e9dd7 ggml : inttypes.h -> cinttypes (#0)
ggml-ci
2024-11-17 08:30:29 +02:00
Georgi Gerganov
5d9e59979c ggml : adapt AMX to tensor->grad removal (#0)
ggml-ci
2024-11-17 08:30:29 +02:00
Georgi Gerganov
a4200cafad make : add ggml-opt (#0)
ggml-ci
2024-11-17 08:30:29 +02:00
Georgi Gerganov
84274a10c3 tests : remove test-grad0 2024-11-17 08:30:29 +02:00
Georgi Gerganov
68fcb4759c ggml : fix compile warnings (#0)
ggml-ci
2024-11-17 08:30:29 +02:00
Johannes Gäßler
8a43e940ab ggml: new optimization interface (ggml/988) 2024-11-17 08:30:29 +02:00
Georgi Gerganov
5c9a8b22b1 scripts : update sync 2024-11-17 08:30:29 +02:00
FirstTimeEZ
0fff7fd798
docs : vulkan build instructions to use git bash mingw64 (#10303) 2024-11-17 00:29:18 +01:00
Johannes Gäßler
4e54be0ec6
llama/ex: remove --logdir argument (#10339) 2024-11-16 23:00:41 +01:00
Georgi Gerganov
db4cfd5dbc llamafile : fix include path (#0)
ggml-ci
2024-11-16 20:36:26 +02:00
Georgi Gerganov
8ee0d09ae6 make : auto-determine dependencies (#0) 2024-11-16 20:36:26 +02:00
MaggotHATE
bcdb7a2386
server: (web UI) Add samplers sequence customization (#10255)
* Samplers sequence: simplified and input field.

* Removed unused function

* Modify and use `settings-modal-short-input`

* rename "name" --> "label"

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-11-16 14:26:54 +01:00
Georgi Gerganov
f245cc28d4
scripts : fix missing key in compare-llama-bench.py (#10332) 2024-11-16 10:32:50 +02:00
Jeff Bolz
772703c8ff
vulkan: Optimize some mat-vec mul quant shaders (#10296)
Compute two result elements per workgroup (for Q{4,5}_{0,1}). This reuses
the B loads across the rows and also reuses some addressing calculations.
This required manually partially unrolling the loop, since the compiler
is less willing to unroll outer loops.

Add bounds-checking on the last iteration of the loop. I think this was at
least partly broken before.

Optimize the Q4_K shader to vectorize most loads and reduce the number of
bit twiddling instructions.
2024-11-16 07:26:57 +01:00
FirstTimeEZ
dd3a6ce9f8
vulkan : add cmake preset debug/release (#10306) 2024-11-16 02:59:33 +01:00
Dan Johansson
1e58ee1318
ggml : optimize Q4_0 into Q4_0_X_Y repack (#10324) 2024-11-16 01:53:37 +01:00
FirstTimeEZ
89e4caaaf0
llama : save number of parameters and the size in llama_model (#10286)
fixes #10285
2024-11-16 01:42:13 +01:00
Srihari-mcw
74d73dc85c
Make updates to fix issues with clang-cl builds while using AVX512 flags (#10314) 2024-11-15 22:27:00 +01:00
Johannes Gäßler
4047be74da
scripts: update compare-llama-bench.py (#10319) 2024-11-15 21:19:03 +01:00
slaren
883d206fbd ggml : fix some build issues 2024-11-15 21:45:32 +02:00
Georgi Gerganov
09ecbcb596 cmake : fix ppc64 check (whisper/0)
ggml-ci
2024-11-15 15:44:06 +02:00
thewh1teagle
3225008973 ggml : vulkan logs (whisper/2547) 2024-11-15 15:44:06 +02:00
Georgi Gerganov
cbf5541a82 sync : ggml 2024-11-15 15:44:06 +02:00
Eve
18429220bd
AVX BF16 and single scale quant optimizations (#10212)
* use 128 bit loads (i've tried 256->128 to death and its slower)

* double accumulator

* avx bf16 vec dot

* +3% q4_0 inference

* +7% tg +5% pp compared to master

* slower f16c version, kep for reference

* 256b version, also slow. i tried :)

* revert f16

* faster with madd

* split to functions

* Q8_0 and IQ4_NL, 5-7% faster

* fix potential overflow (performance reduced)

* 16 bit add for q4_0 only

* merge
2024-11-15 12:47:58 +01:00
R0CKSTAR
f0204a0ec7
ci: build test musa with cmake (#10298)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-11-15 12:47:25 +01:00
Romain Biessy
57f8355b29
sycl: Update Intel docker images to use DPC++ 2025.0 (#10305) 2024-11-15 13:10:45 +02:00
Xuan Son Nguyen
9901068ac7
server : (web UI) add copy button for code block, fix api key (#10242)
* server : (web ui) add copy btn for code blocks

* fix problem with api key

* use settings-modal-short-input component

* always show copy btn for code snippet
2024-11-15 10:48:49 +01:00
Chenguang Li
231f9360d9
cann: dockerfile and doc adjustment (#10302)
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-11-15 15:09:35 +08:00
Georgi Gerganov
4802ad350b
scripts : fix regex in sync [no ci] 2024-11-15 08:38:43 +02:00
Romain Biessy
5a54af4d4f
sycl: Use syclcompat::dp4a (#10267)
* sycl: Use syclcompat::dp4a

* Using the syclcompat version allow the compiler to optimize the
  operation with native function

* Update news section

* Update CI Windows oneAPI version to 2025.0

* Reword doc

* Call syclcompat::dp4a inside dpct::dp4a

This reverts commit 90cb61d692.
2024-11-15 11:09:12 +08:00
Charles Xu
1607a5e5b0
backend cpu: add online flow for aarch64 Q4_0 GEMV/GEMM kernels (#9921)
* backend-cpu: add online flow for aarch64 Q4_0 GEMV/GEMM kernels

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-11-15 01:28:50 +01:00
Diego Devesa
ae8de6d50a
ggml : build backends as libraries (#10256)
* ggml : build backends as libraries

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: R0CKSTAR <xiaodong.ye@mthreads.com>
2024-11-14 18:04:35 +01:00
Johannes Gäßler
4a8ccb37ad
CUDA: no -sm row for very small matrices (#10185) 2024-11-14 13:00:15 +01:00
Georgi Gerganov
2a82891a85
speculative : fix out-of-bounds access (#10289) 2024-11-14 11:44:15 +02:00
Jeff Bolz
af148c9386
vulkan: Optimize binary ops (#10270)
Reuse the index calculations across all of src0/src1/dst. Add a shader
variant for when src0/src1 are the same dimensions and additional modulus
for src1 aren't needed. Div/mod are slow, so add "fast" div/mod that
have a fast path when the calculation isn't needed or can be done more
cheaply.
2024-11-14 06:22:55 +01:00
Jeff Bolz
66798e42fb
vulkan: Use macros to make the mat mul pipeline creation more concise (#10259)
Also add vk_matmul_pipeline2 to hold f16/f32 accumulator versions of a
pipeline. This isn't really used yet.
2024-11-13 21:59:47 +01:00
Michael Podvitskiy
fb4a0ec083
llama : propagate the results of graph_compute (#9525)
* llama: propagating the results of `graph_compute` to the user interface

* llama: reverting kv_cache in case of failed compute

* llama: `llama_kv_cache_state` was removed, only the result of `llama_graph_compute` is returned

* llama: restore a kv_cache in case of failed computation

* llama: correct reverting of the entire batch.
also updates `llama_kv_cache_find_slot`, will correctly count the number of `used` cells for recurrent models

* llama: updated comments

* llama : add comments about KV cache state after error

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-11-13 20:00:35 +02:00
Georgi Gerganov
5ea926dad7
sync : ggml 2024-11-13 18:11:54 +02:00
Small Grass Forest
1ee9eea094
docs : update bindings list (#10261)
Signed-off-by: tianzixuan <tianzixuan335@hellobike.com>
2024-11-13 13:17:10 +02:00
Alexey Parfenov
ff7fb670d0
server : add missing docs (#10269) 2024-11-13 13:16:30 +02:00
Jhen-Jie Hong
0e712a5acb
server : fix incorrect res in validate_model_chat_template (#10272)
* server : fix validate_model_chat_template

* server : fix chat res
2024-11-13 13:15:23 +02:00
Brian
a0ec17b32e
metadata: Detailed Dataset Authorship Metadata (#8875)
Converter script can now read these two fields as a detailed base model and dataset source.
This was done so that it will be easier for Hugging Face to integrate detailed metadata as needed.

 -  base_model_sources (List[dict], optional)
 -  dataset_sources (List[dict], optional)

Dataset now represented as:

 - general.dataset.count
 - general.dataset.{id}.name
 - general.dataset.{id}.author
 - general.dataset.{id}.version
 - general.dataset.{id}.organization
 - general.dataset.{id}.description
 - general.dataset.{id}.url
 - general.dataset.{id}.doi
 - general.dataset.{id}.uuid
 - general.dataset.{id}.repo_url

This also adds to base model these metadata:

 - general.base_model.{id}.description
2024-11-13 21:10:38 +11:00
Alberto Cabrera Pérez
2e82ffa4af
sycl : Fixes to broken builds and test-backend-ops (#10257)
* Fixes broken build for the SYCL CUDA backend caused by non-explicit gemm call in outprod (merged in with RWKV6 in
Optimize RWKV6 Operator Naming and Implement Multi-core CPU/ SYCL Acceleration #10133)

* Marks permuted MUL_MAT as unsupported to be able to run test-backend-ops

* Fixes asserts in norm to fix debug builds.
2024-11-13 09:40:57 +00:00
Jeff Bolz
80dd7ff22f
vulkan: Optimize contiguous copies (#10254)
* tests: Fix memory bandwidth calculation for perf tests

Add a flops calculation for flash attention.

Add one GGML_OP_CPY perf test.

* vulkan: Optimize contiguous copies

Add a variant of the copy shader for when the tensors are contiguous. Avoid
the complex addressing calculations, and do four elements per invocation
to hide some other overhead.

Apply similar changes to the scale shader, since scale is always contiguous.

Add a "progress bar" for shader compiles.
2024-11-13 07:58:57 +01:00
Jeff Bolz
54ef9cfc72
vulkan: Throttle the number of shader compiles during the build step. (#10222)
Fixes #9582

Spawning too many concurrent copies of glslc leads to "Failed to create pipes"
errors on Linux. This change applies the same throttling we use for
multithreaded pipeline creation.
2024-11-11 18:13:51 +01:00
Georgi Gerganov
b0cefea58a
metal : more precise Q*K in FA vec kernel (#10247) 2024-11-11 08:39:13 +02:00
Georgi Gerganov
b141e5f6ef
server : enable KV cache defrag by default (#10233)
ggml-ci
2024-11-11 08:38:43 +02:00
Georgi Gerganov
4b3a9212b6
flake.lock: Update (#10243)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/807e9154dcb16384b1b765ebe9cd2bba2ac287fd?narHash=sha256-l253w0XMT8nWHGXuXqyiIC/bMvh1VRszGXgdpQlfhvU%3D' (2024-10-29)
  → 'github:NixOS/nixpkgs/4aa36568d413aca0ea84a1684d2d46f55dbabad7?narHash=sha256-Zwl8YgTVJTEum%2BL%2B0zVAWvXAGbWAuXHax3KzuejaDyo%3D' (2024-11-05)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-11-10 11:45:25 -08:00
MaggotHATE
505f33274d
server : (web UI) Add back sampler settings (#10239)
* Add back samplers to server

* Added tooltips with basic information

* Fixed stretching of input fields.

* use component for settings input, move help msg to tooltips

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-11-10 15:42:25 -04:00
Jeff Bolz
160687b3ed
vulkan: Fix newly added tests for permuted mul_mat and 1D im2col (#10226) 2024-11-10 12:37:56 +01:00
Georgi Gerganov
6423c65aa8
metal : reorder write loop in mul mat kernel + style (#10231)
* metal : reorder write loop

* metal : int -> short, style

ggml-ci
2024-11-09 11:53:13 +02:00
Georgi Gerganov
39a334a9aa
metal : fix build and some more comments (#10229) 2024-11-09 11:53:02 +02:00
Georgi Gerganov
bb38cdd8ba
metal : fix F32 accumulation in FA vec kernel (#10232) 2024-11-09 11:52:45 +02:00
Georgi Gerganov
f018acba22
llama : fix Qwen model type strings 2024-11-09 11:26:34 +02:00
Georgi Gerganov
46323fa9ef
metal : hide debug messages from normal log 2024-11-09 11:21:49 +02:00
SXX
5b359bb1e3
ggml: fix zero division in ‘dne’ calculation in CUDA COUNT_EQUAL operator when ‘ne’ is small (#10213) 2024-11-09 08:35:46 +01:00
amritahs-ibm
e89213492d
ggml : optimize llamafile cpu matrix multiplication for ppc64le (#10156)
This change upstreams llamafile's cpu matrix
multiplication kernels for ppc64le using MMA
builtins for FP32 datatype.

This change results in a consistent 90%
improvement in input processing time, and 20%
to 80% improvement in output processing time,
across various batch sizes.

The patch is tested with Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf models on a
IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2024-11-09 09:17:50 +02:00
haopeng
8fc393f246
scripts : fix pattern and get n_tokens in one go (#10221) 2024-11-09 09:06:54 +02:00
Georgi Gerganov
ec450d3bbf
metal : opt-in compile flag for BF16 (#10218)
* metal : opt-in compile flag for BF16

ggml-ci

* ci : use BF16

ggml-ci

* swift : switch back to v12

* metal : has_float -> use_float

ggml-ci

* metal : fix BF16 check in MSL

ggml-ci
2024-11-08 21:59:46 +02:00
Georgi Gerganov
695ad752b2
metal : improve clarity (minor) (#10171) 2024-11-08 18:37:41 +02:00
Georgi Gerganov
841f27abdb
metal : optimize FA kernels (#10171)
* ggml : add ggml_flash_attn_ext_get_prec

* metal : use F16 precision in FA kernels

ggml-ci

* metal : minor clean-up

* metal : compile-guard bf16 FA kernels

ggml-ci

* build : remove obsolete compile flag [no ci]

* metal : prevent int overflows [no ci]

* cuda : disable BF16 FA

ggml-ci

* metal : fix BF16 requirement for FA kernels

ggml-ci

* make : clean-up [no ci]
2024-11-08 13:47:22 +02:00
Jhen-Jie Hong
d05b3127bd
swift : exclude ggml-metal-embed.metal (#10211)
* llama.swift : exclude ggml-metal-embed.metal

* swift : exclude build/
2024-11-08 11:34:06 +02:00
Xuan Son Nguyen
76c6e7f105
server : minor UI fix (#10207) 2024-11-07 18:44:38 -04:00
Xuan Son Nguyen
a71d81cf8c
server : revamp chat UI with vuejs and daisyui (#10175)
* server : simple chat UI with vuejs and daisyui

* move old files to legacy folder

* embed deps into binary

* basic markdown support

* add conversation history, save to localStorage

* fix bg-base classes

* save theme preferences

* fix tests

* regenerate, edit, copy buttons

* small fixes

* docs: how to use legacy ui

* better error handling

* make CORS preflight more explicit

* add GET method for CORS

* fix tests

* clean up a bit

* better auto scroll

* small fixes

* use collapse-arrow

* fix closeAndSaveConfigDialog

* small fix

* remove console.log

* fix style for <pre> element

* lighter bubble color (less distract when reading)
2024-11-07 17:31:10 -04:00
Georgi Gerganov
eec4d71737
scripts : add amx to sync-ggml.sh [no ci] 2024-11-07 23:11:36 +02:00
Georgi Gerganov
3b08828674
sync : ggml 2024-11-07 23:08:24 +02:00
Georgi Gerganov
a2c6fd747c
scripts : sync update 2024-11-07 23:07:55 +02:00
Diego Devesa
97404c4a03
ggml : add ggml-cpu.h to the public headers (#10204) 2024-11-07 18:16:08 +01:00
Faisal Zaghloul
60e17ce23c
Remove identical wte/etw logic for jais (#10203) 2024-11-07 08:46:12 -08:00
wwoodsTM
5107e8cea3
DRY: Fixes clone functionality (#10192) 2024-11-07 16:20:25 +01:00
snadampal
2319126a70
fix q4_0_8_8 format for corrupted tokens issue (#10198)
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-62-167.us-west-2.compute.internal>
2024-11-07 09:02:08 +01:00
Zhiyuan Li
3bcd40b3c5
Optimize RWKV6 Operator Naming and Implement Multi-core CPU/ SYCL Acceleration (#10133)
* rwkv6: rename to wkv6

* rwkv6: support avx2 avx512 armv8 armv9

* rwkv6: update cuda file name

* rwkv6: rename params

* wkv on sycl

* sycl: add some ops

* sycl: Enhance OP support judgment

* wkv6: drop armv9 and tranfer to GGML style

ggml-ci

* sync : ggml

* update the function to use appropriate types

* fix define error

* Update ggml/src/ggml-cpu.c

* add appropriate asserts

* move element-wise functions outside

* put the declaration outside the loop

* rewrite to be more inline with the common pattern for distributing threads

* use recommended way GGML_TENSOR_LOCALS

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Plamen Minev <pacominev@gmail.com>
Co-authored-by: Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Co-authored-by: Meng, Hengyu <airdldl@163.com>
2024-11-07 15:19:10 +08:00
Georgi Gerganov
5c333e0140
metal : add BF16 support (#8439)
* ggml : add initial BF16 support

ggml-ci

* metal : add mul_mat_id BF16 support

ggml-ci

* metal : check for bfloat support on the Metal device

ggml-ci

* metal : better var names [no ci]

* metal : do not build bfloat kernels when not supported

ggml-ci

* metal : try to fix BF16 support check

ggml-ci

* metal : this should correctly check bfloat support
2024-11-06 19:53:51 +02:00
Georgi Gerganov
b11f9ba9b8
server : remove hack for extra parallel slot (#10187)
ggml-ci
2024-11-06 13:29:01 +02:00
Diego Devesa
94d8cb8be1
metal : fix from ptr buffer name (#10189) 2024-11-06 12:10:07 +01:00
Georgi Gerganov
1dc04b2dee
ggml : adjust is_first_call init value (#10193)
ggml-ci
2024-11-06 11:20:10 +02:00
Georgi Gerganov
a1eaf6a960
metal : add quantized FA support (#10149)
* metal : add quantized FA (vec) support

ggml-ci

* metal : add quantized FA (non-vec) support

* metal : fix support check

ggml-ci

* metal : clean-up

* metal : clean-up (cont)

* metal : fix shared memory calc + reduce smem + comments

* metal : float-correctness

* metal : minor [no ci]
2024-11-06 10:24:23 +02:00
Gabe Goodhart
b8deef0ec0
llama : add <|tool_call|> formatting to Granite template (#10177)
Branch: GraniteToolCallTemplate

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-11-05 14:23:04 +02:00
Diego Devesa
a9e8a9a030
ggml : fix arch check in bf16_to_fp32 (#10164) 2024-11-04 23:17:01 +01:00
Eve
3407364776
Q6_K AVX improvements (#10118)
* q6_k instruction reordering attempt

* better subtract method

* should be theoretically faster

small improvement with shuffle lut, likely because all loads are already done at that stage

* optimize bit fiddling

* handle -32 offset separately. bsums exists for a reason!

* use shift

* Update ggml-quants.c

* have to update ci macos version to 13 as 12 doesnt work now. 13 is still x86
2024-11-04 23:06:31 +01:00
Diego Devesa
d5a409e57f
ggml : fix gelu tables initialization (#10172) 2024-11-04 20:06:58 +01:00
Diego Devesa
401558b7ba
ggml : fix q4xx mat mul, increase ggml_aligned_malloc alignment (#10167) 2024-11-04 17:34:08 +01:00
Xuan Son Nguyen
9e0ecfb697
server : clarify /slots endpoint, add is_processing (#10162)
* server : clarify /slots endpoint, add is_processing

* fix tests
2024-11-04 16:33:29 +01:00
snadampal
6a066b9978
fix build break on arm64 linux (#10166)
This fixes the build break from the recent changes
to move the CPU backend to separate files
https://github.com/ggerganov/llama.cpp/pull/10144
2024-11-04 16:08:33 +01:00
Diego Devesa
ea02c753eb
cuda : clear error after changing peer access (#10153) 2024-11-04 13:10:23 +01:00
Georgi Gerganov
05697f670b
metal : simplify f16 and f32 dequant kernels (#0) 2024-11-04 13:49:34 +02:00
Georgi Gerganov
f8e58135cf
metal : move dequantize templates to beginning of MSL source (#0) 2024-11-04 13:44:06 +02:00
leo-pony
329ed914c9
CANN: adjust backend registry refactor. (#10158)
remove buffer->iface.get_name that used in cann as it was removed in backend registry refactor PR.
2024-11-04 19:08:22 +08:00
Georgi Gerganov
ce027adfb3
sync : ggml 2024-11-04 10:33:37 +02:00
Yuri Khrustalev
284e5b0275
cmake : make it possible linking ggml as external lib (ggml/1003) 2024-11-04 10:33:11 +02:00
Plamen Minev
e2292aaa17
metal : fix minor string leaks (ggml/1004) 2024-11-04 10:33:10 +02:00
Diego Devesa
9f40989351
ggml : move CPU backend to a separate file (#10144) 2024-11-03 19:34:08 +01:00
Georgi Gerganov
08828a6d7d
metal : minor fixup in FA kernel (#10143)
* metal : minor fixup in FA kernel

ggml-ci

* metal : use the unrolled loop variable

* metal : remove unused var
2024-11-03 15:18:40 +02:00
Georgi Gerganov
1839f69130
flake.lock: Update (#10146) 2024-11-03 05:14:15 -08:00
Christian Köhnenkamp
9830b6923b
Add apple arm to presets (#10134)
* Add apple arm to presets

* Add final new line
2024-11-02 15:35:31 -07:00
sasha0552
42cadc74bd
server : fix slot selection by lru (#10126)
* server : fix slot selection by lru, migrate lcs to `size_t`

* minor debug log fix
2024-11-02 18:34:56 +02:00
Georgi Gerganov
45950415ed
server : fix endpoint checks (#10135)
ggml-ci
2024-11-02 18:34:00 +02:00
Georgi Gerganov
1926d6e39d
llama : adjust default context size + print warnings (#10136)
* llama : adjust default context size + print warnings

ggml-ci

* ggml-ci : add missing gpu-layers + adjust context sizes
2024-11-02 15:18:56 +02:00
Diego Devesa
b634f8a26f
simple-chat : only add bos on first prompt (#10129) 2024-11-02 13:08:53 +01:00
Xuan Son Nguyen
7554aa4655
convert-lora : make --base optional (#10110)
* convert-lora : make `--base` optional

* lint

* handle case where base_model_name_or_path is invalid

* do not include metadata from base model

* clarify unspecified --base

* add small comment [no ci]

* trigger ci
2024-11-02 12:53:17 +01:00
Diego Devesa
a6744e43e8
llama : add simple-chat example (#10124)
* llama : add simple-chat example

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-11-01 23:50:59 +01:00
Diego Devesa
e991e3127f
llama : use smart pointers for ggml resources (#10117) 2024-11-01 23:48:26 +01:00
Shupei Fan
418f5eef26
vulkan : improve ggml_vk_create_buffer error handling (#9898) 2024-11-01 19:33:14 +01:00
Georgi Gerganov
ba6f62eb79
readme : update hot topics 2024-11-01 17:31:51 +02:00
sasha0552
d865d1478c
server : fix smart selection of available slot (#10120)
* Fix smart selection of available slot

* minor fix

* replace vectors of tokens with shorthands
2024-11-01 14:33:14 +01:00
Georgi Gerganov
1804adb0cf
ggml : remove ggml_scratch (#10121)
ggml-ci
2024-11-01 12:58:45 +02:00
Georgi Gerganov
815fe72adc
sync : ggml 2024-11-01 10:28:24 +02:00
Georgi Gerganov
f221d56220
ggml : alloc ggml_contexts on the heap (whisper/2525) 2024-11-01 10:24:50 +02:00
Zhenwei Jin
e597e50794
build: fix build error in Windows env with OneAPI setup (#10107) 2024-11-01 11:09:59 +08:00
Diego Devesa
85679d37f3
llama : improve output buffer type selection (#10098) 2024-11-01 00:49:53 +01:00
Diego Devesa
1e9f94994e
quantize : fix --keep-split (#10114) 2024-11-01 00:45:34 +01:00
Diego Devesa
c02e5ab2a6
llama : fix buffer checks for mamba and rwk (#10111)
* llama : fix buffer checks for mamba and rwk

* llama : fix missing worst case flag during reserve

* cuda : fix supports_op for norm

* disable sched SET_CAUSE
2024-10-31 22:54:23 +01:00
Zhenwei Jin
ab3d71f97f
loader: refactor tensor weights storage (#9935)
* loader: refactor tensor weights storage

* use sorted map, sort weights by layer

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-10-31 19:50:39 +01:00
Kevin Gibbons
0a683e8088
server : include scheme when printing URL (#10106) 2024-10-31 14:02:35 +01:00
Diego Devesa
dea5e86051
ggml : check tensor name lengths in gguf files (#10100) 2024-10-31 11:40:59 +01:00
Sergio López
1329c0a75e
kompute: add mul_mat_q4_k shader (#10097)
This is a more or less direct translation from the Metal implementation
to GLSL.

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-10-31 11:09:52 +02:00
Sergio López
61408e7fad
kompute: add backend registry / device interfaces (#10045)
Get in line with the other backends by supporting the newer
backend/device registry interfaces.

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-10-30 17:01:52 +01:00
Diego Devesa
b9e02e8184
ggml : fix memory leaks when loading invalid gguf files (#10094)
* ggml : fix gguf string leak when reading kv pairs fails

* ggml : avoid crashing with GGML_ABORT when the KV has an invalid type

* ggml : avoid crashing on failed memory allocations when loading a gguf file
2024-10-30 14:51:21 +01:00
Rich Dougherty
6763f713bb
readme : more lora detail in main example readme (#10064) 2024-10-30 13:22:39 +01:00
Rich Dougherty
79a2bc042d
convert : more detailed convert lora usage docs (#10065) 2024-10-30 13:22:21 +01:00
xctan
fc83a9e584
ggml : add Q4_0_8_8 RISC-V GEMV and GEMM kernels (#10029)
* ggml : RISC-V vector gemv for q4_0_8x8

* ggml : Added WIP rvv q4_0_8x8 gemm

* ggml : Added initial implementation of rvv gemm

* ggml : optimize gemm to avoid register spillover

* ggml : Fix GCC rvv load alignment issue

* ggml : Format gemm rvv code

* ggml : Fix a typo in RVV q4_0_8_8 GEMM
2024-10-30 09:00:40 +02:00
Diego Devesa
c5b0f4b5d9
llama : refactor model loader with backend registry (#10026) 2024-10-30 02:01:23 +01:00
Changyeon Kim
8f275a7c45
ggml: Add POOL2D OP for GPU acceleration to the Vulkan backend in the MobileVLM model. (#9763)
* ggml: Add POOL2D OP for GPU ACC to the Vulkan.

- The MobileVLM model now supports inference acceleration through GPU by utilizing the Vulkan backend.
- A GGML_OP_POOL_2D shader has been added. (Pooling)
- The encoding performance of the CLIP model improved from 2.8s on the CPU to 0.7s on the GPU.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* [fix] Correct the incorrect order of the parameters.

fix casting to int.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

---------

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
2024-10-29 09:52:56 +01:00
Georgi Gerganov
8d8ff71536
llama : remove Tail-Free sampling (#10071)
ggml-ci
2024-10-29 10:42:05 +02:00
arch-btw
61715d5cc8
llama : Add IBM granite template (#10013)
* Add granite template to llama.cpp

* Add granite template to test-chat-template.cpp

* Update src/llama.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* Update tests/test-chat-template.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* Added proper template and expected output

* Small change to \n

Small change to \n

* Add code space &

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* Fix spacing

* Apply suggestions from code review

* Update src/llama.cpp

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-10-28 18:45:33 +01:00
Georgi Gerganov
07028f9d74
flake.lock: Update (#10063)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/4c2fcb090b1f3e5b47eaa7bd33913b574a11e0a0?narHash=sha256-/uilDXvCIEs3C9l73JTACm4quuHUsIHcns1c%2BcHUJwA%3D' (2024-10-18)
  → 'github:NixOS/nixpkgs/2768c7d042a37de65bb1b5b3268fc987e534c49d?narHash=sha256-AlcmCXJZPIlO5dmFzV3V2XF6x/OpNWUV8Y/FMPGd8Z4%3D' (2024-10-23)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-10-28 08:41:24 -07:00
R0CKSTAR
524afeec9d
musa: workaround for Guilty Lockup in cleaning src0 (#10042)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-10-28 10:02:48 +01:00
Georgi Gerganov
8125e6cbfc
server : don't overfill the batch during infill (#10018)
ggml-ci
2024-10-28 08:49:32 +02:00
Georgi Gerganov
8841ce3f43
llama : switch KQ multiplication to F32 precision by default (#10015)
ggml-ci
2024-10-27 20:59:58 +02:00
Georgi Gerganov
cc2983d375
sync : ggml 2024-10-26 10:34:08 +03:00
bssrdf
8c60a8a462
increase cuda_cpy block size (ggml/996)
Co-authored-by: bssrdf <bssrdf@gmail.com>
2024-10-26 10:33:56 +03:00
Georgi Gerganov
9e4a2563ea
scripts : fix amx sync [no ci] 2024-10-26 10:33:31 +03:00
Georgi Gerganov
668750357e
metal : support permuted matrix multiplicaions (#10033)
* metal : support permuted matrix multiplicaions

ggml-ci

* cont : use nb01 directly for row steps

ggml-ci

* cont : add comments [no ci]

* metal : minor refactor

* metal : minor
2024-10-25 22:26:15 +03:00
wwoodsTM
ff252ea48e
llama : add DRY sampler (#9702)
* sampling : add DRY sampler (post-refactor)

* DRY: Trying to fix coauthors, removed unneeded line

* DRY: Fixed redundant code

* DRY: Fixed crash issue due to DRY being in chain but uninitialized

---------

Co-authored-by: l3utterfly <gc.pthzfoldr@gmail.com>
Co-authored-by: pi6am <34464159+pi6am@users.noreply.github.com>
2024-10-25 19:07:34 +03:00
Michael Podvitskiy
d80fb71f8b
llama: string_split fix (#10022)
* llama: Refactor string_split to use template specialization,  fixes parsing strings with spaces

* llama: Add static_assert in the string_split template to ensure the correct template specialization is used for std::string
2024-10-25 17:57:54 +02:00
Srihari-mcw
2f8bd2b901
llamafile : extend sgemm.cpp support for Q5_0 models (#10010) 2024-10-25 10:27:41 +03:00
Georgi Gerganov
bc5ba007b2
server : check that the prompt fits in the slot's context (#10030)
ggml-ci
2024-10-25 10:13:46 +03:00
Xuan Son Nguyen
958367bf53
server : refactor slot input data, move tokenizer to HTTP thread (#10023)
* server : refactor slot input data, move tokenizer to HTTP thread

* move prompt_tokens.empty() check

* fix incorrect if branch

* fix infinite generation loop

* bring back infill validation

* add infill test

* try fixing format_infill

* fix test

* remove redundant code

* rename completion to inference

* update docs

* use llama_tokens everywhere
2024-10-24 21:51:22 +02:00
Georgi Gerganov
40f2555797
ci : fix cmake flags for SYCL 2024-10-24 21:23:33 +03:00
Johannes Gäßler
167a515651
CUDA: fix insufficient buffer clearing for MMQ (#10032) 2024-10-24 14:40:23 +02:00
Johannes Gäßler
c39665f589
CUDA: fix MMQ for non-contiguous src0, add tests (#10021)
* CUDA: fix MMQ for non-contiguous src0, add tests

* revise test code
2024-10-24 11:09:36 +02:00
wwoodsTM
0a1c750c80
server : samplers accept the prompt correctly (#10019) 2024-10-23 22:27:51 +03:00
Georgi Gerganov
190a37d797
sync : ggml 2024-10-23 17:23:55 +03:00
Georgi Gerganov
2d3aba9ee8
llama.vim : bump generation time limit to 3s [no ci] 2024-10-23 17:16:56 +03:00
Johannes Gäßler
80273a306d CUDA: fix 1D im2col, add tests (ggml/993) 2024-10-23 16:50:02 +03:00
Daniel Bevenius
c19af0acb1 ggml : remove redundant set of contexts used field (ggml/978)
This commit removes the setting of the `used` field of the contexts in
the global state (g_state) in `ggml_init`.

The motivation for this change is that I believe that this additional
initialization might not be required after the changes in Commit
45fc4fed0b9fb5b1af4a8525cbebb95e11208732 ("sync : latest changes from
whisper.cpp"), which changed the initialization of the contexts field
from `{ 0 }` to `{ { 0 } }`:

```console
             g_state = (struct ggml_state) {
-                /*.contexts =*/ { 0 },
+                /*.contexts =*/ { { 0 } },
             };
```
My understanding is that the `{0}` initialization might not have
zero-initialized all the nested fields in every array element because of
compiler differences, and might have been the reason for having the
explicit setting of the `used` fields to false.
2024-10-23 16:50:02 +03:00
Michael Coppola
ac113a0fee
llama.vim : add classic vim support (#9995)
* added classic vim support

* fixed ring update, removed blank line

* minor

* minor

* minor doc update

* removed uneeded var

* minor

* minor

* fixed job_start creating new scratch buffers

* fixed job_start creating new scratch buffers

* fixed ghost text indenting when expandtab is on

* removed unused code

* minor

* unified fim_on_exit

* minor

* vim ghost text rendering now uses pos_x and pos_y parameters

* renamed *_hlgroup to hlgroup_*

* renamed *_ghost_text to ghost_text_*, moved nvim/vim detection to llama#init()

* minor

---------

Co-authored-by: Michael Coppola <info@michaeljcoppola.com>
2024-10-23 14:09:26 +03:00
Jun Hee Yoo
4c9388fb96
metal : add POOL2D and fix IM2COL (#9943)
* add pool_2d

Signed-off-by: Junhee Yoo <junhee.yoo@navercorp.com>

* fix im2col and add unittest for N>=1024

Signed-off-by: Junhee Yoo <junhee.yoo@navercorp.com>

* add tests for N % 1024 != 0

Signed-off-by: Junhee Yoo <junhee.yoo@navercorp.com>

* remove trailing whitespaces

Signed-off-by: Junhee Yoo <junhee.yoo@navercorp.com>

* apply suggestions

Signed-off-by: Junhee Yoo <junhee.yoo@navercorp.com>

* apply more optimization

- original IM2COL kernel + _ext with MIN()

Signed-off-by: Junhee Yoo <junhee.yoo@navercorp.com>

* apply review: change kernel name of pool_2d

Signed-off-by: Junhee Yoo <junhee.yoo@navercorp.com>

* apply review

Signed-off-by: Junhee Yoo <junhee.yoo@navercorp.com>

* fix more formatting and enhance readability

Signed-off-by: Junhee Yoo <junhee.yoo@navercorp.com>

---------

Signed-off-by: Junhee Yoo <junhee.yoo@navercorp.com>
2024-10-23 13:33:45 +03:00
github-actions[bot]
873279b159 flake.lock: Update
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/5633bcff0c6162b9e4b5f1264264611e950c8ec7?narHash=sha256-9UTxR8eukdg%2BXZeHgxW5hQA9fIKHsKCdOIUycTryeVw%3D' (2024-10-09)
  → 'github:NixOS/nixpkgs/4c2fcb090b1f3e5b47eaa7bd33913b574a11e0a0?narHash=sha256-/uilDXvCIEs3C9l73JTACm4quuHUsIHcns1c%2BcHUJwA%3D' (2024-10-18)
2024-10-23 01:28:07 +00:00
Xuan Son Nguyen
c8c07d658a
llama : fix empty batch causing llama_batch_allocr to crash (#9966)
* llama : fix empty batch cause llama_batch_allocr to crash

* move batch_allocr inside decode/encode_internal

* fix build

* add GGML_ASSERT

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-10-22 16:59:02 +02:00
Daniel Bevenius
19d900a756
llama : rename batch to ubatch (#9950)
This commit renames the member field batch in llm_build_context to
ubatch, and also the parameter batch in llama_build_graph, and
llama_set_inputs to ubatch.

The motivation for this change is to make the code more readable
(considering there are the structs llama_batch and llama_sbatch), and
consistent with other parts of the code base where parameters/fields of
type llama_ubatch are named ubatch.
2024-10-22 16:31:06 +03:00
Molly Sophia
11d47057a5
Rwkv chat template fix (#10001)
* llama: remove useless template matching for rwkv-world

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Add comment about the hack for rwkv models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-10-22 15:22:26 +02:00
Xuan Son Nguyen
c421ac072d
lora : warn user if new token is added in the adapter (#9948) 2024-10-22 13:08:41 +02:00
Molly Sophia
4ff7fe1fb3
llama : add chat template for RWKV-World + fix EOT (#9968)
* Add chat template for RWKV-World

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV: Fix the chat template not being used

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6: Set EOT token to ``\n\n``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* readme: add rwkv into supported model list

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-10-22 13:33:37 +03:00
leo-pony
6b8447352d
[CANN] Adapt to dynamically loadable backends mechanism (#9970)
* [CANN] Adapt to dynamically loadable backends mechanism

* Fix the Bug: inference running result is garbled in debug running model for LM models who's type is Q4_0 class

* Handle the review comments of this pull request
2024-10-22 16:16:01 +08:00
Daniel Bevenius
674804a996
arg : fix typo in embeddings argument help [no ci] (#9994)
This commit fixes two typos in the help text for the `--embd-normalize`
and `--embd-separator` arguments. It also updates common.h which contain
the same typo in two comments.
2024-10-22 10:40:02 +03:00
Georgi Gerganov
e94a138d64
llama.vim : fix info text display [no ci] (#9787) 2024-10-22 00:37:55 +03:00
Georgi Gerganov
e01c67affe
llama.vim : move info to the right of screen [no ci] (#9787)
'eol' messes up the rendering with nvim v0.10.2 for some reason
2024-10-21 22:53:18 +03:00
Asghar Ghorbani
994cfb1acb
readme : update UI list (#9972)
add PocketPal AI app
2024-10-21 21:20:59 +03:00
Daniel Bevenius
94008cc760
arg : fix attention non-causal arg value hint (#9985)
This commit updates the argument value hint for the `--attention`
argument to `non-causal`.

The motivation for this change is that the only values for this argument
are `causal` and `non-causal`.
2024-10-21 21:12:52 +03:00
Georgi Gerganov
dbd5f2f573
llama.vim : plugin for Neovim (#9787) 2024-10-21 20:25:02 +03:00
Georgi Gerganov
f594bc80ba
ggml : add asserts for type conversion in fattn kernels (#9971)
ggml-ci
2024-10-21 16:20:46 +03:00
Radoslav Gerganov
d5ebd79c76
rpc : pack only RPC structs (#9959) 2024-10-21 13:35:40 +03:00
Georgi Gerganov
55e47786e3
llama : default sampling changes + greedy update (#9897)
* llama : deprecate softmax sampler + fix dist sampler

ggml-ci

* tests : replace macros with functions

ggml-ci

* sampling : change temperature sampler logic

For t <= 0.0f, keep the max logit intact and set the rest to -inf

* cont : no need for special "greedy" logic

top-k == 1 is the same

* tests : init prob correctly

* llama : handle temp <= 0.0 in the temp_ext sampler too

ggml-ci

* cont : avoid extra loop in temperature sampler for sub-zero temp

ggml-ci
2024-10-21 09:46:40 +03:00
Georgi Gerganov
bc21975084
speculative : fix handling of some input params (#9963)
* speculative : fix batch sizes at initialization

ggml-ci

* speculative : handle params.n_predict == -1

* speculative : limit batch size to llama_n_batch
2024-10-21 09:37:12 +03:00
Neo Zhang Jianyu
1db8c84fc6
fix mul_mat_vec_q and *_vec_q error (#9939)
Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2024-10-21 14:26:09 +08:00
Loïc Carrère
45f097645e
readme : update bindings list (#9951)
Update the binding list by adding LM-Kit.NET (C# & VB.NET)
2024-10-20 19:25:41 +03:00
icppWorld
7cab2083c7
readme : update infra list (#9942)
llama_cpp_canister allows you to run llama.cpp as a Smart Contract on the Internet Computer. The smart contract runs as WebAssembly in a so-called 'canister'.
2024-10-20 19:01:34 +03:00
Xuan Son Nguyen
cda0e4b648
llama : remove all_pos_0, all_pos_1, all_seq_id from llama_batch (#9745)
* refactor llama_batch_get_one

* adapt all examples

* fix simple.cpp

* fix llama_bench

* fix

* fix context shifting

* free batch before return

* use common_batch_add, reuse llama_batch in loop

* null terminated seq_id list

* fix save-load-state example

* fix perplexity

* correct token pos in llama_batch_allocr
2024-10-18 23:18:01 +02:00
Radoslav Gerganov
afd9909a64
rpc : backend refactoring (#9912)
* rpc : refactor backend

Use structs for RPC request/response messages

* rpc : refactor server
2024-10-18 14:33:58 +03:00
Ouadie EL FAROUKI
87421a23e8
[SYCL] Add SYCL Backend registry, device and Event Interfaces (#9705)
* implemented missing SYCL event APIs

* sycl : Added device and backend reg interfaces

* Restructured ggml-sycl.cpp
2024-10-18 06:46:16 +01:00
Ma Mingfei
60ce97c9d8
add amx kernel for gemm (#8998)
add intel amx isa detection

add vnni kernel for gemv cases

add vnni and amx kernel support for block_q8_0

code cleanup

fix packing B issue

enable openmp

fine tune amx kernel

switch to aten parallel pattern

add error message for nested parallelism

code cleanup

add f16 support in ggml-amx

add amx kernels for QK_K quant formats: Q4_K, Q5_K, Q6_K and IQ4_XS

update CMakeList

update README

fix some compilation warning

fix compiler warning when amx is not enabled

minor change

ggml-ci

move ggml_amx_init from ggml.c to ggml-amx/mmq.cpp

ggml-ci

update CMakeLists with -mamx-tile, -mamx-int8 and -mamx-bf16

ggml-ci

add amx as an ggml-backend

update header file, the old path for immintrin.h has changed to ggml-cpu-impl.h

minor change

update CMakeLists.txt

minor change

apply weight prepacking in set_tensor method in ggml-backend

fix compile error

ggml-ci

minor change

ggml-ci

update CMakeLists.txt

ggml-ci

add march dependency

minor change

ggml-ci

change ggml_backend_buffer_is_host to return false for amx backend

ggml-ci

fix supports_op

use device reg for AMX backend

ggml-ci

minor change

ggml-ci

minor change

fix rebase

set .buffer_from_host_ptr to be false for AMX backend
2024-10-18 13:34:36 +08:00
Georgi Gerganov
8901755ba3
server : add n_indent parameter for line indentation requirement (#9929)
ggml-ci
2024-10-18 07:32:19 +03:00
Daniel Bevenius
6f55bccbb8
llama : rename batch_all to batch (#8881)
This commit addresses the TODO in the code to rename the `batch_all`
parameter to `batch` in `llama_decode_internal`.
2024-10-18 01:41:51 +02:00
Georgi Gerganov
17bb928080
readme : remove --memory-f32 references (#9925) 2024-10-17 23:43:05 +03:00
Georgi Gerganov
9f45fc1e99
llama : change warning to debug log 2024-10-17 23:27:42 +03:00
Georgi Gerganov
99bd4ac28c
llama : infill sampling handle very long tokens (#9924)
* llama : infill sampling handle very long tokens

ggml-ci

* cont : better indices

ggml-ci
2024-10-17 22:32:47 +03:00
Tim Wang
3752217ed5
readme : update bindings list (#9918)
Co-authored-by: Tim Wang <tim.wang@ing.com>
2024-10-17 09:57:14 +03:00
Diego Devesa
f010b77a37
vulkan : add backend registry / device interfaces (#9721)
* vulkan : add backend registry / device interfaces

* llama : print devices used on model load
2024-10-17 02:46:58 +02:00
Gilad S.
2194200278
fix: allocating CPU buffer with size 0 (#9917) 2024-10-17 01:34:22 +02:00
Gilad S.
73afe681aa
fix: use vm_allocate to allocate CPU backend buffer on macOS (#9875)
* fix: use `vm_allocate` to allocate CPU backend buffer on macOS

* fix: switch to `posix_memalign` to keep existing `free()` usages work

* feat: move `GGML_ALIGNED_MALLOC` to `ggml-backend-impl.h`, add support for `vm_allocate` on macOS

* style: formatting

* fix: move const outside of `#ifndef`

* style: formatting

* fix: unused var

* fix: transform `GGML_ALIGNED_MALLOC` and `GGML_ALIGNED_FREE` into functions and add them to `ggml-impl.h`

* fix: unused var

* fix: page align to `GGUF_DEFAULT_ALIGNMENT`

* fix: page align to `TENSOR_ALIGNMENT`

* fix: convert `TENSOR_ALIGNMENT` to a macro

* fix: increase page size to `32` on iOS

* fix: iOS page size

* fix: `hbw_posix_memalign` alignment
2024-10-17 00:36:51 +02:00
Daniel Bevenius
9e04102448
llama : suppress conversion from 'size_t' to 'int' (#9046)
* llama : suppress conversion from 'size_t' to 'int'

This commit updates llm_tokenizer_spm.tokenize to suppress/remove the
following warnings that are generated on Windows when using MSVC:

```console
src\llama-vocab.cpp(211,1): warning C4267: 'argument':
    conversion from 'size_t' to 'int', possible loss of data
src\llama-vocab.cpp(517,1): warning C4267: 'argument':
    conversion from 'size_t' to 'int', possible loss of data
```

This is done by adding a cast for the size_t returned from
symbols.size(). I believe this is safe as it seems unlikely that
symbols, which stores an entry for each UTF8 character, would become
larger than INT_MAX.

The motivation for this change is to reduce the number of warnings that
are currently generated when building on Windows.

* squash! llama : suppress conversion from 'size_t' to 'int'

Move cast into for loop.
2024-10-16 20:34:28 +03:00
Daniel Bevenius
dbf18e4de9
llava : fix typo in error message [no ci] (#9884) 2024-10-16 20:24:05 +03:00
Joe Eli McIlvain
66c2c93082
grammar : fix JSON Schema for string regex with top-level alt. (#9903)
Prior to this commit, using a JSON Schema containing a string
with `pattern` regular expression that uses top-level alternation
(e.g. `"pattern": "^A|B|C|D$"`) would result in invalid JSON
output from the constrained sampling grammar, because it
ended up creating a grammar rule like this for the string:

```
thing ::= "\"" "A" | "B" | "C" | "D" "\"" space
```

Note that this rule will only match a starting quote for the "A" case,
and will only match an ending quote for the "D" case,
so this rule will always produce invalid JSON when used for sampling
(that is, the JSON will always be lacking the starting quote,
the ending quote, or both).

This was fixed in a simple way by adding parentheses to the
generated rule (for all string pattern rules, to keep it simple),
such that the new generated rule looks like this (correct):

```
thing ::= "\"" ("A" | "B" | "C" | "D") "\"" space
```
2024-10-16 19:03:24 +03:00
Molly Sophia
10433e8b45
llama : add tensor name for "result_norm" (#9907)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-10-16 13:10:21 +03:00
Alexey Parfenov
1f66b699c4
server : fix the disappearance of the end of the text (#9867)
* server: fix the disappearance of the end of the text when streaming with stop strings

* simplify "send text" checks
2024-10-16 11:35:53 +03:00
Georgi Gerganov
0e41b300ed
sync : ggml 2024-10-16 11:28:14 +03:00
Daniel Bevenius
cd60b88bf7
ggml-alloc : remove buffer_id from leaf_alloc (ggml/987)
This commit removes the buffer_id field from the leaf_alloc struct.

The motivation for is that this field is only written to and never
read/used as far as I can tell. Each tensor_alloc has a buffer_id field
and this is what caused me to look into this more closely, to
understand what the buffer_id in leaf_alloc was used for.
2024-10-16 11:28:01 +03:00
leo-pony
becfd387f6
[CANN] Fix cann compilation error (#9891)
Fix cann compilation error after merging llama.cpp supports dynamically loadable backends.
2024-10-16 08:51:46 +08:00
Georgi Gerganov
755a9b2bf0
llama : add infill sampler (#9896)
ggml-ci
2024-10-15 16:35:33 +03:00
Georgi Gerganov
223c25a72f
server : improve infill context reuse (#9894)
ggml-ci
2024-10-15 16:28:55 +03:00
MaggotHATE
fbc98b748e
sampling : add XTC sampler (#9742)
* Initial XTC commit

Adds XTC sampler, not activated by default, but recommended settings by default.

* Cleanup

* Simplified chances calculation

To be more inline with the original implementation, chance is calculated once at the beginning.

* First fixes by comments

Still need to look into sorting

* Fixed trailing backspaces

* Fixed RNG to be reproduceable 

Thanks to @slaren for directions

* Fixed forgotten header

* Moved `min_keep` 

Moved from conditions to a simple check at the end.

* Fixed broken randomization

Thanks to @slaren for explanation

* Swapped sorting for a custom algorithm

Shifts tokens to remove the penalized ones, then puts the penalized at the back. Should make `min_keep` still viable.

* Algorithm rework

1. Scan token from top till the first non-penalizable
2. Remove the last captured token (the least probable above threshold)
3. Shift all tokens to override the remaining penalizable
4. Penalize and put them at the the bottom.

* Added XTC to `test-sampling`

* Simplified algorithm and more tests

* Updated info in common and args

* Merged back lost commits in common and arg

* Update dump info in common

* Fixed incorrect min_keep check

* Added XTC to README

* Renamed parameters, fixed info and defaults

* probability is at 0 by default, but XTC is included in sampling queue
* threshold higher than 0.5 switches XTC off

* Initial server support

* Added XTC to server UIs

* Fixed labels in old server UI

* Made algorithm safer and more readable

* Removed xtc_threshold_max

* Fixed arg after update

* Quick fixes by comments

* Simplified algorithm since threshold_max is removed

* Renamed random distribution

* Fixed tests and outdated README

* Small fixes
2024-10-15 12:54:55 +02:00
Georgi Gerganov
dcdd535302
server : update preact (#9895) 2024-10-15 12:48:44 +03:00
Michał Tuszyński
4c42f93b22
readme : update bindings list (#9889) 2024-10-15 11:20:34 +03:00
VoidIsVoid
a89f75e1b7
server : handle "logprobs" field with false value (#9871)
Co-authored-by: Gimling <huangjl@ruyi.ai>
2024-10-14 10:04:36 +03:00
agray3
13dca2a54a
Vectorize load instructions in dmmv f16 CUDA kernel (#9816)
* Vectorize load instructions in dmmv f16 CUDA kernel

Replaces scalar with vector load instructions, which substantially
improves performance on NVIDIA HBM GPUs, e.g. gives a 1.27X overall
speedup for Meta-Llama-3-8B-Instruct-F16 BS1 inference evaluation on
H100 SXM 80GB HBM3. On GDDR GPUs, there is a slight (1.01X) speedup.

* addressed comment

* Update ggml/src/ggml-cuda/dmmv.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-10-14 02:49:08 +02:00
Georgi Gerganov
d4c19c0f5c
server : accept extra_context for the infill endpoint (#9874)
* server : accept extra_context for the infill endpoint

ggml-ci

* server : update readme [no ci]

* server : use repo-level FIM pattern if possible

ggml-ci
2024-10-13 21:31:35 +03:00
Georgi Gerganov
c7181bd294
server : reuse cached context chunks (#9866)
ggml-ci
2024-10-13 18:52:48 +03:00
776 changed files with 142896 additions and 81644 deletions

161
.clang-format Normal file
View file

@ -0,0 +1,161 @@
---
Language: Cpp
AlignAfterOpenBracket: Align
AlignArrayOfStructures: Left
AlignConsecutiveAssignments: AcrossComments
AlignConsecutiveBitFields: AcrossComments
AlignConsecutiveDeclarations: AcrossComments
AlignConsecutiveMacros: AcrossComments
# AlignConsecutiveShortCaseStatements: AcrossComments
AlignEscapedNewlines: Left # LeftWithLastLine
AlignOperands: Align
AlignTrailingComments:
Kind: Always
OverEmptyLines: 1
AllowAllArgumentsOnNextLine: true
AllowAllParametersOfDeclarationOnNextLine: false
# AllowBreakBeforeNoexceptSpecifier: OnlyWithParen
AllowShortBlocksOnASingleLine: Never
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: Inline
AllowShortIfStatementsOnASingleLine: Never
AllowShortLambdasOnASingleLine: Inline
AllowShortLoopsOnASingleLine: false
AlwaysBreakBeforeMultilineStrings: true
BinPackArguments: true
BinPackParameters: true # OnePerLine
BitFieldColonSpacing: Both
BreakBeforeBraces: Custom # Attach
BraceWrapping:
AfterCaseLabel: true
AfterClass: false
AfterControlStatement: false
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
AfterExternBlock: false
BeforeCatch: false
BeforeElse: false
BeforeLambdaBody: false
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: false
SplitEmptyRecord: false
SplitEmptyNamespace: false
# BreakAdjacentStringLiterals: true
BreakAfterAttributes: Never
BreakBeforeBinaryOperators: None
BreakBeforeInlineASMColon: OnlyMultiline
BreakBeforeTernaryOperators: false
# BreakBinaryOperations: Never
BreakConstructorInitializers: AfterColon
# BreakFunctionDefinitionParameters: false
BreakInheritanceList: AfterComma
BreakStringLiterals: true
# BreakTemplateDeclarations: Yes
ColumnLimit: 120
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: false
DerivePointerAlignment: false
DisableFormat: false
EmptyLineBeforeAccessModifier: Leave
EmptyLineAfterAccessModifier: Never
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
IncludeBlocks: Regroup
IncludeCategories:
- Regex: '^<.*\.h>'
Priority: 1
SortPriority: 0
- Regex: '^<.*'
Priority: 2
SortPriority: 0
- Regex: '.*'
Priority: 3
SortPriority: 0
IncludeIsMainRegex: '([-_](test|unittest))?$'
IncludeIsMainSourceRegex: ''
IndentAccessModifiers: false
IndentCaseBlocks: true
IndentCaseLabels: true
IndentExternBlock: NoIndent
IndentGotoLabels: false
IndentPPDirectives: AfterHash
IndentWidth: 4
IndentWrappedFunctionNames: false
InsertBraces: true # NOTE: may lead to incorrect formatting
InsertNewlineAtEOF: true
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: false
LambdaBodyIndentation: Signature
LineEnding: LF
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBinPackProtocolList: Auto
ObjCBlockIndentWidth: 4
ObjCSpaceAfterProperty: true
ObjCSpaceBeforeProtocolList: true
PPIndentWidth: -1
PackConstructorInitializers: CurrentLine
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyBreakTemplateDeclaration: 10
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 200
PointerAlignment: Middle
QualifierAlignment: Left
#QualifierOrder: ['static', 'inline', 'friend', 'constexpr', 'const', 'volatile', 'type', 'restrict']
RawStringFormats:
- Language: Cpp
Delimiters:
- cc
- CC
- cpp
- Cpp
- CPP
- 'c++'
- 'C++'
CanonicalDelimiter: ''
ReferenceAlignment: Middle
ReflowComments: false # IndentOnly
SeparateDefinitionBlocks: Always
SortIncludes: CaseInsensitive
SortUsingDeclarations: LexicographicNumeric
SpaceAfterCStyleCast: true
SpaceAfterLogicalNot: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeCpp11BracedList: false
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeParens: ControlStatements
SpaceBeforeRangeBasedForLoopColon: true
SpaceInEmptyBlock: false
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 2
SpacesInAngles: Never
SpacesInContainerLiterals: true
SpacesInLineCommentPrefix:
Minimum: 1
Maximum: -1
SpacesInParentheses: false
SpacesInSquareBrackets: false
SpaceBeforeSquareBrackets: false
Standard: c++17
TabWidth: 4
UseTab: Never
WhitespaceSensitiveMacros: ['STRINGIZE']
...

View file

@ -17,8 +17,10 @@ Checks: >
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
performance-*,
portability-*,
-portability-simd-intrinsics,
misc-*,
-misc-const-correctness,
-misc-non-private-member-variables-in-classes,
-misc-no-recursion,
-misc-use-anonymous-namespace,
FormatStyle: none

92
.devops/cpu.Dockerfile Normal file
View file

@ -0,0 +1,92 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
ARG TARGETARCH
ARG GGML_CPU_ARM_ARCH=armv8-a
RUN apt-get update && \
apt-get install -y build-essential git cmake libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN if [ "$TARGETARCH" = "amd64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \
fi && \
cmake --build build -j $(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
## Base image
FROM ubuntu:$UBUNTU_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
COPY --from=build /app/lib/ /app
### Full
FROM base AS full
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

94
.devops/cuda.Dockerfile Normal file
View file

@ -0,0 +1,94 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=12.6.0
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
# CUDA architecture to build for (defaults to all supported archs)
ARG CUDA_DOCKER_ARCH=default
RUN apt-get update && \
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
WORKDIR /app
COPY . .
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
## Base image
FROM ${BASE_CUDA_RUN_CONTAINER} AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
COPY --from=build /app/lib/ /app
### Full
FROM base AS full
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -1,33 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=12.6.0
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
# CUDA architecture to build for (defaults to all supported archs)
ARG CUDA_DOCKER_ARCH=default
RUN apt-get update && \
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Use the default CUDA archs if not specified
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc) && \
cp build/bin/* .
ENTRYPOINT ["/app/.devops/tools.sh"]

View file

@ -1,26 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc3.1.0
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
RUN apt-get update && \
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc) && \
cp build/bin/* .
ENTRYPOINT ["/app/.devops/tools.sh"]

View file

@ -1,50 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=5.6
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
ARG ROCM_DOCKER_ARCH="\
gfx803 \
gfx900 \
gfx906 \
gfx908 \
gfx90a \
gfx1010 \
gfx1030 \
gfx1100 \
gfx1101 \
gfx1102"
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV GGML_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
# Enable cURL
ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
RUN make -j$(nproc)
ENTRYPOINT ["/app/.devops/tools.sh"]

View file

@ -1,25 +0,0 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
ENV LLAMA_CURL=1
RUN make -j$(nproc)
ENV LC_ALL=C.utf8
ENTRYPOINT ["/app/.devops/tools.sh"]

91
.devops/intel.Dockerfile Normal file
View file

@ -0,0 +1,91 @@
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
## Build Image
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
echo "GGML_SYCL_F16 is set" \
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with dynamic libs" && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
### Full
FROM base AS full
COPY --from=build /app/lib/ /app
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/lib/ /app
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/lib/ /app
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -1,6 +1,6 @@
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
FROM cosdt/cann:$ASCEND_VERSION AS build
FROM ascendai/cann:$ASCEND_VERSION AS build
WORKDIR /app
@ -22,11 +22,11 @@ ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
RUN echo "Building with static libs" && \
source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \
cmake -B build -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \
cmake --build build --config Release --target llama-cli
# TODO: use image with NNRT
FROM cosdt/cann:$ASCEND_VERSION AS runtime
FROM ascendai/cann:$ASCEND_VERSION AS runtime
COPY --from=build /app/build/bin/llama-cli /llama-cli
ENV LC_ALL=C.utf8

View file

@ -1,37 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=12.6.0
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the CUDA runtime image
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
# CUDA architecture to build for (defaults to all supported archs)
ARG CUDA_DOCKER_ARCH=default
RUN apt-get update && \
apt-get install -y build-essential git cmake
WORKDIR /app
COPY . .
# Use the default CUDA archs if not specified
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-cli -j$(nproc)
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
RUN apt-get update && \
apt-get install -y libgomp1
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
COPY --from=build /app/build/src/libllama.so /libllama.so
COPY --from=build /app/build/bin/llama-cli /llama-cli
ENTRYPOINT [ "/llama-cli" ]

View file

@ -1,28 +0,0 @@
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git
WORKDIR /app
COPY . .
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
echo "GGML_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with static libs" && \
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
${OPT_SYCL_F16} -DBUILD_SHARED_LIBS=OFF && \
cmake --build build --config Release --target llama-cli
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
COPY --from=build /app/build/bin/llama-cli /llama-cli
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/llama-cli" ]

View file

@ -1,30 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc3.1.0
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the MUSA runtime image
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
RUN apt-get update && \
apt-get install -y build-essential git cmake
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-cli -j$(nproc)
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
RUN apt-get update && \
apt-get install -y libgomp1
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
COPY --from=build /app/build/src/libllama.so /libllama.so
COPY --from=build /app/build/bin/llama-cli /llama-cli
ENTRYPOINT [ "/llama-cli" ]

View file

@ -1,45 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=5.6
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
ARG ROCM_DOCKER_ARCH="\
gfx803 \
gfx900 \
gfx906 \
gfx908 \
gfx90a \
gfx1010 \
gfx1030 \
gfx1100 \
gfx1101 \
gfx1102"
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV GGML_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
RUN make -j$(nproc) llama-cli
ENTRYPOINT [ "/app/llama-cli" ]

View file

@ -1,27 +0,0 @@
ARG UBUNTU_VERSION=jammy
FROM ubuntu:$UBUNTU_VERSION AS build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget libgomp1
# Install Vulkan SDK
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt update -y && \
apt-get install -y vulkan-sdk
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_VULKAN=1 && \
cmake --build build --config Release --target llama-cli
# Clean up
WORKDIR /
RUN cp /app/build/bin/llama-cli /llama-cli && \
rm -rf /app
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/llama-cli" ]

View file

@ -1,23 +0,0 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
RUN apt-get update && \
apt-get install -y build-essential git
WORKDIR /app
COPY . .
RUN make -j$(nproc) llama-cli
FROM ubuntu:$UBUNTU_VERSION AS runtime
RUN apt-get update && \
apt-get install -y libgomp1
COPY --from=build /app/llama-cli /llama-cli
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/llama-cli" ]

View file

@ -1,42 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=12.6.0
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the CUDA runtime image
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
# CUDA architecture to build for (defaults to all supported archs)
ARG CUDA_DOCKER_ARCH=default
RUN apt-get update && \
apt-get install -y build-essential git cmake libcurl4-openssl-dev
WORKDIR /app
COPY . .
# Use the default CUDA archs if not specified
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-server -j$(nproc)
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev libgomp1 curl
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
COPY --from=build /app/build/src/libllama.so /libllama.so
COPY --from=build /app/build/bin/llama-server /llama-server
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/llama-server" ]

View file

@ -1,34 +0,0 @@
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
echo "GGML_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with dynamic libs" && \
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release --target llama-server
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev curl
COPY --from=build /app/build/bin/llama-server /llama-server
ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/llama-server" ]

View file

@ -1,35 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc3.1.0
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the MUSA runtime image
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
RUN apt-get update && \
apt-get install -y build-essential git cmake libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-server -j$(nproc)
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev libgomp1 curl
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
COPY --from=build /app/build/src/libllama.so /libllama.so
COPY --from=build /app/build/bin/llama-server /llama-server
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/llama-server" ]

View file

@ -1,54 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=5.6
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
ARG ROCM_DOCKER_ARCH="\
gfx803 \
gfx900 \
gfx906 \
gfx908 \
gfx90a \
gfx1010 \
gfx1030 \
gfx1100 \
gfx1101 \
gfx1102"
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV GGML_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
# Enable cURL
ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev curl
RUN make -j$(nproc) llama-server
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -1,31 +0,0 @@
ARG UBUNTU_VERSION=jammy
FROM ubuntu:$UBUNTU_VERSION AS build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK and cURL
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt update -y && \
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
cmake --build build --config Release --target llama-server
# Clean up
WORKDIR /
RUN cp /app/build/bin/llama-server /llama-server && \
rm -rf /app
ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/llama-server" ]

View file

@ -1,29 +0,0 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
RUN apt-get update && \
apt-get install -y build-essential git libcurl4-openssl-dev
WORKDIR /app
COPY . .
ENV LLAMA_CURL=1
RUN make -j$(nproc) llama-server
FROM ubuntu:$UBUNTU_VERSION AS runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev libgomp1 curl
COPY --from=build /app/llama-server /llama-server
ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/llama-server" ]

108
.devops/musa.Dockerfile Normal file
View file

@ -0,0 +1,108 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc3.1.0
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
# MUSA architecture to build for (defaults to all supported archs)
ARG MUSA_DOCKER_ARCH=default
RUN apt-get update && \
apt-get install -y \
build-essential \
cmake \
python3 \
python3-pip \
git \
libcurl4-openssl-dev \
libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Use the default MUSA archs if not specified
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
## Base image
FROM ${BASE_MUSA_RUN_CONTAINER} AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
COPY --from=build /app/lib/ /app
### Full
FROM base AS full
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -31,6 +31,7 @@
# Increases the runtime closure size by ~700M
useMpi ? false,
useRocm ? config.rocmSupport,
rocmGpuTargets ? builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets,
enableCurl ? true,
useVulkan ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
@ -126,9 +127,9 @@ effectiveStdenv.mkDerivation (finalAttrs: {
};
postPatch = ''
substituteInPlace ./ggml/src/ggml-metal.m \
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./ggml/src/ggml-metal.m \
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
'';
@ -173,7 +174,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
(cmakeBool "GGML_NATIVE" false)
(cmakeBool "GGML_BLAS" useBlas)
(cmakeBool "GGML_CUDA" useCuda)
(cmakeBool "GGML_HIPBLAS" useRocm)
(cmakeBool "GGML_HIP" useRocm)
(cmakeBool "GGML_METAL" useMetalKit)
(cmakeBool "GGML_VULKAN" useVulkan)
(cmakeBool "GGML_STATIC" enableStatic)
@ -188,7 +189,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
]
++ optionals useRocm [
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" (builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets))
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" rocmGpuTargets)
]
++ optionals useMetalKit [
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")

View file

@ -34,7 +34,7 @@ let
# server tests
openai
behave
pytest
prometheus-client
];
in

113
.devops/rocm.Dockerfile Normal file
View file

@ -0,0 +1,113 @@
ARG UBUNTU_VERSION=24.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=6.3
ARG AMDGPU_VERSION=6.3
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
### Build image
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
#ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
ARG ROCM_DOCKER_ARCH=gfx1100
# Set nvcc architectured
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
# ENV CC=/opt/rocm/llvm/bin/clang
# ENV CXX=/opt/rocm/llvm/bin/clang++
RUN apt-get update \
&& apt-get install -y \
build-essential \
cmake \
git \
libcurl4-openssl-dev \
curl \
libgomp1
WORKDIR /app
COPY . .
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \
&& find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
## Base image
FROM ${BASE_ROCM_DEV_CONTAINER} AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
COPY --from=build /app/lib/ /app
### Full
FROM base AS full
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3-pip \
python3 \
python3-wheel\
&& pip install --break-system-packages --upgrade setuptools \
&& pip install --break-system-packages -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -8,28 +8,36 @@ arg1="$1"
shift
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
python3 ./convert_hf_to_gguf.py "$@"
exec python3 ./convert_hf_to_gguf.py "$@"
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./llama-quantize "$@"
exec ./llama-quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
./llama-cli "$@"
exec ./llama-cli "$@"
elif [[ "$arg1" == '--bench' || "$arg1" == '-b' ]]; then
exec ./llama-bench "$@"
elif [[ "$arg1" == '--perplexity' || "$arg1" == '-p' ]]; then
exec ./llama-perplexity "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do
for i in $(ls $1/$2/ggml-model-f16.bin*); do
if [ -f "${i/f16/q4_0}" ]; then
echo "Skip model quantization, it already exists: ${i/f16/q4_0}"
else
echo "Converting PTH to GGML: $i into ${i/f16/q4_0}..."
./llama-quantize "$i" "${i/f16/q4_0}" q4_0
exec ./llama-quantize "$i" "${i/f16/q4_0}" q4_0
fi
done
elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then
./llama-server "$@"
exec ./llama-server "$@"
else
echo "Unknown command: $arg1"
echo "Available commands: "
echo " --run (-r): Run a model previously converted into ggml"
echo " ex: -m /models/7B/ggml-model-q4_0.bin -p \"Building a website can be done in 10 simple steps:\" -n 512"
echo " --bench (-b): Benchmark the performance of the inference for various parameters."
echo " ex: -m model.gguf"
echo " --perplexity (-p): Measure the perplexity of a model over a given text."
echo " ex: -m model.gguf -f file.txt"
echo " --convert (-c): Convert a llama model into ggml"
echo " ex: --outtype f16 \"/models/7B/\" "
echo " --quantize (-q): Optimize with quantization process ggml"

89
.devops/vulkan.Dockerfile Normal file
View file

@ -0,0 +1,89 @@
ARG UBUNTU_VERSION=24.04
FROM ubuntu:$UBUNTU_VERSION AS build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK and cURL
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-noble.list https://packages.lunarg.com/vulkan/lunarg-vulkan-noble.list && \
apt update -y && \
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
&& cp *.py /app/full \
&& cp -r gguf-py /app/full \
&& cp -r requirements /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
## Base image
FROM ubuntu:$UBUNTU_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl libvulkan-dev \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
COPY --from=build /app/lib/ /app
### Full
FROM base AS full
COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
python3-wheel \
&& pip install --break-system-packages --upgrade setuptools \
&& pip install --break-system-packages -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
WORKDIR /app
ENTRYPOINT [ "/app/llama-cli" ]
### Server, Server only
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
WORKDIR /app
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -24,9 +24,27 @@ insert_final_newline = unset
[examples/server/public/*]
indent_size = 2
[examples/server/public/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
[examples/server/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab
[examples/cvector-generator/*.txt]
trim_trailing_whitespace = unset
insert_final_newline = unset
[models/templates/*.jinja]
indent_style = unset
indent_size = unset
end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset

View file

@ -1,50 +0,0 @@
name: Low Severity Bugs
description: Used to report low severity bugs in llama.cpp (e.g. cosmetic issues, non critical UI glitches)
title: "Bug: "
labels: ["bug-unconfirmed", "low severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View file

@ -0,0 +1,87 @@
name: Bug (compilation)
description: Something goes wrong when trying to compile llama.cpp.
title: "Compile bug: "
labels: ["bug-unconfirmed", "compilation"]
body:
- type: markdown
attributes:
value: >
Thanks for taking the time to fill out this bug report!
This issue template is intended for bug reports where the compilation of llama.cpp fails.
Before opening an issue, please confirm that the compilation still fails with `-DGGML_CCACHE=OFF`.
If the compilation succeeds with ccache disabled you should be able to permanently fix the issue
by clearing `~/.cache/ccache` (on Linux).
- type: textarea
id: commit
attributes:
label: Git commit
description: Which commit are you trying to compile?
placeholder: |
$git rev-parse HEAD
84a07a17b1b08cf2b9747c633a2372782848a27f
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: Operating systems
description: Which operating systems do you know to be affected?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: true
- type: dropdown
id: backends
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
multiple: true
validations:
required: true
- type: textarea
id: info
attributes:
label: Problem description & steps to reproduce
description: >
Please give us a summary of the problem and tell us how to reproduce it.
If you can narrow down the bug to specific compile flags, that information would be very much appreciated by us.
placeholder: >
I'm trying to compile llama.cpp with CUDA support on a fresh install of Ubuntu and get error XY.
Here are the exact commands that I used: ...
validations:
required: true
- type: textarea
id: first_bad_commit
attributes:
label: First Bad Commit
description: >
If the bug was not present on an earlier version: when did it start appearing?
If possible, please do a git bisect and identify the exact commit that introduced the bug.
validations:
required: false
- type: textarea
id: command
attributes:
label: Compile command
description: >
Please provide the exact command you used to compile llama.cpp. For example: `cmake -B ...`.
This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: true
- type: textarea
id: logs
attributes:
label: Relevant log output
description: >
Please copy and paste any relevant log output, including any generated text.
This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: true

View file

@ -0,0 +1,101 @@
name: Bug (model use)
description: Something goes wrong when using a model (in general, not specific to a single llama.cpp module).
title: "Eval bug: "
labels: ["bug-unconfirmed", "model evaluation"]
body:
- type: markdown
attributes:
value: >
Thanks for taking the time to fill out this bug report!
This issue template is intended for bug reports where the model evaluation results
(i.e. the generated text) are incorrect or llama.cpp crashes during model evaluation.
If you encountered the issue while using an external UI (e.g. ollama),
please reproduce your issue using one of the examples/binaries in this repository.
The `llama-cli` binary can be used for simple and reproducible model inference.
- type: textarea
id: version
attributes:
label: Name and Version
description: Which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: Operating systems
description: Which operating systems do you know to be affected?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: true
- type: dropdown
id: backends
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
multiple: true
validations:
required: true
- type: textarea
id: hardware
attributes:
label: Hardware
description: Which CPUs/GPUs are you using?
placeholder: >
e.g. Ryzen 5950X + 2x RTX 4090
validations:
required: true
- type: textarea
id: model
attributes:
label: Models
description: >
Which model(s) at which quantization were you using when encountering the bug?
If you downloaded a GGUF file off of Huggingface, please provide a link.
placeholder: >
e.g. Meta LLaMA 3.1 Instruct 8b q4_K_M
validations:
required: false
- type: textarea
id: info
attributes:
label: Problem description & steps to reproduce
description: >
Please give us a summary of the problem and tell us how to reproduce it.
If you can narrow down the bug to specific hardware, compile flags, or command line arguments,
that information would be very much appreciated by us.
placeholder: >
e.g. when I run llama-cli with -ngl 99 I get garbled outputs.
When I use -ngl 0 it works correctly.
Here are the exact commands that I used: ...
validations:
required: true
- type: textarea
id: first_bad_commit
attributes:
label: First Bad Commit
description: >
If the bug was not present on an earlier version: when did it start appearing?
If possible, please do a git bisect and identify the exact commit that introduced the bug.
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: >
Please copy and paste any relevant log output, including the command that you entered and any generated text.
This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: true

91
.github/ISSUE_TEMPLATE/019-bug-misc.yml vendored Normal file
View file

@ -0,0 +1,91 @@
name: Bug (misc.)
description: Something is not working the way it should (and it's not covered by any of the above cases).
title: "Misc. bug: "
labels: ["bug-unconfirmed"]
body:
- type: markdown
attributes:
value: >
Thanks for taking the time to fill out this bug report!
This issue template is intended for miscellaneous bugs that don't fit into any other category.
If you encountered the issue while using an external UI (e.g. ollama),
please reproduce your issue using one of the examples/binaries in this repository.
- type: textarea
id: version
attributes:
label: Name and Version
description: Which version of our software is affected? (You can use `--version` to get a version string.)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: Operating systems
description: Which operating systems do you know to be affected?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: dropdown
id: module
attributes:
label: Which llama.cpp modules do you know to be affected?
multiple: true
options:
- Documentation/Github
- libllama (core library)
- llama-cli
- llama-server
- llama-bench
- llama-quantize
- Python/Bash scripts
- Test code
- Other (Please specify in the next section)
validations:
required: false
- type: textarea
id: command
attributes:
label: Command line
description: >
Please provide the exact commands you entered, if applicable. For example: `llama-server -m ... -c ...`, `llama-cli -m ...`, etc.
This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: false
- type: textarea
id: info
attributes:
label: Problem description & steps to reproduce
description: >
Please give us a summary of the problem and tell us how to reproduce it (if applicable).
validations:
required: true
- type: textarea
id: first_bad_commit
attributes:
label: First Bad Commit
description: >
If the bug was not present on an earlier version and it's not trivial to track down: when did it start appearing?
If possible, please do a git bisect and identify the exact commit that introduced the bug.
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: >
If applicable, please copy and paste any relevant log output, including any generated text.
This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: false

View file

@ -1,50 +0,0 @@
name: Medium Severity Bug
description: Used to report medium severity bugs in llama.cpp (e.g. Malfunctioning Features but generally still useable)
title: "Bug: "
labels: ["bug-unconfirmed", "medium severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View file

@ -1,5 +1,5 @@
name: Enhancement
description: Used to request enhancements for llama.cpp
description: Used to request enhancements for llama.cpp.
title: "Feature Request: "
labels: ["enhancement"]
body:

View file

@ -1,50 +0,0 @@
name: High Severity Bug
description: Used to report high severity bugs in llama.cpp (e.g. Malfunctioning features hindering important common workflow)
title: "Bug: "
labels: ["bug-unconfirmed", "high severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View file

@ -1,5 +1,5 @@
name: Research
description: Track new technical research area
description: Track new technical research area.
title: "Research: "
labels: ["research 🔬"]
body:

View file

@ -1,50 +0,0 @@
name: Critical Severity Bug
description: Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)
title: "Bug: "
labels: ["bug-unconfirmed", "critical severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View file

@ -1,5 +1,5 @@
name: Refactor (Maintainers)
description: Used to track refactoring opportunities
description: Used to track refactoring opportunities.
title: "Refactor: "
labels: ["refactor"]
body:

15
.github/labeler.yml vendored
View file

@ -3,19 +3,18 @@ Kompute:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-kompute.h
- ggml/src/ggml-kompute.cpp
- ggml/src/ggml-kompute/**
- README-kompute.md
Apple Metal:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-metal.h
- ggml/src/ggml-metal.cpp
- ggml/src/ggml-metal/**
- README-metal.md
SYCL:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-sycl.h
- ggml/src/ggml-sycl.cpp
- ggml/src/ggml-sycl/**
- docs/backend/SYCL.md
- examples/sycl/**
@ -27,8 +26,8 @@ Nvidia GPU:
Vulkan:
- changed-files:
- any-glob-to-any-file:
- ggml/ggml_vk_generate_shaders.py
- ggml/src/ggml-vulkan*
- ggml/include/ggml-vulkan.h
- ggml/src/ggml-vulkan/**
documentation:
- changed-files:
- any-glob-to-any-file:
@ -75,11 +74,7 @@ server:
ggml:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml*.h
- ggml/src/ggml*.c
- ggml/src/ggml*.cpp
- ggml/src/ggml*.h
- ggml-cuda/**
- ggml/**
nix:
- changed-files:
- any-glob-to-any-file:

View file

@ -1,7 +1 @@
- [x] I have read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md)
- Self-reported review complexity:
- [ ] Low
- [ ] Medium
- [ ] High
*Make sure to read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*

File diff suppressed because it is too large Load diff

View file

@ -17,7 +17,7 @@ jobs:
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug"
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"

View file

@ -10,12 +10,10 @@
name: Publish Docker image
on:
#pull_request:
push:
branches:
- master
paths: ['.github/workflows/docker.yml', '.devops/*.Dockerfile', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal']
workflow_dispatch: # allows manual triggering, useful for debugging
workflow_dispatch: # allows manual triggering
schedule:
# Rebuild daily rather than on every push because it is expensive
- cron: '12 4 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
@ -29,29 +27,22 @@ permissions:
jobs:
push_to_registry:
name: Push Docker image to Docker Hub
#if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
fail-fast: false
matrix:
config:
- { tag: "light", dockerfile: ".devops/llama-cli.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server", dockerfile: ".devops/llama-server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-musa", dockerfile: ".devops/llama-cli-musa.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-musa", dockerfile: ".devops/llama-server-musa.Dockerfile", platforms: "linux/amd64" }
- { tag: "full-musa", dockerfile: ".devops/full-musa.Dockerfile", platforms: "linux/amd64" }
# Multi-stage build
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false}
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
#- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
#- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light-intel", dockerfile: ".devops/llama-cli-intel.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-intel", dockerfile: ".devops/llama-server-intel.Dockerfile", platforms: "linux/amd64" }
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: true }
steps:
- name: Check out the repo
uses: actions/checkout@v4
@ -59,10 +50,10 @@ jobs:
fetch-depth: 0 # preserve git history, so we can determine the build number
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
uses: docker/setup-buildx-action@v3
- name: Log in to Docker Hub
uses: docker/login-action@v2
@ -82,26 +73,34 @@ jobs:
# determine tag name postfix (build number, commit hash)
if [[ "${{ env.GITHUB_BRANCH_NAME }}" == "master" ]]; then
TAG_POSTFIX="b${BUILD_NUMBER}"
TAG_POSTFIX="-b${BUILD_NUMBER}"
else
SAFE_NAME=$(echo "${{ env.GITHUB_BRANCH_NAME }}" | tr '/' '-')
TAG_POSTFIX="${SAFE_NAME}-${SHORT_HASH}"
TAG_POSTFIX="-${SAFE_NAME}-${SHORT_HASH}"
fi
# list all tags possible
TAGS=""
TAGS="${TAGS}ghcr.io/${REPO_OWNER}/${REPO_NAME}:${{ matrix.config.tag }},"
TAGS="${TAGS}ghcr.io/${REPO_OWNER}/${REPO_NAME}:${{ matrix.config.tag }}-${TAG_POSTFIX}"
echo "output_tags=$TAGS" >> $GITHUB_OUTPUT
echo "output_tags=$TAGS" # print out for debugging
if [[ "${{ matrix.config.tag }}" == "cpu" ]]; then
TYPE=""
else
TYPE="-${{ matrix.config.tag }}"
fi
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}${TAG_POSTFIX}"
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}${TAG_POSTFIX}"
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}${TAG_POSTFIX}"
echo "full_output_tags=$FULLTAGS" >> $GITHUB_OUTPUT
echo "light_output_tags=$LIGHTTAGS" >> $GITHUB_OUTPUT
echo "server_output_tags=$SERVERTAGS" >> $GITHUB_OUTPUT
echo "full_output_tags=$FULLTAGS" # print out for debugging
echo "light_output_tags=$LIGHTTAGS" # print out for debugging
echo "server_output_tags=$SERVERTAGS" # print out for debugging
env:
GITHUB_BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
# https://github.com/jlumbroso/free-disk-space/tree/54081f138730dfa15788a46383842cd2f914a1be#example
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
if: ${{ matrix.config.free_disk_space == true }}
uses: ggml-org/free-disk-space@v1.3.1
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
@ -116,13 +115,59 @@ jobs:
docker-images: true
swap-storage: true
- name: Build and push Docker image (tagged + versioned)
if: github.event_name == 'push'
- name: Build and push Full Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.full == true }}
uses: docker/build-push-action@v6
with:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
# tag list is generated from step above
tags: ${{ steps.tag.outputs.output_tags }}
tags: ${{ steps.tag.outputs.full_output_tags }}
file: ${{ matrix.config.dockerfile }}
target: full
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
- name: Build and push Light Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.light == true }}
uses: docker/build-push-action@v6
with:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
# tag list is generated from step above
tags: ${{ steps.tag.outputs.light_output_tags }}
file: ${{ matrix.config.dockerfile }}
target: light
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
- name: Build and push Server Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.server == true }}
uses: docker/build-push-action@v6
with:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
# tag list is generated from step above
tags: ${{ steps.tag.outputs.server_output_tags }}
file: ${{ matrix.config.dockerfile }}
target: server
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache

View file

@ -23,5 +23,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: editorconfig-checker/action-editorconfig-checker@main
- uses: editorconfig-checker/action-editorconfig-checker@v2
with:
version: v3.0.3
- run: editorconfig-checker

View file

@ -1,72 +0,0 @@
name: Nix aarch64 builds
on:
workflow_dispatch: # allows manual triggering
schedule:
# Rebuild daily rather than on every push because QEMU is expensive (e.g.
# 1.5h instead of minutes with the cold cache).
#
# randint(0, 59), randint(0, 23)
- cron: '26 12 * * *'
# But also rebuild if we touched any of the Nix expressions:
push:
branches:
- master
paths: ['**/*.nix', 'flake.lock']
pull_request:
types: [opened, synchronize, reopened]
paths: ['**/*.nix', 'flake.lock']
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
# Fine-grant permission
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
permissions:
# https://github.com/DeterminateSystems/nix-installer-action?tab=readme-ov-file#with-flakehub
id-token: write
contents: read
jobs:
nix-build-aarch64:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install QEMU
# Copy-paste from https://github.com/orgs/community/discussions/8305#discussioncomment-5888654
run: |
sudo apt-get update
sudo apt-get install -y qemu-user-static qemu-system-aarch64
sudo usermod -a -G kvm $USER
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-platforms = aarch64-linux
extra-system-features = nixos-test kvm
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: Set-up cachix to push the results to
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: llama-cpp
- name: Show all output paths
run: >
nix run github:nix-community/nix-eval-jobs
-- --gc-roots-dir gcroot
--flake
".#packages.aarch64-linux"
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--systems aarch64-linux
--flake
".#checks.aarch64-linux"

View file

@ -1,79 +0,0 @@
name: Nix CI
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
pull_request:
types: [opened, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
# Fine-grant permission
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
permissions:
# https://github.com/DeterminateSystems/nix-installer-action?tab=readme-ov-file#with-flakehub
id-token: write
contents: read
jobs:
nix-eval:
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, macos-latest ]
runs-on: ${{ matrix.os }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: List all flake outputs
run: nix flake show --all-systems
- name: Show all output paths
run: >
nix run github:nix-community/nix-eval-jobs
-- --gc-roots-dir gcroot
--flake
".#packages.$(nix eval --raw --impure --expr builtins.currentSystem)"
nix-build:
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, macos-latest ]
runs-on: ${{ matrix.os }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: Set-up cachix to push the results to
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: llama-cpp
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--flake
".#checks.$(nix eval --raw --impure --expr builtins.currentSystem)"

View file

@ -1,22 +0,0 @@
name: update-flake-lock
on:
workflow_dispatch:
schedule:
- cron: '0 0 * * 0' # runs weekly on Sunday at 00:00
jobs:
lockfile:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@main
- name: Update flake.lock
uses: DeterminateSystems/update-flake-lock@main
with:
pr-title: "nix: update flake.lock"
pr-labels: |
nix
pr-reviewers: philiptaron,SomeoneSerge
token: ${{ secrets.FLAKE_TOKEN }}

View file

@ -1,36 +0,0 @@
# Make the flake discoverable on https://flakestry.dev and https://flakehub.com/flakes
name: "Publish a flake to flakestry & flakehub"
on:
push:
tags:
- "*"
workflow_dispatch:
inputs:
tag:
description: "The existing tag to publish"
type: "string"
required: true
jobs:
flakestry-publish:
runs-on: ubuntu-latest
permissions:
id-token: "write"
contents: "read"
steps:
- uses: flakestry/flakestry-publish@main
with:
version: "${{ inputs.tag || github.ref_name }}"
flakehub-publish:
runs-on: "ubuntu-latest"
permissions:
id-token: "write"
contents: "read"
steps:
- uses: "actions/checkout@v4"
with:
ref: "${{ (inputs.tag != null) && format('refs/tags/{0}', inputs.tag) || '' }}"
- uses: "DeterminateSystems/nix-installer-action@main"
- uses: "DeterminateSystems/flakehub-push@main"
with:
visibility: "public"
tag: "${{ inputs.tag }}"

View file

@ -1,6 +1,13 @@
name: flake8 Lint
on: [push, pull_request]
on:
push:
branches:
- master
paths: ['.github/workflows/python-lint.yml', '**/*.py']
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/python-lint.yml', '**/*.py']
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}

View file

@ -76,20 +76,49 @@ jobs:
run: |
pip install -r examples/server/tests/requirements.txt
- name: Verify server deps
id: verify_server_deps
# Setup nodejs (to be used for verifying bundled index.html)
- uses: actions/setup-node@v4
with:
node-version: '22.11.0'
- name: WebUI - Install dependencies
id: webui_lint
run: |
cd examples/server/webui
npm ci
- name: WebUI - Check code format
id: webui_format
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server
git ls-files --others --modified
cd examples/server/webui
git status
./deps.sh
npm run format
git status
not_ignored_files="$(git ls-files --others --modified)"
echo "Modified files: ${not_ignored_files}"
if [ -n "${not_ignored_files}" ]; then
echo "Repository is dirty or server deps are not built as expected"
echo "${not_ignored_files}"
modified_files="$(git status -s)"
echo "Modified files: ${modified_files}"
if [ -n "${modified_files}" ]; then
echo "Files do not follow coding style. To fix: npm run format"
echo "${modified_files}"
exit 1
fi
- name: Verify bundled index.html
id: verify_server_index_html
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server/webui
git status
npm run build
git status
modified_files="$(git status -s)"
echo "Modified files: ${modified_files}"
if [ -n "${modified_files}" ]; then
echo "Repository is dirty or server/webui is not built as expected"
echo "Hint: You may need to follow Web UI build guide in server/README.md"
echo "${modified_files}"
exit 1
fi
@ -106,9 +135,9 @@ jobs:
-DGGML_OPENMP=OFF ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build
id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }}
- name: Build (sanitizers)
id: cmake_build_sanitizers
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
@ -118,18 +147,37 @@ jobs:
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build
if: ${{ matrix.sanitizer == '' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
run: |
cd examples/server/tests
PORT=8888 ./tests.sh
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd examples/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
SLOW_TESTS=1 ./tests.sh
server-windows:
@ -180,11 +228,12 @@ jobs:
run: |
cd examples/server/tests
$env:PYTHONIOENCODING = ":replace"
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
pytest -v -x -m "not slow"
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
behave.exe --stop --no-skipped --no-capture --tags slow
$env:SLOW_TESTS = "1"
pytest -v -x

10
.gitignore vendored
View file

@ -3,6 +3,7 @@
*.a
*.bat
*.bin
*.d
*.dll
*.dot
*.etag
@ -17,6 +18,7 @@
*.metallib
*.o
*.so
*.swp
*.tmp
# IDE / OS
@ -103,6 +105,10 @@ examples/server/*.mjs.hpp
!examples/sycl/*.bat
!examples/sycl/*.sh
# Server Web UI temporary files
node_modules
examples/server/webui/dist
# Python
/.venv
@ -133,3 +139,7 @@ poetry.toml
# Test models for lora adapters
/lora-tests
# Local scripts
/run-vim.sh
/run-chat.sh

2
.gitmodules vendored
View file

@ -1,3 +1,3 @@
[submodule "kompute"]
path = ggml/src/kompute
path = ggml/src/ggml-kompute/kompute
url = https://github.com/nomic-ai/kompute.git

267
AUTHORS
View file

@ -1,4 +1,4 @@
# date: Wed Jun 26 19:36:34 EEST 2024
# date: Tue Feb 4 13:04:05 EET 2025
# this file is auto-generated by scripts/gen-authors.sh
0cc4m <picard12@live.de>
@ -7,6 +7,7 @@
2f38b454 <dxf@protonmail.com>
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
44670 <44670@users.noreply.github.com>
65a <10104049+65a@users.noreply.github.com>
AN Long <aisk@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
@ -19,20 +20,30 @@ Adithya Balaji <adithya.b94@gmail.com>
AdithyanI <adithyan.i4internet@gmail.com>
Adrian <smith.adriane@gmail.com>
Adrian Hesketh <a-h@users.noreply.github.com>
Adrien Gallouët <adrien@gallouet.fr>
Adrien Gallouët <angt@huggingface.co>
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
Ahmet Zeer <ahmed.zeer@std.yildiz.edu.tr>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
AidanBeltonS <aidan.belton@codeplay.com>
Aisuko <urakiny@gmail.com>
Akarshan Biswas <akarshan.biswas@gmail.com>
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
Al Mochkin <14274697+amochkin@users.noreply.github.com>
Albert Jin <albert.jin@gmail.com>
Alberto <57916483+albbus-stack@users.noreply.github.com>
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
Alex <awhill19@icloud.com>
Alex Azarov <alex@azarov.by>
Alex Azarov <alexander.azarov@mapbox.com>
Alex Klinkhamer <from.github.com.917@grencez.dev>
Alex Klinkhamer <git@grencez.dev>
Alex Nguyen <tiendung@users.noreply.github.com>
Alex O'Connell <35843486+acon96@users.noreply.github.com>
Alex Petenchea <alex.petenchea@gmail.com>
Alex Renda <alexrenda@users.noreply.github.com>
Alex Tuddenham <61622354+AlexsCode@users.noreply.github.com>
Alex von Gluck IV <kallisti5@unixzen.com>
Alexey Parfenov <zxed@alkatrazstudio.net>
Ali Chraghi <63465728+alichraghi@users.noreply.github.com>
@ -45,18 +56,26 @@ AmirAli Mirian <37371367+amiralimi@users.noreply.github.com>
Ananta Bastola <anantarajbastola@gmail.com>
Anas Ahouzi <112881240+aahouzi@users.noreply.github.com>
András Salamon <ott2@users.noreply.github.com>
Andreas (Andi) Kunar <andreask@msn.com>
Andreas Kieslinger <47689530+aendk@users.noreply.github.com>
Andrei <abetlen@gmail.com>
Andrew Canis <andrew.canis@gmail.com>
Andrew Downing <andrew2085@gmail.com>
Andrew Duffy <a10y@users.noreply.github.com>
Andrew Godfrey <AndrewGodfrey@users.noreply.github.com>
Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
Andy Salerno <andysalerno@gmail.com>
Andy Tai <andy-tai@users.noreply.github.com>
Anthony Van de Gejuchte <anthonyvdgent@gmail.com>
Antonis Makropoulos <benuix@gmail.com>
Arik Poznanski <arikpoz@users.noreply.github.com>
Armen Kaleshian <kriation@users.noreply.github.com>
Artem <guinmoon@gmail.com>
Artem Zinnatullin <ceo@abstractny.gay>
Artyom Lebedev <vagran.ast@gmail.com>
Asbjørn Olling <asbjornolling@gmail.com>
Ásgeir Bjarni Ingvarsson <asgeir@fundinn.org>
Asghar Ghorbani <a-ghorbani@users.noreply.github.com>
Ashish <1856117+ashishdatta@users.noreply.github.com>
Ashok Gelal <401055+ashokgelal@users.noreply.github.com>
Ashraful Islam <ashraful.meche@gmail.com>
@ -75,13 +94,21 @@ Ben Siraphob <bensiraphob@gmail.com>
Ben Williams <ben@719ben.com>
Benjamin Findley <39356821+Kartoffelsaft@users.noreply.github.com>
Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com>
Benson Wong <mostlygeek@gmail.com>
Bernat Vadell <hounter.caza@gmail.com>
Bernhard M. Wiedemann <githubbmwprimary@lsmod.de>
Bert Wagner <github@bertwagner.com>
Billel Mokeddem <billel.mokeddem.ml@gmail.com>
Bingan <70050083+binganao@users.noreply.github.com>
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
Bodo Graumann <mail@bodograumann.de>
Bono Lv <lvscar@users.noreply.github.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
Borislav Stanimirov <b@ibob.bg>
Branden Butler <bwtbutler@hotmail.com>
Brandon Squizzato <35474886+bsquizz@users.noreply.github.com>
Brian <mofosyne@gmail.com>
Brian Cunnie <brian.cunnie@gmail.com>
Bruce MacDonald <brucewmacdonald@gmail.com>
Bryan Honof <bryanhonof@gmail.com>
CJ Pais <cj@cjpais.com>
@ -90,32 +117,51 @@ Calvin Laurenson <calvin@laurenson.dev>
Cameron <csteele@steelecameron.com>
Cameron Kaiser <classilla@users.noreply.github.com>
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
CarryFun <76023481+CarryFun@users.noreply.github.com>
Carsten Kragelund Jørgensen <carsten@kragelund.me>
CarterLi999 <664681047@qq.com>
Casey Primozic <casey@cprimozic.net>
Casey Primozic <me@ameo.link>
CausalLM <148736309+CausalLM@users.noreply.github.com>
Cebtenzzre <cebtenzzre@gmail.com>
CentricStorm <CentricStorm@users.noreply.github.com>
Chad Brewbaker <crb002@gmail.com>
Changyeon Kim <cyzero.kim@samsung.com>
Chao Jiang <jc19chaoj@zoho.com>
Charles Xu <63788048+chaxu01@users.noreply.github.com>
Charles Xu <charles.xu@arm.com>
Chen Xi <xi2.chen@intel.com>
Chen Xi <xixichen08@foxmail.com>
Cheng Shao <terrorjack@type.dance>
Chenguang Li <87689256+noemotiovon@users.noreply.github.com>
Chris Elrod <elrodc@gmail.com>
Chris Kuehl <ckuehl@ckuehl.me>
Christian Demsar <christian@github.email.demsar.us>
Christian Demsar <crasm@git.vczf.us>
Christian Falch <875252+chrfalch@users.noreply.github.com>
Christian Kastner <ckk@kvr.at>
Christian Kögler <ck3d@gmx.de>
Christian Köhnenkamp <cvk5@me.com>
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
Christopher Nielsen <62156882+mascguy@users.noreply.github.com>
Clark Saben <76020733+csaben@users.noreply.github.com>
Clint Herron <hanclinto@gmail.com>
Conrad Kramer <conrad@conradkramer.com>
Corentin REGAL <corentin.regal@gmail.com>
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
Csaba Kecskemeti <csaba.kecskemeti@gmail.com>
Cuong Trinh Manh <nguoithichkhampha@gmail.com>
DAN™ <dranger003@gmail.com>
Damian Stewart <d@damianstewart.com>
Dan Johansson <164997844+eddnjjn@users.noreply.github.com>
Dan Johansson <dan.johansson@arm.com>
Dane Madsen <dane_madsen@hotmail.com>
DaniAndTheWeb <57776841+DaniAndTheWeb@users.noreply.github.com>
Daniel Bevenius <daniel.bevenius@gmail.com>
Daniel Drake <drake@endlessos.org>
Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Daniel Illescas Romero <illescas.daniel@protonmail.com>
Daniel Kleine <53251018+d-kleine@users.noreply.github.com>
Daniele <57776841+daniandtheweb@users.noreply.github.com>
DannyDaemonic <DannyDaemonic@gmail.com>
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
@ -129,19 +175,29 @@ David Pflug <david@pflug.email>
David Renshaw <dwrenshaw@gmail.com>
David Sommers <12738+databyte@users.noreply.github.com>
David Yang <davidyang6us@gmail.com>
DavidKorczynski <david@adalogics.com>
Dawid Potocki <github@dawidpotocki.com>
Dawid Wysocki <62249621+TortillaZHawaii@users.noreply.github.com>
Dean <Dean.Sinaean@gmail.com>
Deins <deinsegle@gmail.com>
Denis Spasyuk <34203011+dspasyuk@users.noreply.github.com>
Derrick T. Woolworth <dwoolworth@gmail.com>
Deven Mistry <31466137+deven367@users.noreply.github.com>
Dibakar Gope <dibakar.gope@arm.com>
Didzis Gosko <didzis@users.noreply.github.com>
Diego Devesa <slarengh@gmail.com>
Diogo Teles Sant'Anna <diogoteles@google.com>
Djip007 <3705339+Djip007@users.noreply.github.com>
Djip007 <djip.perois@free.fr>
Don Mahurin <dmahurin@users.noreply.github.com>
DooWoong Lee (David) <manics99@naver.com>
Doomsdayrs <38189170+Doomsdayrs@users.noreply.github.com>
Dou Xinpeng <15529241576@163.com>
Dou Xinpeng <81913537+Dou-Git@users.noreply.github.com>
Douglas Hanley <thesecretaryofwar@gmail.com>
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Ebey Abraham <ebey97@gmail.com>
Echo Nolan <echo@echonolan.net>
Ed Lee <edilee@mozilla.com>
Ed Lepedus <ed.lepedus@googlemail.com>
Eddie-Wang <wangjinheng1120@163.com>
@ -149,12 +205,16 @@ Edward Taylor <edeetee@gmail.com>
Elaine <elaine.zosa@gmail.com>
Elbios <141279586+Elbios@users.noreply.github.com>
Elton Kola <eltonkola@gmail.com>
Emreerdog <34742675+Emreerdog@users.noreply.github.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Equim <sayaka@ekyu.moe>
Eric Curtin <ecurtin@redhat.com>
Eric Curtin <ericcurtin17@gmail.com>
Eric Sommerlade <es0m@users.noreply.github.com>
Eric Zhang <34133756+EZForever@users.noreply.github.com>
Erik Garrison <erik.garrison@gmail.com>
Erik Scholz <Green-Sky@users.noreply.github.com>
Esko Toivonen <eskot98@gmail.com>
Ettore Di Giacinto <mudler@users.noreply.github.com>
Evan Jones <evan.q.jones@gmail.com>
Evan Miller <emmiller@gmail.com>
@ -166,19 +226,27 @@ FK <sozforex@gmail.com>
Fabian <cmdrf@users.noreply.github.com>
Fabio R. Sluzala <Fabio3rs@users.noreply.github.com>
Faez Shakil <faez.shakil@gmail.com>
Faisal Zaghloul <faisal.zaghloul@gmail.com>
Faisal Zaghloul <quic_fzaghlou@quicinc.com>
Fan Shupei <dymarkfan@outlook.com>
FantasyGmm <16450052+FantasyGmm@users.noreply.github.com>
Farbod Bijary <110523279+farbodbj@users.noreply.github.com>
Fattire <528174+fat-tire@users.noreply.github.com>
Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
Firat <firatkiral@gmail.com>
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
Frank Mai <thxcode0824@gmail.com>
FrankHB <frankhb1989@gmail.com>
Frankie Robertson <frankier@users.noreply.github.com>
Fred Douglas <43351173+fredlas@users.noreply.github.com>
Frederik Vogel <Schaltfehler@users.noreply.github.com>
Gabe Goodhart <gabe.l.hart@gmail.com>
Gabe Goodhart <ghart@us.ibm.com>
Gaetan Bisson <gaetan@fenua.org>
GainLee <perfecter.gen@gmail.com>
Galunid <karolek1231456@gmail.com>
Gary Linscott <glinscott@gmail.com>
@ -187,12 +255,15 @@ Gavin Zhao <gavinzhaojw@protonmail.com>
Genkagaku.GPT <hlhr202@163.com>
Georgi Gerganov <ggerganov@gmail.com>
Gilad S <giladgd@users.noreply.github.com>
Gilad S. <7817232+giladgd@users.noreply.github.com>
Giuseppe Scrivano <giuseppe@scrivano.org>
GiviMAD <GiviMAD@users.noreply.github.com>
Govlzkoy <gotope@users.noreply.github.com>
Guillaume "Vermeille" Sanchez <Guillaume.V.Sanchez@gmail.com>
Guillaume Wenzek <gwenzek@users.noreply.github.com>
Guoliang Hua <32868157+nbcsm@users.noreply.github.com>
Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
Haggai Nuchi <h.nuchi@gmail.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
@ -203,35 +274,47 @@ Haoxiang Fei <tonyfettes@tonyfettes.com>
Harald Fernengel <harald.fernengel@here.com>
Hatsune Miku <129688334+at8u@users.noreply.github.com>
HatsuneMikuUwU33 <173229399+HatsuneMikuUwU33@users.noreply.github.com>
Haus1 <haus.xda@gmail.com>
Henk Poley <HenkPoley@gmail.com>
Henri Vasserman <henv@hot.ee>
Henrik Forstén <henrik.forsten@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hesen Peng <hesen.peng@gmail.com>
HimariO <dsfhe49854@gmail.com>
Hoang Nguyen <hugo53@users.noreply.github.com>
Hong Bo PENG <penghb@cn.ibm.com>
Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
Howard Su <howard0su@gmail.com>
Hua Jiang <allenhjiang@outlook.com>
Huang Qi <huangqi3@xiaomi.com>
Huawei Lin <huaweilin.cs@gmail.com>
Hugo Roussel <hugo.rous@gmail.com>
Huifeng Ou <79071290+ho2103@users.noreply.github.com>
Ian Bull <irbull@eclipsesource.com>
Ian Bull <irbull@gmail.com>
Ian Scrivener <github@zilogy.asia>
Icecream95 <the.real.icecream95@gmail.com>
Ido S <ido.pluto@gmail.com>
IgnacioFDM <ignaciofdm@gmail.com>
Igor Okulist <okigan@gmail.com>
Ihar Hrachyshka <ihrachys@redhat.com>
Ikko Eltociear Ashimine <eltociear@gmail.com>
Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
Ionoclast Laboratories <brigham@ionoclast.com>
Isaac McFadyen <isaac@imcf.me>
IsaacDynamo <61521674+IsaacDynamo@users.noreply.github.com>
Ivan <nekotekina@gmail.com>
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
Ivan Komarov <Ivan.Komarov@dfyz.info>
Ivan Stepanov <ivanstepanovftw@gmail.com>
JFLFY2255 <JFLFY2255@163.com>
JH23X <165871467+JH23X@users.noreply.github.com>
Jack Mousseau <jack@software.inc>
Jack Mousseau <jmousseau@users.noreply.github.com>
JackJollimore <130917767+JackJollimore@users.noreply.github.com>
Jaeden Amero <jaeden@patater.com>
Jaemin Son <woalsdnd@gmail.com>
Jafar Uruç <jafar.uruc@gmail.com>
Jag Chadha <jagtesh@gmail.com>
Jakub N <jakubniemczyk97@gmail.com>
James A Capozzoli <157492257+jac-jim@users.noreply.github.com>
@ -243,11 +326,16 @@ Jannis Schönleber <joennlae@gmail.com>
Jared Van Bortel <cebtenzzre@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jason McCartney <jmac@theroot.org>
Jason Stillerman <jason.t.stillerman@gmail.com>
Jean-Christophe Hoelt <hoelt@fovea.cc>
Jean-Michaël Celerier <jeanmichael.celerier+github@gmail.com>
Jed Fox <git@jedfox.com>
Jeff Bolz <jbolz@nvidia.com>
Jeffrey Morgan <jmorganca@gmail.com>
Jeffrey Quesnelle <emozilla@nousresearch.com>
Jeroen Mostert <jeroen.mostert@cm.com>
Jesse Jojo Johnson <williamsaintgeorge@gmail.com>
Jett Janiak <jettjaniak@gmail.com>
Jeximo <jeximo@gmail.com>
Jhen-Jie Hong <iainst0409@gmail.com>
Jiahao Li <liplus17@163.com>
@ -258,6 +346,9 @@ Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
Jiří Sejkora <Sejseloid@gmail.com>
Joan Fontanals <jfontanalsmartinez@gmail.com>
Joan Fontanals <joan.fontanals.martinez@jina.ai>
João Dinis Ferreira <hello@joaof.eu>
Joe Eli McIlvain <joe.eli.mac@gmail.com>
Joe Todd <joe.todd@codeplay.com>
Johan <JohanAR@users.noreply.github.com>
Johannes Gäßler <johannesg@5d6.de>
Johannes Rudolph <johannes.rudolph@gmail.com>
@ -273,8 +364,11 @@ Josh Ramer <josh.ramer@icloud.com>
Joyce <joycebrum@google.com>
Juan Calderon-Perez <835733+gaby@users.noreply.github.com>
Judd <foldl@users.noreply.github.com>
Juk Armstrong <69222624+jukofyork@users.noreply.github.com>
Julius Arkenberg <arki05@users.noreply.github.com>
Jun Hee Yoo <contact.jhyoo@gmail.com>
Jun Jie <71215065+junnjiee16@users.noreply.github.com>
Junil Kim <logyourself@gmail.com>
Junyang Lin <justinlin930319@hotmail.com>
Juraj Bednar <juraj@bednar.io>
Justin Parker <jparkerweb@gmail.com>
@ -285,6 +379,7 @@ Justine Tunney <jtunney@mozilla.com>
Juuso Alasuutari <juuso.alasuutari@gmail.com>
KASR <karim.asrih@gmail.com>
Kamil Tomšík <info@tomsik.cz>
Karol Kontny <82021046+kkontny@users.noreply.github.com>
Karsten Weiss <knweiss@gmail.com>
Karthick <j.karthic2004@gmail.com>
Karthik Kumar Viswanathan <195178+guilt@users.noreply.github.com>
@ -292,16 +387,19 @@ Karthik Sethuraman <k.seth1993@gmail.com>
Kasumi <90275229+kasumi-1@users.noreply.github.com>
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Keiichi Tabata <keiichi.tabata@outlook.com>
Keke Han <hankeke303@163.com>
Kenvix ⭐ <kenvixzure@live.com>
Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Kevin Gibbons <bakkot@gmail.com>
Kevin Ji <1146876+kevinji@users.noreply.github.com>
Kevin Kwok <antimatter15@gmail.com>
Kevin Lo <kevlo@kevlo.org>
Kevin Wang <kevmo314@gmail.com>
Kolen Cheung <ickc@users.noreply.github.com>
Konstantin Herud <konstantin.herud@denkbares.com>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
Kunshang Ji <kunshang.ji@intel.com>
Kyle Bruene <KyleBruene@users.noreply.github.com>
Kyle Liang <liangmanlai@gmail.com>
Kyle Mistele <kyle@mistele.com>
Kylin <56434533+KyL0N@users.noreply.github.com>
@ -315,22 +413,30 @@ LeonEricsson <70749762+LeonEricsson@users.noreply.github.com>
Leonardo Neumann <leonardo@neumann.dev.br>
Li Tan <tanliboy@gmail.com>
Linwei Wang <wanix1988@gmail.com>
Liu Jia <109258120+Septa2112@users.noreply.github.com>
Liu Jia <jia3.liu@intel.com>
LoganDark <github@logandark.mozmail.com>
Loïc Carrère <loic.carrere@gmail.com>
LostRuins <39025047+LostRuins@users.noreply.github.com>
LostRuins Concedo <39025047+LostRuins@users.noreply.github.com>
Luciano <lucianostrika44@gmail.com>
Luo Tian <lt@basecity.com>
Lyle Dean <dean@lyle.dev>
M-A <maruel@gmail.com>
M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Ma Mingfei <mingfei.ma@intel.com>
Maarten ter Huurne <maarten@treewalker.org>
Mack Straight <eiz@users.noreply.github.com>
Maël Kerbiriou <m431.kerbiriou@gmail.com>
MaggotHATE <clay1326@gmail.com>
Mahesh Madhav <67384846+heshpdx@users.noreply.github.com>
Manuel <44313466+makuche@users.noreply.github.com>
Marc Köhlbrugge <subscriptions@marckohlbrugge.com>
Marco Matthies <71844+marcom@users.noreply.github.com>
Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com>
Marian Cepok <marian.cepok@gmail.com>
Mark Fairbairn <thebaron88@gmail.com>
Mark Zhuang <zhuangqiubin@gmail.com>
Marko Tasic <mtasic85@gmail.com>
Markus Tavenrath <mtavenrath@users.noreply.github.com>
Martin Delille <martin@delille.org>
@ -342,11 +448,16 @@ MasterYi1024 <39848311+MasterYi1024@users.noreply.github.com>
Mateusz Charytoniuk <mateusz.charytoniuk@protonmail.com>
Matheus C. França <matheus-catarino@hotmail.com>
Matheus Gabriel Alves Silva <matheusgasource@gmail.com>
Mathieu Baudier <mbaudier@argeo.org>
Mathieu Geli <mathieu.geli@gmail.com>
Mathieu Nayrolles <MathieuNls@users.noreply.github.com>
Mathijs Henquet <mathijs.henquet@gmail.com>
Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matt Clayton <156335168+mattjcly@users.noreply.github.com>
Matt Pulver <matt.pulver@heavy.ai>
Matt Stephenson <mstephenson6@users.noreply.github.com>
Matteo Boschini <12133566+mbosc@users.noreply.github.com>
Matteo Mortari <matteo.mortari@gmail.com>
Mattheus Chediak <shammcity00@gmail.com>
Matthew Tejo <matthew.tejo@gmail.com>
Matvey Soloviev <blackhole89@gmail.com>
@ -356,8 +467,11 @@ Maxime <672982+maximegmd@users.noreply.github.com>
Maximilian Winter <maximilian.winter.91@gmail.com>
Meng Zhang <meng@tabbyml.com>
Meng, Hengyu <hengyu.meng@intel.com>
Mengqing Cao <cmq0113@163.com>
Merrick Christensen <merrick.christensen@gmail.com>
Michael Coppola <m18coppola@gmail.com>
Michael Engel <mengel@redhat.com>
Michael Francis <edude03@gmail.com>
Michael Hueschen <m@mhueschen.dev>
Michael Kesper <mkesper@schokokeks.org>
Michael Klimenko <mklimenko29@gmail.com>
@ -365,52 +479,81 @@ Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Potter <NanoTekGuy@Gmail.com>
Michael de Gans <michael.john.degans@gmail.com>
Michaël de Vries <vriesdemichael@gmail.com>
Michał Moskal <michal@moskal.me>
Michał Tuszyński <srgtuszy@gmail.com>
Michelle Tan <41475767+MichelleTanPY@users.noreply.github.com>
Mihai <mihai.chirculescu@yahoo.com>
Mike <ytianhui2004@gmail.com>
Mikko Juola <mikjuo@gmail.com>
Minsoo Cheong <54794500+mscheong01@users.noreply.github.com>
Minsoo Cheong <icycle0409@snu.ac.kr>
Mirko185 <mirkosig@gmail.com>
Mirror Azure <54669636+MirrorAzure@users.noreply.github.com>
MistApproach <98988043+MistApproach@users.noreply.github.com>
Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
Molly Sophia <mollysophia379@gmail.com>
MorganRO8 <47795945+MorganRO8@users.noreply.github.com>
Murilo Santana <mvrilo@gmail.com>
Musab Gultekin <musabgultekin@users.noreply.github.com>
Nam D. Tran <42194884+namtranase@users.noreply.github.com>
Nathan Epstein <nate2@umbc.edu>
Natsu <chino@hotococoa.moe>
NawafAlansari <72708095+NawafAlansari@users.noreply.github.com>
Nebula <infinitewormhole@gmail.com>
Neo Zhang <14088817+arthw@users.noreply.github.com>
Neo Zhang <zhang.jianyu@outlook.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
NeverLucky <92274250+nvrxq@users.noreply.github.com>
Nexes the Old <124105151+Nexesenex@users.noreply.github.com>
Nexesenex <124105151+Nexesenex@users.noreply.github.com>
Niall Coates <1349685+Niall-@users.noreply.github.com>
Nicholai Tukanov <nicholaitukanov@gmail.com>
Nico Bosshard <nico@bosshome.ch>
Nicolai Weitkemper <kontakt@nicolaiweitkemper.de>
Nicolás Pérez <nicolas_perez@brown.edu>
Nicolò Scipione <nicolo.scipione@codeplay.com>
Nigel Bosch <pnigelb@gmail.com>
Nikita Sarychev <42014488+sARY77@users.noreply.github.com>
Niklas Korz <niklas@niklaskorz.de>
NikolaiLyssogor <59844691+NikolaiLyssogor@users.noreply.github.com>
Nikolaos Pothitos <pothitos@di.uoa.gr>
Nikolas <127742645+nneubacher@users.noreply.github.com>
Nindaleth <Nindaleth@users.noreply.github.com>
Nuno <rare-magma@posteo.eu>
OSecret <135510162+OLSecret@users.noreply.github.com>
Oleksandr Nikitin <oleksandr@tvori.info>
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
Olivier Chafik <ochafik@users.noreply.github.com>
Ondřej Čertík <ondrej@certik.us>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
PAB <pierreantoine.bannier@gmail.com>
Pablo Duboue <pablo.duboue@gmail.com>
Pascal Patry <ppatry@mtacitlabs.com>
Patrice Ferlet <metal3d@gmail.com>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pavel Zloi <github.com@drteam.rocks>
Pavol Rusnak <pavol@rusnak.io>
Paweł Wodnicki <151604+32bitmicro@users.noreply.github.com>
Pedro Cuenca <pedro@huggingface.co>
Peter <peter277@users.noreply.github.com>
Peter Sugihara <peter@campsh.com>
Phil H <5756783+phiharri@users.noreply.github.com>
Philip Taron <philip.taron@gmail.com>
Phillip Kravtsov <phillip@kravtsov.net>
Pierre Alexandre SCHEMBRI <pa.schembri@gmail.com>
Pierrick Hymbert <pierrick.hymbert@gmail.com>
Pieter Ouwerkerk <pieter.ouwerkerk@gmail.com>
Plamen Minev <pacominev@gmail.com>
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
Przemysław Pawełczyk <przemoc@gmail.com>
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
Qingyou Meng <meng.qingyou@gmail.com>
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
R0CKSTAR <xiaodong.ye@mthreads.com>
R0CKSTAR <yeahdongcn@gmail.com>
RJ Adriaansen <adriaansen@eshcc.eur.nl>
Radoslav Gerganov <rgerganov@gmail.com>
Radosław Gryta <radek.gryta@gmail.com>
@ -419,11 +562,16 @@ Raj Hammeer Singh Hada <hammeerraj@gmail.com>
Ralph Soika <ralph.soika@imixs.com>
Rand Xie <randxiexyy29@gmail.com>
Randall Fitzgerald <randall@dasaku.net>
Random Fly <renfei8@live.cn>
Reinforce-II <fate@eastal.com>
Rémy Oudompheng <oudomphe@phare.normalesup.org>
Ren Xuancheng <jklj077@users.noreply.github.com>
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
Reza Kakhki <rezakakhki.de@gmail.com>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Riccardo Orlando <Riccorl@users.noreply.github.com>
Riceball LEE <snowyu.lee@gmail.com>
Rich Dougherty <rich@rd.nz>
Richard Kiss <him@richardkiss.com>
Richard Roberson <richardr1126@gmail.com>
Rick G <26732651+TheFlipbook@users.noreply.github.com>
@ -434,26 +582,39 @@ Riley Stewart <ristew@users.noreply.github.com>
Rinne <AsakusaRinne@gmail.com>
Rinne <liu_yaohui1998@126.com>
Robert Brisita <986796+rbrisita@users.noreply.github.com>
Robert Collins <roberto.tomas.cuentas@gmail.com>
Robert Ormandi <52251610+ormandi@users.noreply.github.com>
Robert Sung-wook Shin <edp1096@users.noreply.github.com>
Robey Holderith <robey@flaminglunchbox.net>
Robyn <robyngraf@users.noreply.github.com>
Roger Meier <r.meier@siemens.com>
Roland <14355895+rbur0425@users.noreply.github.com>
Romain Biessy <romain.biessy@codeplay.com>
Romain D <90720+Artefact2@users.noreply.github.com>
Romain Neutron <romain@neutron.io>
Roman Parykin <donderom@gmail.com>
Ron Evans <ron@hybridgroup.com>
Ron Jailall <rojailal@gmail.com>
Roni <sulpher@gmx.net>
Ronny Brendel <ronnybrendel@gmail.com>
Ronsor <ronsor@ronsor.pw>
Rowan Hart <rowanbhart@gmail.com>
Ruan <47767371+ruanych@users.noreply.github.com>
Ruchira Hasaranga <ruchira66@gmail.com>
Rudi Servo <rudiservo@gmail.com>
Ruixin Huang <18860020911@163.com>
Rune <43761327+Rune-AI@users.noreply.github.com>
RunningLeon <maningsheng@sensetime.com>
RunningLeon <mnsheng@yeah.net>
Ryan Landay <rlanday@gmail.com>
Ryder Wishart <ryderwishart@gmail.com>
Ryuei <louixs@users.noreply.github.com>
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
SXX <sxx1136965276@gmail.com>
SakuraUmi <yukinon244@gmail.com>
Salvador E. Tropea <stropea@inti.gob.ar>
Salvatore Mesoraca <s.mesoraca16@gmail.com>
Sam Spilsbury <smspillaz@gmail.com>
Sami Farin <3876865+Safari77@users.noreply.github.com>
Samuel Maynard <samwmaynard@gmail.com>
@ -463,23 +624,29 @@ Sebastián A <sebastian.aedo29@gmail.com>
SebastianApel <13675545+SebastianApel@users.noreply.github.com>
Senemu <10880819+Senemu@users.noreply.github.com>
Sergey Alirzaev <zl29ah@gmail.com>
Sergio López <slp@redhat.com>
Sergio López <slp@sinrega.org>
Sertaç Özercan <852750+sozercan@users.noreply.github.com>
SeungWon Jeong <65549245+redlion0929@users.noreply.github.com>
ShadovvBeast <ShadovvBeast@gmail.com>
Shakhar Dasgupta <shakhardasgupta@gmail.com>
Shane A <shanea@allenai.org>
Shangning Xu <32517059+xushangning@users.noreply.github.com>
Shankar <gshankar.87@gmail.com>
Shanshan Shen <467638484@qq.com>
Shijie <821898965@qq.com>
Shintarou Okada <kokuzen@gmail.com>
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
Shouzheng Liu <lshzh.hi@gmail.com>
Shuichi Tsutsumi <shuichi0526@gmail.com>
Shupei Fan <dymarkfan@outlook.com>
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Simon Willison <swillison@gmail.com>
Siwen Yu <yusiwen@gmail.com>
Sky Yan <skyan83@gmail.com>
Slaren <2141330+slaren@users.noreply.github.com>
Slava Primenko <primenko.s@gmail.com>
Small Grass Forest <zixuanxcl@gmail.com>
SoftwareRenderer <138734813+SoftwareRenderer@users.noreply.github.com>
Someone <sergei.kozlukov@aalto.fi>
Someone Serge <sergei.kozlukov@aalto.fi>
@ -491,25 +658,33 @@ Stefan Sydow <stefan@sydow.email>
Steffen Röcker <sroecker@gmail.com>
Stephan Walter <stephan@walter.name>
Stephen Nichols <snichols@users.noreply.github.com>
Steve Bonds <sbonds@gmail.com>
Steve Grubb <ausearch.1@gmail.com>
Steven Prichard <spprichard20@gmail.com>
Steven Roussey <sroussey@gmail.com>
Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
StrangeBytesDev <141275258+StrangeBytesDev@users.noreply.github.com>
Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com>
Sukriti Sharma <Ssukriti@users.noreply.github.com>
SuperUserNameMan <yoann@terminajones.com>
Sutou Kouhei <kou@cozmixng.org>
Tai Duc Nguyen <taiducnguyen.drexel@gmail.com>
Taikono-Himazin <kazu@po.harenet.ne.jp>
Tameem <113388789+AhmadTameem@users.noreply.github.com>
Tamotsu Takahashi <ttakah+github@gmail.com>
Tei Home <taiteitonghome@proton.me>
Thái Hoàng Tâm <75922889+RoyalHeart@users.noreply.github.com>
Thatcher Chamberlin <j.thatcher.c@gmail.com>
Theia Vogel <theia@vgel.me>
Thérence <13496987+Royalphax@users.noreply.github.com>
Thibault Terrasson <thibault.terrasson@gmail.com>
Thomas Klausner <wiz@gatalith.at>
Thorsten Sommer <SommerEngineering@users.noreply.github.com>
Tim Miller <drasticactions@users.noreply.github.com>
Tim Wang <overocean@gmail.com>
Timmy Knight <r2d2fish@gmail.com>
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Ting Lou <louting@189.cn>
Ting Lou <ting.lou@gmail.com>
Ting Sun <suntcrick@gmail.com>
Tobias Lütke <tobi@shopify.com>
@ -517,32 +692,44 @@ Tom C <tom.corelis@gmail.com>
Tom Jobbins <784313+TheBloke@users.noreply.github.com>
Tomas <tom.tomas.36478119@gmail.com>
Tomáš Pazdiora <tomas.pazdiora@gmail.com>
Tony Wasserka <4840017+neobrain@users.noreply.github.com>
Tristan Druyen <tristan@vault81.mozmail.com>
Tristan Ross <rosscomputerguy@protonmail.com>
Trivikram Kamat <16024985+trivikr@users.noreply.github.com>
Tungsten842 <886724vf@anonaddy.me>
Tungsten842 <quantmint@protonmail.com>
Tushar <ditsuke@protonmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com>
Ujjawal Panchal <31011628+Ujjawal-K-Panchal@users.noreply.github.com>
Ulrich Drepper <drepper@gmail.com>
Uzo Nweke <uzoechi@gmail.com>
Vaibhav Srivastav <vaibhavs10@gmail.com>
Val Kharitonov <mail@kharvd.com>
Valentin Konovalov <valle.ketsujin@gmail.com>
Valentin Mamedov <45292985+Inf1delis@users.noreply.github.com>
Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com>
Vali Malinoiu <0x4139@gmail.com>
Victor Nogueira <felladrin@gmail.com>
Victor Z. Peng <ziliangdotme@gmail.com>
Viet-Anh NGUYEN (Andrew) <vietanh.dev@gmail.com>
Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
Vlad <spitfireage@gmail.com>
Vladimir <bogdad@gmail.com>
Vladimir Malyutin <first-leon@yandex.ru>
Vladimir Zorin <vladimir@deviant.guru>
VoidIsVoid <343750470@qq.com>
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
Wang Qin <37098874+wangqin0@users.noreply.github.com>
Wang Ran (汪然) <wangr@smail.nju.edu.cn>
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
Weird Constructor <weirdconstructor@gmail.com>
Welby Seely <welbyseely@gmail.com>
Wentai Zhang <rchardx@gmail.com>
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
William Tambellini <william.tambellini@gmail.com>
William Tambellini <wtambellini@sdl.com>
Willy Tarreau <w@1wt.eu>
Woof Dog <197125663+woof-dog@users.noreply.github.com>
Wouter <9594229+DifferentialityDevelopment@users.noreply.github.com>
Wu Jian Ping <wujjpp@hotmail.com>
Wu Jian Ping <wujp@greatld.com>
@ -551,15 +738,25 @@ Xiang (Kevin) Li <kevinli020508@gmail.com>
Xiao-Yong Jin <jinxiaoyong@gmail.com>
XiaotaoChen <chenxiaotao1234@gmail.com>
Xiaoyi Chen <cxychina@gmail.com>
Xie Yanbo <xieyanbo@gmail.com>
Xingchen Song(宋星辰) <xingchensong1996@163.com>
Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com>
Xuan Son Nguyen <thichthat@gmail.com>
Xuan-Son Nguyen <thichthat@gmail.com>
Yaiko <elyaiko@hotmail.com>
Yann Follet <131855179+YannFollet@users.noreply.github.com>
Yaroslav <yaroslav.yashin@me.com>
Yazan Agha-Schrader <mountaiin@icloud.com>
Yiming Cui <conandiy@vip.qq.com>
Yishuo Wang <MeouSker77@outlook.com>
Yoshi Suhara <y.suhara@gmail.com>
Yoshi Suhara <ysuhara@nvidia.com>
Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com>
Yüg <eugeniosegalaweb@gmail.com>
Yui <dev@sleepyyui.com>
Yun Dou <dixyes@gmail.com>
Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Yusuf Kağan Hanoğlu <hanoglu@yahoo.com>
Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com>
ZHAOKAI WANG <sanxianwei@163.com>
@ -568,19 +765,27 @@ Zay <95888118+isaiahbjork@users.noreply.github.com>
Zenix <zenixls2@gmail.com>
Zhang Peiyuan <a1286225768@gmail.com>
Zheng.Deng <32841220+dengzheng-cloud@users.noreply.github.com>
Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com>
Zhiyuan Li <lizhiyuan@uniartisan.com>
Zhiyuan Li <uniartisan2017@gmail.com>
ZhouYuChen <zhouyuchen@naver.com>
Ziad Ben Hadj-Alouane <zied.benhadjalouane@gmail.com>
Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com>
Zsapi <martin1.zsapka@gmail.com>
a-n-n-a-l-e-e <150648636+a-n-n-a-l-e-e@users.noreply.github.com>
a3sh <38979186+A3shTnT@users.noreply.github.com>
adel boussaken <netdur@gmail.com>
afrideva <95653597+afrideva@users.noreply.github.com>
ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com>
agray3 <agray3@users.noreply.github.com>
akawrykow <142945436+akawrykow@users.noreply.github.com>
alek3y <44779186+alek3y@users.noreply.github.com>
alexpinel <93524949+alexpinel@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
alwqx <kenan3015@gmail.com>
amd-dwang <dong.wang@amd.com>
amd-lalithnc <lalithnc@amd.com>
amritahs-ibm <amritahs@linux.vnet.ibm.com>
andrijdavid <david@geek.mg>
anon998 <131767832+anon998@users.noreply.github.com>
anzz1 <anzz1@live.com>
@ -588,24 +793,31 @@ apaz <aarpazdera@gmail.com>
apcameron <37645737+apcameron@users.noreply.github.com>
arch-btw <57669023+arch-btw@users.noreply.github.com>
arcrank <arcrank@gmail.com>
ardfork <134447697+ardfork@users.noreply.github.com>
arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com>
aryantandon01 <80969509+aryantandon01@users.noreply.github.com>
at8u <129688334+at8u@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com>
awatuna <23447591+awatuna@users.noreply.github.com>
b4b4o <zwbao@foxmail.com>
bandoti <141645996+bandoti@users.noreply.github.com>
beiller <beiller@gmail.com>
bhubbb <79117352+bhubbb@users.noreply.github.com>
bmwl <brian.marshall@tolko.com>
bobqianic <129547291+bobqianic@users.noreply.github.com>
brucepro <git@brucepro.net>
bryanSwk <93190252+bryanSwk@users.noreply.github.com>
bsilvereagle <bsilvereagle@users.noreply.github.com>
bssrdf <merlintiger@hotmail.com>
byte-6174 <88070277+byte-6174@users.noreply.github.com>
cduk <19917266+cduk@users.noreply.github.com>
cebtenzzre <cebtenzzre@gmail.com>
chaihahaha <chai836275709@gmail.com>
chiranko <96988916+chiranko@users.noreply.github.com>
clibdev <52199778+clibdev@users.noreply.github.com>
clyang <clyang@clyang.net>
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
codezjx <code.zjx@gmail.com>
coezbek <c.oezbek@gmail.com>
comex <comexk@gmail.com>
compilade <113953597+compilade@users.noreply.github.com>
@ -614,10 +826,14 @@ cpumaxx <163466046+cpumaxx@users.noreply.github.com>
crasm <crasm@git.vczf.net>
crasm <crasm@git.vczf.us>
daboe01 <daboe01@googlemail.com>
daghanerdonmez <44506702+daghanerdonmez@users.noreply.github.com>
daminho <37615795+daminho@users.noreply.github.com>
david raistrick <keen99@users.noreply.github.com>
ddh0 <dylanhalladay02@icloud.com>
ddpasa <112642920+ddpasa@users.noreply.github.com>
deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
devojony <61173062+devojony@users.noreply.github.com>
ditsuke <ditsuke@protonmail.com>
divinity76 <divinity76@gmail.com>
dm4 <sunrisedm4@gmail.com>
dotpy314 <33351922+dotpy314@users.noreply.github.com>
@ -625,18 +841,25 @@ drbh <david.richard.holtz@gmail.com>
ds5t5 <145942675+ds5t5@users.noreply.github.com>
dylan <canardleteer@users.noreply.github.com>
eastriver <lee@eastriver.dev>
ebraminio <ebrahim@gnu.org>
ebraminio <ebraminio@gmail.com>
eiery <19350831+eiery@users.noreply.github.com>
eric8607242 <e0928021388@gmail.com>
fairydreaming <166155368+fairydreaming@users.noreply.github.com>
fengerhu1 <2748250768@qq.com>
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
gliptic <gliptic@users.noreply.github.com>
gn64 <yukikaze.jp@gmail.com>
goerch <jhr.walter@t-online.de>
grahameth <96447521+grahameth@users.noreply.github.com>
gtygo <gtydoit@gmail.com>
gwjr <502526+gwjr@users.noreply.github.com>
h-h-h-h <13482553+h-h-h-h@users.noreply.github.com>
hankcs <cnhankmc@gmail.com>
haopeng <657407891@qq.com>
hipudding <huafengchun@gmail.com>
hoangmit <hoangmit@users.noreply.github.com>
hongbo.mo <352280764@qq.com>
hopkins385 <98618192+hopkins385@users.noreply.github.com>
@ -649,12 +872,16 @@ hxer7963 <hxer7963@gmail.com>
hydai <z54981220@gmail.com>
iSma <ismail.senhaji@gmail.com>
iacore <74560659+iacore@users.noreply.github.com>
icppWorld <124377669+icppWorld@users.noreply.github.com>
igarnier <igarnier@protonmail.com>
intelmatt <61025942+intelmatt@users.noreply.github.com>
iohub <rickyang.pro@gmail.com>
issixx <46835150+issixx@users.noreply.github.com>
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
jameswu2014 <545426914@qq.com>
jdomke <28772296+jdomke@users.noreply.github.com>
jiahao su <damow890@gmail.com>
jiez <373447296@qq.com>
jneem <joeneeman@gmail.com>
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
@ -667,6 +894,7 @@ junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
jwj7140 <32943891+jwj7140@users.noreply.github.com>
k.h.lai <adrian.k.h.lai@outlook.com>
kaizau <kaizau@users.noreply.github.com>
kallewoof <kalle.alm@gmail.com>
kalomaze <66376113+kalomaze@users.noreply.github.com>
kang <tpdns9032100@gmail.com>
katsu560 <118887472+katsu560@users.noreply.github.com>
@ -674,32 +902,46 @@ kchro3 <62481661+kchro3@users.noreply.github.com>
khimaros <me@khimaros.com>
kiltyj <kiltyj@gmail.com>
klosax <131523366+klosax@users.noreply.github.com>
krystiancha <krystian@krystianch.com>
kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com>
kunnis <kunnis@users.noreply.github.com>
kuronekosaiko <EvanChanJ@163.com>
kustaaya <58045274+kustaaya@users.noreply.github.com>
kuvaus <22169537+kuvaus@users.noreply.github.com>
kwin1412 <42286931+kwin1412@users.noreply.github.com>
l3utterfly <gc.pthzfoldr@gmail.com>
laik <laik.lj@me.com>
ldwang <ftgreat@163.com>
le.chang <cljs118@126.com>
leejet <leejet714@gmail.com>
leo-pony <nengjunma@outlook.com>
lexasub <lexakopp2212@gmail.com>
lhez <quic_lih@quicinc.com>
limitedAtonement <limitedAtonement@users.noreply.github.com>
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
lon <114724657+longregen@users.noreply.github.com>
loonerin <132926317+loonerin@users.noreply.github.com>
ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
luoyu-intel <yu.luo@intel.com>
m3ndax <adrian.goessl@outlook.com>
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
mahorozte <41834471+mahorozte@users.noreply.github.com>
makomk <makosoft@googlemail.com>
manikbhandari <mbbhandarimanik2@gmail.com>
maor-ps <154728172+maor-ps@users.noreply.github.com>
mashdragon <122402293+mashdragon@users.noreply.github.com>
matiaslin <45382001+matiaslin@users.noreply.github.com>
matt23654 <matthew.webber@protonmail.com>
matteo <matteogeniaccio@yahoo.it>
mdrokz <mohammadmunshi@gmail.com>
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
minarchist <minarchist@users.noreply.github.com>
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
mmyjona <jonathan.gonse@gmail.com>
momonga <115213907+mmnga@users.noreply.github.com>
momonga <146910567+mmngays@users.noreply.github.com>
moritzbrantner <31051084+moritzbrantner@users.noreply.github.com>
musoles <135031143+musoles@users.noreply.github.com>
mzcu <milos.cubrilo@gmail.com>
nanahi <130121847+na-na-hi@users.noreply.github.com>
ngc92 <7938269+ngc92@users.noreply.github.com>
@ -716,16 +958,21 @@ omahs <73983677+omahs@users.noreply.github.com>
oobabooga <112222186+oobabooga@users.noreply.github.com>
opparco <parco.opaai@gmail.com>
ostix360 <55257054+ostix360@users.noreply.github.com>
pculliton <phillipculliton@gmail.com>
peidaqi <peidaqi@gmail.com>
pengxin99 <pengxin.yuan@intel.com>
perserk <perserk@gmail.com>
piDack <104877312+piDack@users.noreply.github.com>
pmysl <piotr.myslinski@outlook.com>
postmasters <namnguyen@google.com>
pudepiedj <pudepiedj@gmail.com>
qingfengfenga <41416092+qingfengfenga@users.noreply.github.com>
qingy1337 <qxli2@students.everettcc.edu>
qouoq <qouoq@fastmail.com>
qunash <anzoria@gmail.com>
rabidcopy <rabidcopy@yahoo.com>
rankaiyx <rankaiyx@rankaiyx.com>
redbeard <bharrington@alticon.net>
rhjdvsgsgks <26178113+rhjdvsgsgks@users.noreply.github.com>
rhuddleston <ryan.huddleston@percona.com>
rimoliga <53384203+rimoliga@users.noreply.github.com>
@ -733,6 +980,7 @@ runfuture <runfuture@users.noreply.github.com>
sandyiscool <sandyiscool@gmail.com>
sasha0552 <admin@sasha0552.org>
semidark <me@semidark.net>
serhii-nakon <57632032+serhii-nakon@users.noreply.github.com>
sharpHL <132747147+sharpHL@users.noreply.github.com>
shibe2 <shibe@tuta.io>
singularity <12184989+singularity-s0@users.noreply.github.com>
@ -741,42 +989,59 @@ sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
slaren <2141330+slaren@users.noreply.github.com>
slaren <slarengh@gmail.com>
snadampal <87143774+snadampal@users.noreply.github.com>
someone13574 <81528246+someone13574@users.noreply.github.com>
standby24x7 <standby24x7@gmail.com>
staviq <staviq@gmail.com>
stduhpf <stephduh@live.fr>
strawberrymelonpanda <152940198+strawberrymelonpanda@users.noreply.github.com>
swittk <switt1995@gmail.com>
takov751 <40316768+takov751@users.noreply.github.com>
tarcey <cey.tarik@gmail.com>
tc-mb <157115220+tc-mb@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thement <40525767+thement@users.noreply.github.com>
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
tjohnman <tjohnman@users.noreply.github.com>
toyer <2042519524@qq.com>
tslmy <tslmy@users.noreply.github.com>
ubik2 <ubik2@users.noreply.github.com>
uint256_t <konndennsa@gmail.com>
uint256_t <maekawatoshiki1017@gmail.com>
unbounded <haakon@likedan.net>
uvos <devnull@uvos.xyz>
uvos <philipp@uvos.xyz>
valiray <133289098+valiray@users.noreply.github.com>
vb <vaibhavs10@gmail.com>
vik <vikhyatk@gmail.com>
viric <viric@viric.name>
vodkaslime <646329483@qq.com>
vvhg1 <94630311+vvhg1@users.noreply.github.com>
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
wangshuai09 <391746016@qq.com>
wbpxre150 <100937007+wbpxre150@users.noreply.github.com>
whoreson <139810751+whoreson@users.noreply.github.com>
woachk <24752637+woachk@users.noreply.github.com>
wonjun Jang <strutive07@gmail.com>
woodx <124784234+woodx9@users.noreply.github.com>
wwoodsTM <104587230+wwoodsTM@users.noreply.github.com>
wzy <32936898+Freed-Wu@users.noreply.github.com>
xaedes <xaedes@gmail.com>
xaedes <xaedes@googlemail.com>
xctan <axunlei@gmail.com>
xloem <0xloem@gmail.com>
yangli2 <yangli2@gmail.com>
ymcki <84055651+ymcki@users.noreply.github.com>
yuiseki <yuiseki@gmail.com>
yuri@FreeBSD <yurivict@users.noreply.github.com>
zakkor <edward.partenie@gmail.com>
zhangkaihuo <zhangkaihuo@gmail.com>
zhentaoyu <zhentao.yu@intel.com>
zhouwg <6889919+zhouwg@users.noreply.github.com>
zhouwg <zhouwg2000@gmail.com>
zrm <trustiosity.zrm@gmail.com>
Ștefan-Gabriel Muscalu <legraphista@users.noreply.github.com>
杨朱 · Kiki <baofa.fan@daocloud.io>
源文雨 <41315874+fumiama@users.noreply.github.com>
蕭澧邦 <45505768+shou692199@users.noreply.github.com>
谢乃闻 <sienaiwun@users.noreply.github.com>
Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com>

View file

@ -16,6 +16,7 @@ endif()
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(LLAMA_STANDALONE ON)
@ -46,6 +47,13 @@ if (WIN32)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
endif()
if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/bigobj>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
endif()
#
# option list
#
@ -72,16 +80,15 @@ option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
# override ggml options
set(GGML_SANITIZE_THREAD ${LLAMA_SANITIZE_THREAD})
set(GGML_SANITIZE_ADDRESS ${LLAMA_SANITIZE_ADDRESS})
set(GGML_SANITIZE_UNDEFINED ${LLAMA_SANITIZE_UNDEFINED})
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
# change the default for these ggml options
if (NOT DEFINED GGML_LLAMAFILE)
@ -111,16 +118,62 @@ llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD)
message(STATUS "Using -fsanitize=thread")
add_compile_options(-fsanitize=thread)
link_libraries (-fsanitize=thread)
endif()
if (LLAMA_SANITIZE_ADDRESS)
message(STATUS "Using -fsanitize=address")
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
link_libraries (-fsanitize=address)
endif()
if (LLAMA_SANITIZE_UNDEFINED)
message(STATUS "Using -fsanitize=undefined")
add_compile_options(-fsanitize=undefined)
link_libraries (-fsanitize=undefined)
endif()
endif()
#
# build the library
# 3rd-party
#
if (NOT TARGET ggml)
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
#
# build the library
#
add_subdirectory(src)
#
# utils, programs, examples and tests
#
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest)
add_subdirectory(tests)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()
#
# install
#
@ -136,25 +189,14 @@ set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location o
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
set(LLAMA_PUBLIC_HEADERS
${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h
${CMAKE_CURRENT_SOURCE_DIR}/include/llama-cpp.h)
# At the moment some compile definitions are placed within the ggml/src
# directory but not exported on the `ggml` target. This could be improved by
# determining _precisely_ which defines are necessary for the llama-config
# package.
#
set(GGML_TRANSIENT_DEFINES)
get_target_property(GGML_DIRECTORY ggml SOURCE_DIR)
get_directory_property(GGML_DIR_DEFINES DIRECTORY ${GGML_DIRECTORY} COMPILE_DEFINITIONS)
if (GGML_DIR_DEFINES)
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_DIR_DEFINES})
endif()
get_target_property(GGML_TARGET_DEFINES ggml COMPILE_DEFINITIONS)
if (GGML_TARGET_DEFINES)
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES})
endif()
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
set_target_properties(llama
PROPERTIES
PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h)
install(TARGETS llama LIBRARY PUBLIC_HEADER)
configure_package_config_file(
@ -191,22 +233,4 @@ configure_file(cmake/llama.pc.in
@ONLY)
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
DESTINATION lib/pkgconfig)
#
# utils, programs, examples and tests
#
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest)
add_subdirectory(tests)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)

View file

@ -24,11 +24,19 @@
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
}
},
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
{ "name": "vulkan", "hidden": true, "cacheVariables": { "GGML_VULKAN": "ON" } },
{
"name": "x64-windows-llvm", "hidden": true,
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/x64-windows-llvm.cmake"
}
},
{
"name": "arm64-windows-msvc", "hidden": true,
@ -48,21 +56,42 @@
}
},
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
{
"name": "arm64-apple-clang", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-apple-clang.cmake"
}
},
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-llvm-debug", "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
{ "name": "arm64-apple-clang-debug", "inherits": [ "base", "arm64-apple-clang", "debug" ] },
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
{ "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] },
{ "name": "x64-windows-llvm-debug", "inherits": [ "base", "x64-windows-llvm", "debug" ] },
{ "name": "x64-windows-llvm-release", "inherits": [ "base", "x64-windows-llvm", "release" ] },
{ "name": "x64-windows-llvm-reldbg", "inherits": [ "base", "x64-windows-llvm", "reldbg" ] },
{ "name": "x64-windows-llvm+static-release", "inherits": [ "base", "x64-windows-llvm", "reldbg", "static" ] },
{ "name": "x64-windows-msvc-debug", "inherits": [ "base", "debug" ] },
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] },
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
{ "name": "x64-windows-sycl-debug", "inherits": [ "sycl-base", "debug" ] },
{ "name": "x64-windows-sycl-debug-f16", "inherits": [ "sycl-base", "debug", "sycl_f16" ] },
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] },
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] }
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] },
{ "name": "x64-windows-vulkan-debug", "inherits": [ "base", "vulkan", "debug" ] },
{ "name": "x64-windows-vulkan-release", "inherits": [ "base", "vulkan", "release" ] }
]
}

11
CODEOWNERS Normal file
View file

@ -0,0 +1,11 @@
# collaborators can optionally add themselves here to indicate their availability for reviewing related PRs
/ci/ @ggerganov
/.devops/*.Dockerfile @ngxson
/examples/server/ @ngxson
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/gguf.cpp @JohannesGaessler

View file

@ -1,9 +1,10 @@
# Pull requests (for contributors)
- Test your changes:
- Using the commands in the [`tests`](tests) folder. For instance, running the `./tests/test-backend-ops` command tests different backend implementations of the `ggml` library
- Execute [the full CI locally on your machine](ci/README.md) before publishing
- Optionally rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs
- Execute [the full CI locally on your machine](ci/README.md) before publishing
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
@ -12,20 +13,111 @@
- Squash-merge PRs
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
# Coding guidelines
- Avoid adding third-party dependencies, extra files, extra headers, etc.
- Always consider cross-compatibility with other operating systems and architectures
- Avoid fancy-looking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
- Vertical alignment makes things more readable and easier to batch edit
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
- Naming usually optimizes for common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
- Use sized integer types such as `int32_t` in the public API, e.g. `size_t` may also be appropriate for allocation sizes or byte offsets
- Declare structs with `struct foo {}` instead of `typedef struct foo {} foo`
- In C++ code omit optional `struct` and `enum` keyword whenever they are not necessary
```cpp
// OK
llama_context * ctx;
const llama_rope_type rope_type;
// not OK
struct llama_context * ctx;
const enum llama_rope_type rope_type;
```
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline.)_
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
![matmul](media/matmul.png)
# Naming guidelines
- Use `snake_case` for function, variable and type names
- Naming usually optimizes for longest common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
```cpp
// not OK
int small_number;
int big_number;
// OK
int number_small;
int number_big;
```
- Enum values are always in upper case and prefixed with the enum name
```cpp
enum llama_vocab_type {
LLAMA_VOCAB_TYPE_NONE = 0,
LLAMA_VOCAB_TYPE_SPM = 1,
LLAMA_VOCAB_TYPE_BPE = 2,
LLAMA_VOCAB_TYPE_WPM = 3,
LLAMA_VOCAB_TYPE_UGM = 4,
LLAMA_VOCAB_TYPE_RWKV = 5,
};
```
- The general naming pattern is `<class>_<method>`, with `<method>` being `<action>_<noun>`
```cpp
llama_model_init(); // class: "llama_model", method: "init"
llama_sampler_chain_remove(); // class: "llama_sampler_chain", method: "remove"
llama_sampler_get_seed(); // class: "llama_sampler", method: "get_seed"
llama_set_embeddings(); // class: "llama_context", method: "set_embeddings"
llama_n_threads(); // class: "llama_context", method: "n_threads"
llama_adapter_lora_free(); // class: "llama_adapter_lora", method: "free"
```
- The `get` `<action>` can be omitted
- The `<noun>` can be omitted if not necessary
- The `_context` suffix of the `<class>` is optional. Use it to disambiguate symbols when needed
- Use `init`/`free` for constructor/destructor `<action>`
- Use the `_t` suffix when a type is supposed to be opaque to the user - it's not relevant to them if it is a struct or anything else
```cpp
typedef struct llama_context * llama_context_t;
enum llama_pooling_type llama_pooling_type(const llama_context_t ctx);
```
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline)_
- C/C++ filenames are all lowercase with dashes. Headers use the `.h` extension. Source files use the `.c` or `.cpp` extension
- Python filenames are all lowercase with underscores
- _(TODO: abbreviations usage)_
# Preprocessor directives
- _(TODO: add guidelines with examples and apply them to the codebase)_
```cpp
#ifdef FOO
#endif // FOO
```
# Documentation
- Documentation is a community effort
- When you need to look into the source code to figure out how to use an API consider adding a short summary to the header file for future reference
- When you notice incorrect or outdated documentation, please update it
# Resources
The Github issues, PRs and discussions contain a lot of information that can be useful to get familiar with the codebase. For convenience, some of the more important information is referenced from Github projects:

676
Makefile
View file

@ -1,7 +1,10 @@
ifndef LLAMA_MAKEFILE
$(error The Makefile build is deprecated. Use the CMake build instead. For more details, see https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
endif
# Define the default target now so that it is always the first target
BUILD_TARGETS = \
libllava.a \
llama-baby-llama \
llama-batched \
llama-batched-bench \
llama-bench \
@ -19,6 +22,7 @@ BUILD_TARGETS = \
llama-infill \
llama-llava-cli \
llama-minicpmv-cli\
llama-qwen2vl-cli\
llama-lookahead \
llama-lookup \
llama-lookup-create \
@ -34,6 +38,8 @@ BUILD_TARGETS = \
llama-save-load-state \
llama-server \
llama-simple \
llama-simple-chat \
llama-run \
llama-speculative \
llama-tokenize \
llama-vdot \
@ -46,16 +52,15 @@ TEST_TARGETS = \
tests/test-arg-parser \
tests/test-autorelease \
tests/test-backend-ops \
tests/test-chat \
tests/test-chat-template \
tests/test-double-float \
tests/test-grad0 \
tests/test-grammar-integration \
tests/test-grammar-parser \
tests/test-json-schema-to-grammar \
tests/test-llama-grammar \
tests/test-log \
tests/test-model-load-cancel \
tests/test-opt \
tests/test-quantize-fns \
tests/test-quantize-perf \
tests/test-rope \
@ -63,6 +68,7 @@ TEST_TARGETS = \
tests/test-tokenizer-0 \
tests/test-tokenizer-1-bpe \
tests/test-tokenizer-1-spm
# tests/test-opt \
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
@ -93,11 +99,6 @@ GGML_METAL := 1
DEPRECATE_WARNING := 1
endif
ifdef LLAMA_OPENMP
GGML_OPENMP := 1
DEPRECATE_WARNING := 1
endif
ifdef LLAMA_RPC
GGML_RPC := 1
DEPRECATE_WARNING := 1
@ -256,11 +257,11 @@ endif
# Compile flags
#
# keep standard at C11 and C++11
MK_CPPFLAGS = -Iggml/include -Iggml/src -Iinclude -Isrc -Icommon
# keep standard at C11 and C++17
MK_CPPFLAGS = -Iggml/include -Iggml/src -Iinclude -Isrc -Icommon -DGGML_USE_CPU
MK_CFLAGS = -std=c11 -fPIC
MK_CXXFLAGS = -std=c++11 -fPIC
MK_NVCCFLAGS = -std=c++11
MK_CXXFLAGS = -std=c++17 -fPIC
MK_NVCCFLAGS = -std=c++17
ifdef LLAMA_NO_CCACHE
GGML_NO_CCACHE := 1
@ -296,6 +297,7 @@ endif
# some memory allocation are available on Linux through GNU extensions in libc
ifeq ($(UNAME_S),Linux)
MK_CPPFLAGS += -D_GNU_SOURCE
MK_LDFLAGS += -ldl
endif
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
@ -364,6 +366,10 @@ ifdef LLAMA_SERVER_SSL
MK_LDFLAGS += -lssl -lcrypto
endif
ifndef GGML_NO_CPU_AARCH64
MK_CPPFLAGS += -DGGML_USE_CPU_AARCH64
endif
# warnings
WARN_FLAGS = \
-Wall \
@ -441,6 +447,10 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
MK_CFLAGS += -march=native -mtune=native
HOST_CXXFLAGS += -march=native -mtune=native
# Usage AMX build test
#MK_CFLAGS += -march=graniterapids -mtune=graniterapids
#HOST_CXXFLAGS += -march=graniterapids -mtune=graniterapids
# Usage AVX-only
#MK_CFLAGS += -mfma -mf16c -mavx
#MK_CXXFLAGS += -mfma -mf16c -mavx
@ -528,68 +538,65 @@ ifndef GGML_NO_ACCELERATE
# Mac OS - include Accelerate framework.
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
ifeq ($(UNAME_S),Darwin)
MK_CPPFLAGS += -DGGML_USE_ACCELERATE -DGGML_USE_BLAS
MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK
MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64
MK_LDFLAGS += -framework Accelerate
OBJ_GGML += ggml/src/ggml-blas.o
MK_CPPFLAGS += -DGGML_USE_ACCELERATE -DGGML_USE_BLAS -DGGML_BLAS_USE_ACCELERATE
MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK
MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64
MK_LDFLAGS += -framework Accelerate
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
endif
endif # GGML_NO_ACCELERATE
ifdef GGML_MUSA
CC := clang
CXX := clang++
GGML_CUDA := 1
MK_CPPFLAGS += -DGGML_USE_MUSA
endif
ifndef GGML_NO_OPENMP
MK_CPPFLAGS += -DGGML_USE_OPENMP
MK_CFLAGS += -fopenmp
MK_CXXFLAGS += -fopenmp
ifdef GGML_MUSA
MK_CPPFLAGS += -I/usr/lib/llvm-10/include/openmp
MK_LDFLAGS += -L/usr/lib/llvm-10/lib
endif # GGML_MUSA
endif # GGML_NO_OPENMP
ifdef GGML_OPENBLAS
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas)
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
MK_LDFLAGS += $(shell pkg-config --libs openblas)
OBJ_GGML += ggml/src/ggml-blas.o
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas)
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
MK_LDFLAGS += $(shell pkg-config --libs openblas)
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
endif # GGML_OPENBLAS
ifdef GGML_OPENBLAS64
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas64)
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas64)
MK_LDFLAGS += $(shell pkg-config --libs openblas64)
OBJ_GGML += ggml/src/ggml-blas.o
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas64)
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas64)
MK_LDFLAGS += $(shell pkg-config --libs openblas64)
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
endif # GGML_OPENBLAS64
ifdef GGML_BLIS
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_BLIS -I/usr/local/include/blis -I/usr/include/blis
MK_LDFLAGS += -lblis -L/usr/local/lib
OBJ_GGML += ggml/src/ggml-blas.o
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_BLIS -I/usr/local/include/blis -I/usr/include/blis
MK_LDFLAGS += -lblis -L/usr/local/lib
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
endif # GGML_BLIS
ifdef GGML_NVPL
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_NVPL -DNVPL_ILP64 -I/usr/local/include/nvpl_blas -I/usr/include/nvpl_blas
MK_LDFLAGS += -L/usr/local/lib -lnvpl_blas_core -lnvpl_blas_ilp64_gomp
OBJ_GGML += ggml/src/ggml-blas.o
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_NVPL -DNVPL_ILP64 -I/usr/local/include/nvpl_blas -I/usr/include/nvpl_blas
MK_LDFLAGS += -L/usr/local/lib -lnvpl_blas_core -lnvpl_blas_ilp64_gomp
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
endif # GGML_NVPL
ifndef GGML_NO_LLAMAFILE
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
OBJ_GGML += ggml/src/llamafile/sgemm.o
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
OBJ_GGML_EXT += ggml/src/ggml-cpu/llamafile/sgemm.o
endif
ifndef GGML_NO_AMX
MK_CPPFLAGS += -DGGML_USE_AMX
OBJ_GGML_EXT += ggml/src/ggml-cpu/amx/amx.o ggml/src/ggml-cpu/amx/mmq.o
endif
# only necessary for the CPU backend files
MK_CPPFLAGS += -Iggml/src/ggml-cpu
ifdef GGML_RPC
MK_CPPFLAGS += -DGGML_USE_RPC
OBJ_GGML += ggml/src/ggml-rpc.o
MK_CPPFLAGS += -DGGML_USE_RPC
OBJ_GGML_EXT += ggml/src/ggml-rpc.o
endif # GGML_RPC
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-wmma*.cu))
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-mma*.cu))
OBJ_CUDA_TMPL += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/mmq*.cu))
ifdef GGML_CUDA_FA_ALL_QUANTS
@ -601,41 +608,27 @@ else
endif # GGML_CUDA_FA_ALL_QUANTS
ifdef GGML_CUDA
ifdef GGML_MUSA
ifneq ('', '$(wildcard /opt/musa)')
CUDA_PATH ?= /opt/musa
else
CUDA_PATH ?= /usr/local/musa
endif
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include
MK_LDFLAGS += -lmusa -lmublas -lmusart -lpthread -ldl -lrt -L$(CUDA_PATH)/lib -L/usr/lib64
MK_NVCCFLAGS += -x musa -mtgpu --cuda-gpu-arch=mp_21 --cuda-gpu-arch=mp_22
ifneq ('', '$(wildcard /opt/cuda)')
CUDA_PATH ?= /opt/cuda
else
ifneq ('', '$(wildcard /opt/cuda)')
CUDA_PATH ?= /opt/cuda
else
CUDA_PATH ?= /usr/local/cuda
endif
CUDA_PATH ?= /usr/local/cuda
endif
MK_CPPFLAGS += -DGGML_USE_CUDA -DGGML_CUDA_USE_GRAPHS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib
MK_NVCCFLAGS += -use_fast_math
endif # GGML_MUSA
MK_CPPFLAGS += -DGGML_USE_CUDA -DGGML_CUDA_USE_GRAPHS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib
MK_NVCCFLAGS += -use_fast_math
OBJ_GGML += ggml/src/ggml-cuda.o
OBJ_GGML += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML += $(OBJ_CUDA_TMPL)
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
ifdef LLAMA_FATAL_WARNINGS
MK_NVCCFLAGS += -Werror all-warnings
endif # LLAMA_FATAL_WARNINGS
ifndef GGML_MUSA
ifndef JETSON_EOL_MODULE_DETECT
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
endif # JETSON_EOL_MODULE_DETECT
endif # GGML_MUSA
ifdef LLAMA_DEBUG
MK_NVCCFLAGS += -lineinfo
@ -648,11 +641,7 @@ endif # GGML_CUDA_DEBUG
ifdef GGML_CUDA_NVCC
NVCC = $(CCACHE) $(GGML_CUDA_NVCC)
else
ifdef GGML_MUSA
NVCC = $(CCACHE) mcc
else
NVCC = $(CCACHE) nvcc
endif # GGML_MUSA
NVCC = $(CCACHE) nvcc
endif # GGML_CUDA_NVCC
ifdef CUDA_DOCKER_ARCH
@ -661,10 +650,6 @@ else ifndef CUDA_POWER_ARCH
MK_NVCCFLAGS += -arch=native
endif # CUDA_DOCKER_ARCH
ifdef GGML_CUDA_FORCE_DMMV
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_DMMV
endif # GGML_CUDA_FORCE_DMMV
ifdef GGML_CUDA_FORCE_MMQ
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_MMQ
endif # GGML_CUDA_FORCE_MMQ
@ -673,20 +658,6 @@ ifdef GGML_CUDA_FORCE_CUBLAS
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_CUBLAS
endif # GGML_CUDA_FORCE_CUBLAS
ifdef GGML_CUDA_DMMV_X
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(GGML_CUDA_DMMV_X)
else
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
endif # GGML_CUDA_DMMV_X
ifdef GGML_CUDA_MMV_Y
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(GGML_CUDA_MMV_Y)
else ifdef GGML_CUDA_DMMV_Y
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(GGML_CUDA_DMMV_Y) # for backwards compatibility
else
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=1
endif # GGML_CUDA_MMV_Y
ifdef GGML_CUDA_F16
MK_NVCCFLAGS += -DGGML_CUDA_F16
endif # GGML_CUDA_F16
@ -695,12 +666,6 @@ ifdef GGML_CUDA_DMMV_F16
MK_NVCCFLAGS += -DGGML_CUDA_F16
endif # GGML_CUDA_DMMV_F16
ifdef GGML_CUDA_KQUANTS_ITER
MK_NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(GGML_CUDA_KQUANTS_ITER)
else
MK_NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
endif
ifdef GGML_CUDA_PEER_MAX_BATCH_SIZE
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(GGML_CUDA_PEER_MAX_BATCH_SIZE)
else
@ -724,15 +689,9 @@ define NVCC_COMPILE
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endef # NVCC_COMPILE
else
ifdef GGML_MUSA
define NVCC_COMPILE
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -c $< -o $@
endef # NVCC_COMPILE
else
define NVCC_COMPILE
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endef # NVCC_COMPILE
endif # GGML_MUSA
endif # JETSON_EOL_MODULE_DETECT
ggml/src/ggml-cuda/%.o: \
@ -742,8 +701,8 @@ ggml/src/ggml-cuda/%.o: \
ggml/src/ggml-cuda/common.cuh
$(NVCC_COMPILE)
ggml/src/ggml-cuda.o: \
ggml/src/ggml-cuda.cu \
ggml/src/ggml-cuda/ggml-cuda.o: \
ggml/src/ggml-cuda/ggml-cuda.cu \
ggml/include/ggml-cuda.h \
ggml/include/ggml.h \
ggml/include/ggml-backend.h \
@ -754,9 +713,9 @@ ggml/src/ggml-cuda.o: \
endif # GGML_CUDA
ifdef GGML_VULKAN
MK_CPPFLAGS += -DGGML_USE_VULKAN
MK_LDFLAGS += $(shell pkg-config --libs vulkan)
OBJ_GGML += ggml/src/ggml-vulkan.o ggml/src/ggml-vulkan-shaders.o
MK_CPPFLAGS += -DGGML_USE_VULKAN
MK_LDFLAGS += $(shell pkg-config --libs vulkan)
OBJ_GGML_EXT += ggml/src/ggml-vulkan.o ggml/src/ggml-vulkan-shaders.o
ifdef GGML_VULKAN_CHECK_RESULTS
MK_CPPFLAGS += -DGGML_VULKAN_CHECK_RESULTS
@ -786,10 +745,10 @@ GLSLC_CMD = glslc
_ggml_vk_genshaders_cmd = $(shell pwd)/vulkan-shaders-gen
_ggml_vk_header = ggml/src/ggml-vulkan-shaders.hpp
_ggml_vk_source = ggml/src/ggml-vulkan-shaders.cpp
_ggml_vk_input_dir = ggml/src/vulkan-shaders
_ggml_vk_input_dir = ggml/src/ggml-vulkan/vulkan-shaders
_ggml_vk_shader_deps = $(echo $(_ggml_vk_input_dir)/*.comp)
ggml/src/ggml-vulkan.o: ggml/src/ggml-vulkan.cpp ggml/include/ggml-vulkan.h $(_ggml_vk_header) $(_ggml_vk_source)
ggml/src/ggml-vulkan.o: ggml/src/ggml-vulkan/ggml-vulkan.cpp ggml/include/ggml-vulkan.h $(_ggml_vk_header) $(_ggml_vk_source)
$(CXX) $(CXXFLAGS) $(shell pkg-config --cflags vulkan) -c $< -o $@
$(_ggml_vk_header): $(_ggml_vk_source)
@ -801,12 +760,12 @@ $(_ggml_vk_source): $(_ggml_vk_shader_deps) vulkan-shaders-gen
--target-hpp $(_ggml_vk_header) \
--target-cpp $(_ggml_vk_source)
vulkan-shaders-gen: ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp
$(CXX) $(CXXFLAGS) -o $@ $(LDFLAGS) ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp
vulkan-shaders-gen: ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp
$(CXX) $(CXXFLAGS) -o $@ $(LDFLAGS) ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp
endif # GGML_VULKAN
ifdef GGML_HIPBLAS
ifdef GGML_HIP
ifeq ($(wildcard /opt/rocm),)
ROCM_PATH ?= /usr
AMDGPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
@ -815,11 +774,7 @@ ifdef GGML_HIPBLAS
AMDGPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
endif
GGML_CUDA_DMMV_X ?= 32
GGML_CUDA_MMV_Y ?= 1
GGML_CUDA_KQUANTS_ITER ?= 2
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
MK_CPPFLAGS += -DGGML_USE_HIP -DGGML_USE_CUDA
ifdef GGML_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA
@ -832,13 +787,6 @@ endif # GGML_HIP_UMA
HIPCC ?= $(CCACHE) $(ROCM_PATH)/bin/hipcc
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(GGML_CUDA_DMMV_X)
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(GGML_CUDA_MMV_Y)
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(GGML_CUDA_KQUANTS_ITER)
ifdef GGML_CUDA_FORCE_DMMV
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
endif # GGML_CUDA_FORCE_DMMV
ifdef GGML_CUDA_FORCE_MMQ
HIPFLAGS += -DGGML_CUDA_FORCE_MMQ
@ -852,12 +800,12 @@ ifdef GGML_CUDA_NO_PEER_COPY
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # GGML_CUDA_NO_PEER_COPY
OBJ_GGML += ggml/src/ggml-cuda.o
OBJ_GGML += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML += $(OBJ_CUDA_TMPL)
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
ggml/src/ggml-cuda.o: \
ggml/src/ggml-cuda.cu \
ggml/src/ggml-cuda/ggml-cuda.o: \
ggml/src/ggml-cuda/ggml-cuda.cu \
ggml/include/ggml-cuda.h \
ggml/include/ggml.h \
ggml/include/ggml-backend.h \
@ -872,72 +820,173 @@ ggml/src/ggml-cuda/%.o: \
ggml/src/ggml-common.h \
ggml/src/ggml-cuda/common.cuh
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif # GGML_HIPBLAS
endif # GGML_HIP
ifdef GGML_MUSA
ifeq ($(wildcard /opt/musa),)
MUSA_PATH ?= /usr/local/musa
else
MUSA_PATH ?= /opt/musa
endif
MUSA_ARCHITECTURES ?= 21;22
MK_CPPFLAGS += -DGGML_USE_MUSA -DGGML_USE_CUDA
MK_LDFLAGS += -L$(MUSA_PATH)/lib -Wl,-rpath=$(MUSA_PATH)/lib
MK_LDFLAGS += -lmusa -lmusart -lmublas
ifndef GGML_NO_OPENMP
# For Ubuntu Focal
MK_CPPFLAGS += -I/usr/lib/llvm-10/include/openmp
MK_LDFLAGS += -L/usr/lib/llvm-10/lib
# For Ubuntu Jammy
MK_CPPFLAGS += -I/usr/lib/llvm-14/lib/clang/14.0.0/include
MK_LDFLAGS += -L/usr/lib/llvm-14/lib
endif # GGML_NO_OPENMP
CC := $(MUSA_PATH)/bin/clang
CXX := $(MUSA_PATH)/bin/clang++
MCC := $(CCACHE) $(MUSA_PATH)/bin/mcc
MUSAFLAGS = -x musa -mtgpu
MUSAFLAGS += $(foreach arch,$(subst ;, ,$(MUSA_ARCHITECTURES)),--cuda-gpu-arch=mp_$(arch))
ifdef GGML_CUDA_FORCE_MMQ
MUSAFLAGS += -DGGML_CUDA_FORCE_MMQ
endif # GGML_CUDA_FORCE_MMQ
ifdef GGML_CUDA_FORCE_CUBLAS
MUSAFLAGS += -DGGML_CUDA_FORCE_CUBLAS
endif # GGML_CUDA_FORCE_CUBLAS
ifdef GGML_CUDA_F16
MUSAFLAGS += -DGGML_CUDA_F16
endif # GGML_CUDA_F16
ifdef GGML_CUDA_DMMV_F16
MUSAFLAGS += -DGGML_CUDA_F16
endif # GGML_CUDA_DMMV_F16
ifdef GGML_CUDA_PEER_MAX_BATCH_SIZE
MUSAFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(GGML_CUDA_PEER_MAX_BATCH_SIZE)
else
MUSAFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
endif # GGML_CUDA_PEER_MAX_BATCH_SIZE
ifdef GGML_CUDA_NO_PEER_COPY
MUSAFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # GGML_CUDA_NO_PEER_COPY
ifdef GGML_CUDA_FA_ALL_QUANTS
MUSAFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
endif # GGML_CUDA_FA_ALL_QUANTS
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
ggml/src/ggml-cuda/ggml-cuda.o: \
ggml/src/ggml-cuda/ggml-cuda.cu \
ggml/include/ggml-cuda.h \
ggml/include/ggml.h \
ggml/include/ggml-backend.h \
ggml/src/ggml-backend-impl.h \
ggml/src/ggml-common.h \
$(wildcard ggml/src/ggml-cuda/*.cuh)
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -c -o $@ $<
ggml/src/ggml-cuda/%.o: \
ggml/src/ggml-cuda/%.cu \
ggml/include/ggml.h \
ggml/src/ggml-common.h \
ggml/src/ggml-cuda/common.cuh
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -c -o $@ $<
endif # GGML_MUSA
ifdef GGML_METAL
MK_CPPFLAGS += -DGGML_USE_METAL
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
OBJ_GGML += ggml/src/ggml-metal.o
MK_CPPFLAGS += -DGGML_USE_METAL
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
OBJ_GGML_EXT += ggml/src/ggml-metal/ggml-metal.o
ifdef GGML_METAL_USE_BF16
MK_CPPFLAGS += -DGGML_METAL_USE_BF16
endif # GGML_METAL_USE_BF16
ifdef GGML_METAL_NDEBUG
MK_CPPFLAGS += -DGGML_METAL_NDEBUG
endif
ifdef GGML_METAL_EMBED_LIBRARY
MK_CPPFLAGS += -DGGML_METAL_EMBED_LIBRARY
OBJ_GGML += ggml/src/ggml-metal-embed.o
MK_CPPFLAGS += -DGGML_METAL_EMBED_LIBRARY
OBJ_GGML_EXT += ggml/src/ggml-metal-embed.o
endif
endif # GGML_METAL
ifdef GGML_METAL
ggml/src/ggml-metal.o: \
ggml/src/ggml-metal.m \
ggml/src/ggml-metal/ggml-metal.o: \
ggml/src/ggml-metal/ggml-metal.m \
ggml/src/ggml-metal/ggml-metal-impl.h \
ggml/include/ggml-metal.h \
ggml/include/ggml.h
$(CC) $(CFLAGS) -c $< -o $@
ifdef GGML_METAL_EMBED_LIBRARY
ggml/src/ggml-metal-embed.o: \
ggml/src/ggml-metal.metal \
ggml/src/ggml-metal/ggml-metal.metal \
ggml/src/ggml-metal/ggml-metal-impl.h \
ggml/src/ggml-common.h
@echo "Embedding Metal library"
@sed -e '/#include "ggml-common.h"/r ggml/src/ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml/src/ggml-metal.metal > ggml/src/ggml-metal-embed.metal
@sed -e '/__embed_ggml-common.h__/r ggml/src/ggml-common.h' -e '/__embed_ggml-common.h__/d' < ggml/src/ggml-metal/ggml-metal.metal > ggml/src/ggml-metal/ggml-metal-embed.metal.tmp
@sed -e '/#include "ggml-metal-impl.h"/r ggml/src/ggml-metal/ggml-metal-impl.h' -e '/#include "ggml-metal-impl.h"/d' < ggml/src/ggml-metal/ggml-metal-embed.metal.tmp > ggml/src/ggml-metal/ggml-metal-embed.metal
$(eval TEMP_ASSEMBLY=$(shell mktemp -d))
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".incbin \"ggml/src/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".incbin \"ggml/src/ggml-metal/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
$(CC) $(CFLAGS) -c $(TEMP_ASSEMBLY)/ggml-metal-embed.s -o $@
@rm -f ${TEMP_ASSEMBLY}/ggml-metal-embed.s
@rmdir ${TEMP_ASSEMBLY}
endif
endif # GGML_METAL
OBJ_GGML += \
ggml/src/ggml.o \
ggml/src/ggml-alloc.o \
ggml/src/ggml-backend.o \
ggml/src/ggml-quants.o \
ggml/src/ggml-aarch64.o
DIR_GGML = ggml
DIR_LLAMA = src
DIR_COMMON = common
OBJ_GGML = \
$(DIR_GGML)/src/ggml.o \
$(DIR_GGML)/src/ggml-alloc.o \
$(DIR_GGML)/src/ggml-backend.o \
$(DIR_GGML)/src/ggml-backend-reg.o \
$(DIR_GGML)/src/ggml-opt.o \
$(DIR_GGML)/src/ggml-quants.o \
$(DIR_GGML)/src/ggml-threading.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu_cpp.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-aarch64.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-hbm.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-quants.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-traits.o \
$(OBJ_GGML_EXT)
OBJ_LLAMA = \
src/llama.o \
src/llama-vocab.o \
src/llama-grammar.o \
src/llama-sampling.o \
src/unicode.o \
src/unicode-data.o
$(DIR_LLAMA)/llama.o \
$(DIR_LLAMA)/llama-vocab.o \
$(DIR_LLAMA)/llama-grammar.o \
$(DIR_LLAMA)/llama-sampling.o \
$(DIR_LLAMA)/unicode.o \
$(DIR_LLAMA)/unicode-data.o
OBJ_COMMON = \
common/common.o \
common/arg.o \
common/log.o \
common/console.o \
common/ngram-cache.o \
common/sampling.o \
common/train.o \
common/build-info.o \
common/json-schema-to-grammar.o
$(DIR_COMMON)/common.o \
$(DIR_COMMON)/arg.o \
$(DIR_COMMON)/log.o \
$(DIR_COMMON)/console.o \
$(DIR_COMMON)/ngram-cache.o \
$(DIR_COMMON)/sampling.o \
$(DIR_COMMON)/speculative.o \
$(DIR_COMMON)/chat.o \
$(DIR_COMMON)/build-info.o \
$(DIR_COMMON)/json-schema-to-grammar.o
OBJ_ALL = $(OBJ_GGML) $(OBJ_LLAMA) $(OBJ_COMMON)
@ -993,7 +1042,6 @@ $(info I CXX: $(shell $(CXX) --version | head -n 1))
ifdef GGML_CUDA
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])')
ifndef GGML_MUSA
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
ifndef CUDA_DOCKER_ARCH
@ -1003,7 +1051,6 @@ endif # CUDA_POWER_ARCH
endif # CUDA_DOCKER_ARCH
endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1)
endif # GGML_MUSA
endif # GGML_CUDA
$(info )
@ -1040,209 +1087,78 @@ endif
# Build libraries
#
# ggml
# Libraries
LIB_GGML = libggml.so
LIB_GGML_S = libggml.a
ggml/src/ggml.o: \
ggml/src/ggml.c \
ggml/include/ggml.h
$(CC) $(CFLAGS) -c $< -o $@
LIB_LLAMA = libllama.so
LIB_LLAMA_S = libllama.a
ggml/src/ggml-alloc.o: \
ggml/src/ggml-alloc.c \
ggml/include/ggml.h \
ggml/include/ggml-alloc.h
$(CC) $(CFLAGS) -c $< -o $@
LIB_COMMON = libcommon.so
LIB_COMMON_S = libcommon.a
ggml/src/ggml-backend.o: \
ggml/src/ggml-backend.cpp \
ggml/src/ggml-backend-impl.h \
ggml/include/ggml.h \
ggml/include/ggml-backend.h
$(CXX) $(CXXFLAGS) -c $< -o $@
# Targets
BUILD_TARGETS += $(LIB_GGML) $(LIB_GGML_S) $(LIB_LLAMA) $(LIB_LLAMA_S) $(LIB_COMMON) $(LIB_COMMON_S)
ggml/src/ggml-quants.o: \
ggml/src/ggml-quants.c \
ggml/include/ggml.h \
ggml/src/ggml-quants.h \
ggml/src/ggml-common.h
$(CC) $(CFLAGS) -c $< -o $@
# Dependency files
DEP_FILES = $(OBJ_GGML:.o=.d) $(OBJ_LLAMA:.o=.d) $(OBJ_COMMON:.o=.d)
ggml/src/ggml-aarch64.o: \
ggml/src/ggml-aarch64.c \
ggml/include/ggml.h \
ggml/src/ggml-aarch64.h \
ggml/src/ggml-common.h
$(CC) $(CFLAGS) -c $< -o $@
# Default target
all: $(BUILD_TARGETS)
ggml/src/ggml-blas.o: \
ggml/src/ggml-blas.cpp \
ggml/include/ggml-blas.h
$(CXX) $(CXXFLAGS) -c $< -o $@
# force c++ build for source file that have same name as c file
# Note: need this exception because `ggml-cpu.c` and `ggml-cpu.cpp` both produce the same obj/dep files
$(DIR_GGML)/%_cpp.o: $(DIR_GGML)/%.cpp
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
ifndef GGML_NO_LLAMAFILE
ggml/src/llamafile/sgemm.o: \
ggml/src/llamafile/sgemm.cpp \
ggml/src/llamafile/sgemm.h \
ggml/include/ggml.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif # GGML_NO_LLAMAFILE
# Rules for building object files
$(DIR_GGML)/%.o: $(DIR_GGML)/%.c
$(CC) $(CFLAGS) -MMD -c $< -o $@
ifdef GGML_RPC
ggml/src/ggml-rpc.o: \
ggml/src/ggml-rpc.cpp \
ggml/include/ggml-rpc.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif # GGML_RPC
$(DIR_GGML)/%.o: $(DIR_GGML)/%.cpp
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
$(LIB_GGML): \
$(OBJ_GGML)
$(DIR_LLAMA)/%.o: $(DIR_LLAMA)/%.cpp
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
$(DIR_COMMON)/%.o: $(DIR_COMMON)/%.cpp
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
# Rules for building libraries
$(LIB_GGML): $(OBJ_GGML)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
$(LIB_GGML_S): \
$(OBJ_GGML)
$(LIB_GGML_S): $(OBJ_GGML)
ar rcs $(LIB_GGML_S) $^
# llama
src/unicode.o: \
src/unicode.cpp \
src/unicode.h
$(CXX) $(CXXFLAGS) -c $< -o $@
src/unicode-data.o: \
src/unicode-data.cpp \
src/unicode-data.h
$(CXX) $(CXXFLAGS) -c $< -o $@
src/llama.o: \
src/llama.cpp \
src/llama-impl.h \
src/llama-vocab.h \
src/llama-grammar.h \
src/llama-sampling.h \
src/unicode.h \
include/llama.h \
ggml/include/ggml-cuda.h \
ggml/include/ggml-metal.h \
ggml/include/ggml.h \
ggml/include/ggml-alloc.h \
ggml/include/ggml-backend.h
$(CXX) $(CXXFLAGS) -c $< -o $@
src/llama-vocab.o: \
src/llama-vocab.cpp \
src/llama-vocab.h \
src/llama-impl.h \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
src/llama-grammar.o: \
src/llama-grammar.cpp \
src/llama-grammar.h \
src/llama-impl.h \
src/llama-vocab.h \
src/llama-sampling.h \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
src/llama-sampling.o: \
src/llama-sampling.cpp \
src/llama-sampling.h \
src/llama-impl.h \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
$(LIB_LLAMA): \
$(OBJ_LLAMA) \
$(LIB_GGML)
$(LIB_LLAMA): $(OBJ_LLAMA) $(LIB_GGML)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
$(LIB_LLAMA_S): \
$(OBJ_LLAMA)
$(LIB_LLAMA_S): $(OBJ_LLAMA)
ar rcs $(LIB_LLAMA_S) $^
# common
common/common.o: \
common/common.cpp \
common/common.h \
common/console.h \
common/sampling.h \
common/json.hpp \
common/json-schema-to-grammar.h \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/arg.o: \
common/arg.cpp \
common/arg.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/log.o: \
common/log.cpp \
common/log.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/sampling.o: \
common/sampling.cpp \
common/sampling.h \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/console.o: \
common/console.cpp \
common/console.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/json-schema-to-grammar.o: \
common/json-schema-to-grammar.cpp \
common/json-schema-to-grammar.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/train.o: \
common/train.cpp \
common/train.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/ngram-cache.o: \
common/ngram-cache.cpp \
common/ngram-cache.h
$(CXX) $(CXXFLAGS) -c $< -o $@
$(LIB_COMMON): \
$(OBJ_COMMON) \
$(LIB_LLAMA) \
$(LIB_GGML)
$(LIB_COMMON): $(OBJ_COMMON) $(LIB_LLAMA) $(LIB_GGML)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
$(LIB_COMMON_S): \
$(OBJ_COMMON)
$(LIB_COMMON_S): $(OBJ_COMMON)
ar rcs $(LIB_COMMON_S) $^
clean:
rm -vrf *.dot $(BUILD_TARGETS) $(TEST_TARGETS)
rm -rvf src/*.o
rm -rvf tests/*.o
rm -rvf examples/*.o
rm -rvf common/*.o
rm -rvf *.a
rm -rvf *.dll
rm -rvf *.so
rm -rvf *.dot
rm -rvf ggml/*.a
rm -rvf ggml/*.dll
rm -rvf ggml/*.so
rm -vrf ggml/src/*.o
rm -rvf ggml/src/llamafile/*.o
rm -rvf common/build-info.cpp
rm -vrf ggml/src/ggml-metal-embed.metal
rm -vrf ggml/src/ggml-cuda/*.o
rm -vrf ggml/src/ggml-cuda/template-instances/*.o
rm -rvf $(BUILD_TARGETS)
rm -rvf $(TEST_TARGETS)
rm -f vulkan-shaders-gen ggml/src/ggml-vulkan-shaders.hpp ggml/src/ggml-vulkan-shaders.cpp
rm -rvf $(LEGACY_TARGETS_CLEAN)
find examples pocs -type f -name "*.o" -delete
# Include dependency files
-include $(DEP_FILES)
# Clean generated server assets
clean-server-assets:
find examples/server -type f -name "*.js.hpp" -delete
find examples/server -type f -name "*.mjs.hpp" -delete
find examples/server -type f -name "*.css.hpp" -delete
find examples/server -type f -name "*.html.hpp" -delete
# Clean rule
clean: clean-server-assets
rm -vrf $(BUILD_TARGETS) $(TEST_TARGETS)
rm -rvf *.a *.dll *.so *.dot
find ggml src common tests examples pocs -type f -name "*.o" -delete
find ggml src common tests examples pocs -type f -name "*.d" -delete
#
# Examples
@ -1268,11 +1184,21 @@ llama-infill: examples/infill/infill.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-run: examples/run/run.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-simple: examples/simple/simple.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-simple-chat: examples/simple-chat/simple-chat.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-tokenize: examples/tokenize/tokenize.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
@ -1370,11 +1296,6 @@ llama-bench: examples/llama-bench/llama-bench.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-baby-llama: examples/baby-llama/baby-llama.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-export-lora: examples/export-lora/export-lora.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
@ -1440,30 +1361,19 @@ llama-server: \
examples/server/server.cpp \
examples/server/utils.hpp \
examples/server/httplib.h \
examples/server/colorthemes.css.hpp \
examples/server/style.css.hpp \
examples/server/theme-beeninorder.css.hpp \
examples/server/theme-ketivah.css.hpp \
examples/server/theme-mangotango.css.hpp \
examples/server/theme-playground.css.hpp \
examples/server/theme-polarnight.css.hpp \
examples/server/theme-snowstorm.css.hpp \
examples/server/index.html.hpp \
examples/server/index-new.html.hpp \
examples/server/index.js.hpp \
examples/server/completion.js.hpp \
examples/server/system-prompts.js.hpp \
examples/server/prompt-formats.js.hpp \
examples/server/json-schema-to-grammar.mjs.hpp \
examples/server/loading.html.hpp \
common/chat.cpp \
common/chat.hpp \
common/chat-template.hpp \
common/json.hpp \
common/stb_image.h \
common/minja.hpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
examples/server/%.hpp: examples/server/public/% Makefile
examples/server/%.hpp: examples/server/public/% FORCE Makefile
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
echo "unsigned char $${NAME}[] = {" && \
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
@ -1501,6 +1411,14 @@ llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
llama-qwen2vl-cli: examples/llava/qwen2vl-cli.cpp \
examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
examples/llava/clip.h \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
ifeq ($(UNAME_S),Darwin)
swift: examples/batched.swift
(cd examples/batched.swift; make build)
@ -1557,9 +1475,9 @@ tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp \
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-grad0: tests/test-grad0.cpp \
$(OBJ_GGML)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
tests/test-chat: tests/test-chat.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp \
@ -1643,7 +1561,7 @@ llama-q8dot: pocs/vdot/q8dot.cpp ggml/src/ggml.o \
# Deprecated binaries that we want to keep around long enough for people to migrate to the new filenames, then these can be removed.
#
# Mark legacy binary targets as .PHONY so that they are always checked.
.PHONY: main quantize perplexity embedding server
.PHONY: FORCE main quantize perplexity embedding server
# Define the object file target
examples/deprecation-warning/deprecation-warning.o: examples/deprecation-warning/deprecation-warning.cpp

View file

@ -2,48 +2,6 @@
import PackageDescription
var sources = [
"src/llama.cpp",
"src/llama-vocab.cpp",
"src/llama-grammar.cpp",
"src/llama-sampling.cpp",
"src/unicode.cpp",
"src/unicode-data.cpp",
"ggml/src/ggml.c",
"ggml/src/ggml-alloc.c",
"ggml/src/ggml-backend.cpp",
"ggml/src/ggml-quants.c",
"ggml/src/ggml-aarch64.c",
]
var resources: [Resource] = []
var linkerSettings: [LinkerSetting] = []
var cSettings: [CSetting] = [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.unsafeFlags(["-fno-objc-arc"]),
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
]
#if canImport(Darwin)
sources.append("ggml/src/ggml-metal.m")
resources.append(.process("ggml/src/ggml-metal.metal"))
linkerSettings.append(.linkedFramework("Accelerate"))
cSettings.append(
contentsOf: [
.define("GGML_USE_ACCELERATE"),
.define("GGML_USE_METAL")
]
)
#endif
#if os(Linux)
cSettings.append(.define("_GNU_SOURCE"))
#endif
let package = Package(
name: "llama",
platforms: [
@ -56,24 +14,6 @@ let package = Package(
.library(name: "llama", targets: ["llama"]),
],
targets: [
.target(
name: "llama",
path: ".",
exclude: [
"cmake",
"examples",
"scripts",
"models",
"tests",
"CMakeLists.txt",
"Makefile"
],
sources: sources,
resources: resources,
publicHeadersPath: "spm-headers",
cSettings: cSettings,
linkerSettings: linkerSettings
)
],
cxxLanguageStandard: .cxx11
.systemLibrary(name: "llama", pkgConfig: "llama"),
]
)

645
README.md
View file

@ -4,7 +4,6 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
[![Conan Center](https://shields.io/conan/v/llama-cpp)](https://conan.io/center/llama-cpp)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
@ -17,7 +16,12 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Hot topics
- **Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669**
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggerganov/llama.cpp/pull/11427
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
- Universal tool call support in `llama-server`: https://github.com/ggerganov/llama.cpp/pull/9639
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggerganov/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669
- Hugging Face GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
----
@ -25,24 +29,27 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Description
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
variety of hardware - locally and in the cloud.
range of hardware - locally and in the cloud.
- Plain C/C++ implementation without any dependencies
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2 and AVX512 support for x86 architectures
- AVX, AVX2, AVX512 and AMX support for x86 architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads MTT GPUs via MUSA)
- Vulkan and SYCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022), the project has
improved significantly thanks to many contributions. It is the main playground for developing new features for the
[ggml](https://github.com/ggerganov/ggml) library.
The `llama.cpp` project is the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
**Supported models:**
<details>
<summary>Models</summary>
Typically finetunes of the base models below are supported as well.
Instructions for adding support for new models: [HOWTO-add-model.md](docs/development/HOWTO-add-model.md)
#### Text-only
- [X] LLaMA 🦙
- [x] LLaMA 2 🦙🦙
- [x] LLaMA 3 🦙🦙🦙
@ -66,6 +73,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
- [x] [Phi models](https://huggingface.co/models?search=microsoft/phi)
- [x] [PhiMoE](https://github.com/ggerganov/llama.cpp/pull/11003)
- [x] [GPT-2](https://huggingface.co/gpt2)
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
@ -78,6 +86,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
- [x] [OLMo](https://allenai.org/olmo)
- [x] [OLMo 2](https://allenai.org/olmo)
- [x] [OLMoE](https://huggingface.co/allenai/OLMoE-1B-7B-0924)
- [x] [Granite models](https://huggingface.co/collections/ibm-granite/granite-code-models-6624c5cec322e4c148c8b330)
- [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia)
@ -87,16 +96,17 @@ Typically finetunes of the base models below are supported as well.
- [x] [Bitnet b1.58 models](https://huggingface.co/1bitLLM)
- [x] [Flan T5](https://huggingface.co/models?search=flan-t5)
- [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b)
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat)
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
- [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238d9b526a072408a)
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
**Multimodal models:**
#### Multimodal
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2)
- [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
@ -107,8 +117,13 @@ Typically finetunes of the base models below are supported as well.
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
- [x] [GLM-EDGE](https://huggingface.co/models?search=glm-edge)
- [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d)
**Bindings:**
</details>
<details>
<summary>Bindings</summary>
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
@ -121,324 +136,350 @@ Typically finetunes of the base models below are supported as well.
- Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs)
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
- Rust (automated build from crates.io): [ShelbyJenkins/llm_client](https://github.com/ShelbyJenkins/llm_client)
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
- C#/VB.NET (more features - community license): [LM-Kit.NET](https://docs.lm-kit.com/lm-kit-net/index.html)
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
- Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama)
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
**UI:**
</details>
Unless otherwise noted these projects are open-source with permissive licensing:
- [MindWorkAI/AI-Studio](https://github.com/MindWorkAI/AI-Studio) (FSL-1.1-MIT)
- [iohub/collama](https://github.com/iohub/coLLaMA)
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
- [nat/openplayground](https://github.com/nat/openplayground)
- [Faraday](https://faraday.dev/) (proprietary)
- [LMStudio](https://lmstudio.ai/) (proprietary)
- [Layla](https://play.google.com/store/apps/details?id=com.laylalite) (proprietary)
- [ramalama](https://github.com/containers/ramalama) (MIT)
- [LocalAI](https://github.com/mudler/LocalAI) (MIT)
- [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL)
- [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile)
- [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all)
- [ollama/ollama](https://github.com/ollama/ollama)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
- [RAGNA Desktop](https://ragna.app/) (proprietary)
- [RecurseChat](https://recurse.chat/) (proprietary)
- [semperai/amica](https://github.com/semperai/amica)
- [withcatai/catai](https://github.com/withcatai/catai)
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
- [Msty](https://msty.app) (proprietary)
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file)(Apachev2.0 or later)
- [Dot](https://github.com/alexpinel/Dot) (GPL)
- [MindMac](https://mindmac.app) (proprietary)
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
- [AIKit](https://github.com/sozercan/aikit) (MIT)
- [LARS - The LLM & Advanced Referencing Solution](https://github.com/abgulati/LARS) (AGPL)
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
- [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL)
<details>
<summary>UIs</summary>
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
**Tools:**
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
- [Dot](https://github.com/alexpinel/Dot) (GPL)
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0)
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0)
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
- [LARS](https://github.com/abgulati/LARS) (AGPL)
- [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL)
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
- [LMStudio](https://lmstudio.ai/) (proprietary)
- [LocalAI](https://github.com/mudler/LocalAI) (MIT)
- [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL)
- [MindMac](https://mindmac.app) (proprietary)
- [MindWorkAI/AI-Studio](https://github.com/MindWorkAI/AI-Studio) (FSL-1.1-MIT)
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
- [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile) (Apache-2.0)
- [nat/openplayground](https://github.com/nat/openplayground) (MIT)
- [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) (MIT)
- [ollama/ollama](https://github.com/ollama/ollama) (MIT)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL)
- [PocketPal AI](https://github.com/a-ghorbani/pocketpal-ai) (MIT)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat) (MIT)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal) (MIT)
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
- [ramalama](https://github.com/containers/ramalama) (MIT)
- [semperai/amica](https://github.com/semperai/amica) (MIT)
- [withcatai/catai](https://github.com/withcatai/catai) (MIT)
- [Autopen](https://github.com/blackhole89/autopen) (GPL)
</details>
<details>
<summary>Tools</summary>
- [akx/ggify](https://github.com/akx/ggify) download PyTorch models from HuggingFace Hub and convert them to GGML
- [akx/ollama-dl](https://github.com/akx/ollama-dl) download models from the Ollama library to be used directly with llama.cpp
- [crashr/gppm](https://github.com/crashr/gppm) launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with prebuild Mobile and Web platform wrappers and a model example)
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
**Infrastructure:**
</details>
<details>
<summary>Infrastructure</summary>
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server
- [Kalavai](https://github.com/kalavai-net/kalavai-client) - Crowdsource end to end LLM deployment at any scale
</details>
<details>
<summary>Games</summary>
**Games:**
- [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.
## Demo
<details>
<summary>Typical run using LLaMA v2 13B on M2 Ultra</summary>
```
$ make -j && ./llama-cli -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
I llama.cpp build info:
I UNAME_S: Darwin
I UNAME_P: arm
I UNAME_M: arm64
I CFLAGS: -I. -O3 -std=c11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -DGGML_USE_K_QUANTS -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -DGGML_USE_K_QUANTS
I LDFLAGS: -framework Accelerate
I CC: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
I CXX: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
make: Nothing to be done for `default'.
main: build = 1041 (cf658ad)
main: seed = 1692823051
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from models/llama-13b-v2/ggml-model-q4_0.gguf (version GGUF V1 (latest))
llama_model_loader: - type f32: 81 tensors
llama_model_loader: - type q4_0: 281 tensors
llama_model_loader: - type q6_K: 1 tensors
llm_load_print_meta: format = GGUF V1 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_ctx = 512
llm_load_print_meta: n_embd = 5120
llm_load_print_meta: n_head = 40
llm_load_print_meta: n_head_kv = 40
llm_load_print_meta: n_layer = 40
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff = 13824
llm_load_print_meta: freq_base = 10000.0
llm_load_print_meta: freq_scale = 1
llm_load_print_meta: model type = 13B
llm_load_print_meta: model ftype = mostly Q4_0
llm_load_print_meta: model size = 13.02 B
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.11 MB
llm_load_tensors: mem required = 7024.01 MB (+ 400.00 MB per state)
...................................................................................................
llama_new_context_with_model: kv self size = 400.00 MB
llama_new_context_with_model: compute buffer total size = 75.41 MB
system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 512, n_batch = 512, n_predict = 400, n_keep = 0
Building a website can be done in 10 simple steps:
Step 1: Find the right website platform.
Step 2: Choose your domain name and hosting plan.
Step 3: Design your website layout.
Step 4: Write your website content and add images.
Step 5: Install security features to protect your site from hackers or spammers
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc…
Step 7: Test it again with people who are not related to you personally friends or family members will work just fine!
Step 8: Start marketing and promoting the website via social media channels or paid ads
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc…
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
How does a Website Work?
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit whether its an image or text file (like PDFs). In order for someone elses browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
How to
llama_print_timings: load time = 576.45 ms
llama_print_timings: sample time = 283.10 ms / 400 runs ( 0.71 ms per token, 1412.91 tokens per second)
llama_print_timings: prompt eval time = 599.83 ms / 19 tokens ( 31.57 ms per token, 31.68 tokens per second)
llama_print_timings: eval time = 24513.59 ms / 399 runs ( 61.44 ms per token, 16.28 tokens per second)
llama_print_timings: total time = 25431.49 ms
```
</details>
<details>
<summary>Demo of running both LLaMA-7B and whisper.cpp on a single M1 Pro MacBook</summary>
And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:
https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4
</details>
## Usage
Here are the end-to-end binary build and model conversion steps for most supported models.
### Basic usage
Firstly, you need to get the binary. There are different methods that you can follow:
- Method 1: Clone this repository and build locally, see [how to build](./docs/build.md)
- Method 2: If you are using MacOS or Linux, you can install llama.cpp via [brew, flox or nix](./docs/install.md)
- Method 3: Use a Docker image, see [documentation for Docker](./docs/docker.md)
- Method 4: Download pre-built binary from [releases](https://github.com/ggerganov/llama.cpp/releases)
You can run a basic completion using this command:
```bash
llama-cli -m your_model.gguf -p "I believe the meaning of life is" -n 128
# Output:
# I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
```
See [this page](./examples/main/README.md) for a full list of parameters.
### Conversation mode
If you want a more ChatGPT-like experience, you can run in conversation mode by passing `-cnv` as a parameter:
```bash
llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv
# Output:
# > hi, who are you?
# Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
#
# > what is 1+1?
# Easy peasy! The answer to 1+1 is... 2!
```
By default, the chat template will be taken from the input model. If you want to use another chat template, pass `--chat-template NAME` as a parameter. See the list of [supported templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
```bash
./llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv --chat-template chatml
```
You can also use your own template via in-prefix, in-suffix and reverse-prompt parameters:
```bash
./llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
```
### Web server
[llama.cpp web server](./examples/server/README.md) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
Example usage:
```bash
./llama-server -m your_model.gguf --port 8080
# Basic web UI can be accessed via browser: http://localhost:8080
# Chat completion endpoint: http://localhost:8080/v1/chat/completions
```
### Interactive mode
> [!NOTE]
> If you prefer basic usage, please consider using conversation mode instead of interactive mode
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
Here is an example of a few-shot interaction, invoked with the command
```bash
# default arguments using a 7B model
./examples/chat.sh
# advanced chat with a 13B model
./examples/chat-13B.sh
# custom arguments using a 13B model
./llama-cli -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
```
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `llama-cli` example program.
![image](https://user-images.githubusercontent.com/1991296/224575029-2af3c7dc-5a65-4f64-a6bb-517a532aea38.png)
### Persistent Interaction
The prompt, user inputs, and model generations can be saved and resumed across calls to `./llama-cli` by leveraging `--prompt-cache` and `--prompt-cache-all`. The `./examples/chat-persistent.sh` script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as `chat-13B.sh`. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (`PROMPT_TEMPLATE`) and the model file.
```bash
# Start a new chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh
# Resume that chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh
# Start a different chat with the same prompt/model
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/another ./examples/chat-persistent.sh
# Different prompt cache for different prompt/model
PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh
```
### Constrained output with grammars
`llama.cpp` supports grammars to constrain model output. For example, you can force the model to output JSON only:
```bash
./llama-cli -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
```
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
## Build
Please refer to [Build llama.cpp locally](./docs/build.md)
## Supported backends
| Backend | Target devices |
| --- | --- |
| [Metal](./docs/build.md#metal-build) | Apple Silicon |
| [BLAS](./docs/build.md#blas-build) | All |
| [BLIS](./docs/backend/BLIS.md) | All |
| [SYCL](./docs/backend/SYCL.md) | Intel and Nvidia GPU |
| [MUSA](./docs/build.md#musa) | Moore Threads MTT GPU |
| [CUDA](./docs/build.md#cuda) | Nvidia GPU |
| [hipBLAS](./docs/build.md#hipblas) | AMD GPU |
| [Vulkan](./docs/build.md#vulkan) | GPU |
| [CANN](./docs/build.md#cann) | Ascend NPU |
| [Metal](docs/build.md#metal-build) | Apple Silicon |
| [BLAS](docs/build.md#blas-build) | All |
| [BLIS](docs/backend/BLIS.md) | All |
| [SYCL](docs/backend/SYCL.md) | Intel and Nvidia GPU |
| [MUSA](docs/build.md#musa) | Moore Threads MTT GPU |
| [CUDA](docs/build.md#cuda) | Nvidia GPU |
| [HIP](docs/build.md#hip) | AMD GPU |
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
## Tools
## Building the project
### Prepare and Quantize
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:
> [!NOTE]
> You can use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space on Hugging Face to quantise your model weights without any setup too. It is synced from `llama.cpp` main every 6 hours.
- Clone this repository and build locally, see [how to build](docs/build.md)
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
- Use a Docker image, see [documentation for Docker](docs/docker.md)
- Download pre-built binaries from [releases](https://github.com/ggerganov/llama.cpp/releases)
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
## Obtaining and quantizing models
Note: `convert.py` has been moved to `examples/convert_legacy_llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derivatives.
It does not support LLaMA 3, you can use `convert_hf_to_gguf.py` with LLaMA 3 downloaded from Hugging Face.
The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](https://huggingface.co/models?library=gguf&sort=trending) compatible with `llama.cpp`:
To learn more about quantizing model, [read this documentation](./examples/quantize/README.md)
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
### Perplexity (measuring model quality)
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from Hugging Face by using this CLI argument: `-hf <user>/<model>[:quant]`
You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better).
For more information, see [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity).
After downloading a model, use the CLI tools to run it locally - see below.
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with `llama.cpp`:
- Use the [GGUF-my-repo space](https://huggingface.co/spaces/ggml-org/gguf-my-repo) to convert to GGUF format and quantize model weights to smaller sizes
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggerganov/llama.cpp/discussions/10123)
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggerganov/llama.cpp/discussions/9268)
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggerganov/llama.cpp/discussions/9669)
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
## [`llama-cli`](examples/main)
#### A CLI tool for accessing and experimenting with most of `llama.cpp`'s functionality.
- <details open>
<summary>Run in conversation mode</summary>
Models with a built-in chat template will automatically activate conversation mode. If this doesn't occur, you can manually enable it by adding `-cnv` and specifying a suitable chat template with `--chat-template NAME`
```bash
llama-cli -m model.gguf
# > hi, who are you?
# Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
#
# > what is 1+1?
# Easy peasy! The answer to 1+1 is... 2!
```
</details>
- <details>
<summary>Run in conversation mode with custom chat template</summary>
```bash
# use the "chatml" template (use -h to see the list of supported templates)
llama-cli -m model.gguf -cnv --chat-template chatml
# use a custom template
llama-cli -m model.gguf -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
```
</details>
- <details>
<summary>Run simple text completion</summary>
To disable conversation mode explicitly, use `-no-cnv`
```bash
llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128 -no-cnv
# I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
```
</details>
- <details>
<summary>Constrain the output with a custom grammar</summary>
```bash
llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
# {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"}
```
The [grammars/](grammars/) folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](grammars/README.md).
For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/
</details>
## [`llama-server`](examples/server)
#### A lightweight, [OpenAI API](https://github.com/openai/openai-openapi) compatible, HTTP server for serving LLMs.
- <details open>
<summary>Start a local HTTP server with default configuration on port 8080</summary>
```bash
llama-server -m model.gguf --port 8080
# Basic web UI can be accessed via browser: http://localhost:8080
# Chat completion endpoint: http://localhost:8080/v1/chat/completions
```
</details>
- <details>
<summary>Support multiple-users and parallel decoding</summary>
```bash
# up to 4 concurrent requests, each with 4096 max context
llama-server -m model.gguf -c 16384 -np 4
```
</details>
- <details>
<summary>Enable speculative decoding</summary>
```bash
# the draft.gguf model should be a small variant of the target model.gguf
llama-server -m model.gguf -md draft.gguf
```
</details>
- <details>
<summary>Serve an embedding model</summary>
```bash
# use the /embedding endpoint
llama-server -m model.gguf --embedding --pooling cls -ub 8192
```
</details>
- <details>
<summary>Serve a reranking model</summary>
```bash
# use the /reranking endpoint
llama-server -m model.gguf --reranking
```
</details>
- <details>
<summary>Constrain all outputs with a grammar</summary>
```bash
# custom grammar
llama-server -m model.gguf --grammar-file grammar.gbnf
# JSON
llama-server -m model.gguf --grammar-file grammars/json.gbnf
```
</details>
## [`llama-perplexity`](examples/perplexity)
#### A tool for measuring the perplexity [^1][^2] (and other quality metrics) of a model over a given text.
- <details open>
<summary>Measure the perplexity over a text file</summary>
```bash
llama-perplexity -m model.gguf -f file.txt
# [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ...
# Final estimate: PPL = 5.4007 +/- 0.67339
```
</details>
- <details>
<summary>Measure KL divergence</summary>
```bash
# TODO
```
</details>
[^1]: [examples/perplexity/README.md](./examples/perplexity/README.md)
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
## [`llama-bench`](examples/llama-bench)
#### Benchmark the performance of the inference for various parameters.
- <details open>
<summary>Run default benchmark</summary>
```bash
llama-bench -m model.gguf
# Output:
# | model | size | params | backend | threads | test | t/s |
# | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |
# | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | pp512 | 5765.41 ± 20.55 |
# | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | tg128 | 197.71 ± 0.81 |
#
# build: 3e0ba0e60 (4229)
```
</details>
## [`llama-run`](examples/run)
#### A comprehensive example for running `llama.cpp` models. Useful for inferencing. Used with RamaLama [^3].
- <details>
<summary>Run a model with a specific prompt (by default it's pulled from Ollama registry)</summary>
```bash
llama-run granite-code
```
</details>
[^3]: [RamaLama](https://github.com/containers/ramalama)
## [`llama-simple`](examples/simple)
#### A minimal example for implementing apps with `llama.cpp`. Useful for developers.
- <details>
<summary>Basic text completion</summary>
```bash
llama-simple -m model.gguf
# Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of
```
</details>
To learn more how to measure perplexity using llama.cpp, [read this documentation](./examples/perplexity/README.md)
## Contributing
@ -451,22 +492,21 @@ To learn more how to measure perplexity using llama.cpp, [read this documentatio
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
## Other documentations
## Other documentation
- [main (cli)](./examples/main/README.md)
- [server](./examples/server/README.md)
- [jeopardy](./examples/jeopardy/README.md)
- [GBNF grammars](./grammars/README.md)
- [main (cli)](examples/main/README.md)
- [server](examples/server/README.md)
- [GBNF grammars](grammars/README.md)
**Development documentations**
#### Development documentation
- [How to build](./docs/build.md)
- [Running on Docker](./docs/docker.md)
- [Build on Android](./docs/android.md)
- [Performance troubleshooting](./docs/development/token_generation_performance_tips.md)
- [How to build](docs/build.md)
- [Running on Docker](docs/docker.md)
- [Build on Android](docs/android.md)
- [Performance troubleshooting](docs/development/token_generation_performance_tips.md)
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
**Seminal papers and background on the models**
#### Seminal papers and background on the models
If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
- LLaMA:
@ -477,3 +517,6 @@ If your issue is with model generation quality, then please at least scan the fo
- GPT-3.5 / InstructGPT / ChatGPT:
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
#### References

4
Sources/llama/llama.h Normal file
View file

@ -0,0 +1,4 @@
#pragma once
#include <llama.h>

View file

@ -0,0 +1,5 @@
module llama [system] {
header "llama.h"
link "llama"
export *
}

173
ci/run.sh
View file

@ -39,7 +39,7 @@ SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
@ -53,7 +53,7 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
exit 1
fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
@ -326,36 +326,36 @@ function gg_run_open_llama_7b_v2 {
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@ -460,34 +460,34 @@ function gg_run_pythia_1_4b {
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@ -591,36 +591,36 @@ function gg_run_pythia_2_8b {
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@ -706,8 +706,8 @@ function gg_run_embd_bge_small {
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
@ -752,7 +752,7 @@ function gg_run_rerank_tiny {
model_f16="${path_models}/ggml-model-f16.gguf"
# for this model, the SEP token is "</s>"
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
# sample output
# rerank score 0: 0.029
@ -815,7 +815,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
ln -sfn ${mnt_models} ${SRC}/models-mnt
# Create a fresh python3 venv and enter it
python3 -m venv "$MNT/venv"
if ! python3 -m venv "$MNT/venv"; then
echo "Error: Failed to create Python virtual environment at $MNT/venv."
exit 1
fi
source "$MNT/venv/bin/activate"
pip install -r ${SRC}/requirements.txt --disable-pip-version-check

View file

@ -0,0 +1,16 @@
set( CMAKE_SYSTEM_NAME Darwin )
set( CMAKE_SYSTEM_PROCESSOR arm64 )
set( target arm64-apple-darwin-macho )
set( CMAKE_C_COMPILER clang )
set( CMAKE_CXX_COMPILER clang++ )
set( CMAKE_C_COMPILER_TARGET ${target} )
set( CMAKE_CXX_COMPILER_TARGET ${target} )
set( arch_c_flags "-march=armv8.4-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )

View file

@ -44,7 +44,7 @@ if(MSVC)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
COMMAND sh -c "\"$@\" --version | head -1" _ ${CMAKE_C_COMPILER}
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)

33
cmake/common.cmake Normal file
View file

@ -0,0 +1,33 @@
function(llama_add_compile_flags)
if (LLAMA_FATAL_WARNINGS)
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
list(APPEND C_FLAGS -Werror)
list(APPEND CXX_FLAGS -Werror)
elseif (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
add_compile_options(/WX)
endif()
endif()
if (LLAMA_ALL_WARNINGS)
if (NOT MSVC)
list(APPEND C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
-Werror=implicit-int -Werror=implicit-function-declaration)
list(APPEND CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
list(APPEND WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
list(APPEND C_FLAGS ${WARNING_FLAGS})
list(APPEND CXX_FLAGS ${WARNING_FLAGS})
ggml_get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${C_FLAGS};${GF_C_FLAGS}>"
"$<$<COMPILE_LANGUAGE:CXX>:${CXX_FLAGS};${GF_CXX_FLAGS}>")
else()
# todo : msvc
set(C_FLAGS "" PARENT_SCOPE)
set(CXX_FLAGS "" PARENT_SCOPE)
endif()
endif()
endfunction()

View file

@ -3,88 +3,28 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
set(GGML_BLAS @GGML_BLAS@)
set(GGML_CUDA @GGML_CUDA@)
set(GGML_METAL @GGML_METAL@)
set(GGML_HIPBLAS @GGML_HIPBLAS@)
set(GGML_ACCELERATE @GGML_ACCELERATE@)
set(GGML_VULKAN @GGML_VULKAN@)
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
set(GGML_SYCL @GGML_SYCL@)
set(GGML_OPENMP @GGML_OPENMP@)
@PACKAGE_INIT@
set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
# Ensure transient dependencies satisfied
find_package(Threads REQUIRED)
if (APPLE AND GGML_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
endif()
if (GGML_BLAS)
find_package(BLAS REQUIRED)
endif()
if (GGML_CUDA)
find_package(CUDAToolkit REQUIRED)
endif()
if (GGML_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
endif()
if (GGML_VULKAN)
find_package(Vulkan REQUIRED)
endif()
if (GGML_HIPBLAS)
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
endif()
if (GGML_SYCL)
find_package(IntelSYCL REQUIRED)
find_package(MKL REQUIRED)
endif()
if (GGML_OPENMP)
find_package(OpenMP REQUIRED)
endif()
find_library(ggml_LIBRARY ggml
REQUIRED
HINTS ${LLAMA_LIB_DIR})
find_package(ggml REQUIRED HINTS ${LLAMA_LIB_DIR}/cmake)
find_library(llama_LIBRARY llama
REQUIRED
HINTS ${LLAMA_LIB_DIR})
set(_llama_link_deps "${ggml_LIBRARY}" "@GGML_LINK_LIBRARIES@")
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
HINTS ${LLAMA_LIB_DIR}
NO_CMAKE_FIND_ROOT_PATH
)
add_library(llama UNKNOWN IMPORTED)
set_target_properties(llama
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
INTERFACE_LINK_LIBRARIES "ggml::ggml;ggml::ggml-base;"
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
IMPORTED_LOCATION "${llama_LIBRARY}"
INTERFACE_COMPILE_FEATURES cxx_std_11
POSITION_INDEPENDENT_CODE ON )
INTERFACE_COMPILE_FEATURES c_std_90
POSITION_INDEPENDENT_CODE ON)
check_required_components(Llama)

View file

@ -1,10 +1,10 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include
exec_prefix=@CMAKE_INSTALL_PREFIX@
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
includedir=@CMAKE_INSTALL_FULL_INCLUDEDIR@
Name: llama
Description: Port of Facebook's LLaMA model in C/C++
Version: @PROJECT_VERSION@
Libs: -L${libdir} -lllama
Version: @LLAMA_INSTALL_VERSION@
Libs: -L${libdir} -lggml -lggml-base -lllama
Cflags: -I${includedir}

View file

@ -0,0 +1,11 @@
set( CMAKE_SYSTEM_NAME Windows )
set( CMAKE_SYSTEM_PROCESSOR x86_64 )
set( CMAKE_C_COMPILER clang )
set( CMAKE_CXX_COMPILER clang++ )
set( arch_c_flags "-march=native" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags}" )
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags}" )

View file

@ -2,6 +2,8 @@
find_package(Threads REQUIRED)
llama_add_compile_flags()
# Build info header
#
@ -54,20 +56,25 @@ add_library(${TARGET} STATIC
arg.cpp
arg.h
base64.hpp
chat.cpp
chat.hpp
chat-template.hpp
common.cpp
common.h
console.cpp
console.h
json-schema-to-grammar.cpp
json.hpp
llguidance.cpp
log.cpp
log.h
minja.hpp
ngram-cache.cpp
ngram-cache.h
sampling.cpp
sampling.h
train.cpp
train.h
speculative.cpp
speculative.h
)
if (BUILD_SHARED_LIBS)
@ -79,12 +86,39 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL REQUIRED)
add_definitions(-DLLAMA_USE_CURL)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
if (LLAMA_LLGUIDANCE)
include(ExternalProject)
set(LLGUIDANCE_SRC ${CMAKE_BINARY_DIR}/llguidance/source)
set(LLGUIDANCE_PATH ${LLGUIDANCE_SRC}/target/release)
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v0.6.12:
GIT_TAG ced1c9023d47ec194fa977932d35ce65c2ebfc09
PREFIX ${CMAKE_BINARY_DIR}/llguidance
SOURCE_DIR ${LLGUIDANCE_SRC}
BUILD_IN_SOURCE TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND cargo build --release
INSTALL_COMMAND ""
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/libllguidance.a ${LLGUIDANCE_PATH}/llguidance.h
UPDATE_COMMAND ""
)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_LLGUIDANCE)
add_library(llguidance STATIC IMPORTED)
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/libllguidance.a)
add_dependencies(llguidance llguidance_ext)
target_include_directories(${TARGET} PRIVATE ${LLGUIDANCE_PATH})
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance)
endif ()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features (${TARGET} PUBLIC cxx_std_11)
target_compile_features (${TARGET} PUBLIC cxx_std_17)
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)

File diff suppressed because it is too large Load diff

View file

@ -12,6 +12,7 @@
struct common_arg {
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
std::set<enum llama_example> excludes = {};
std::vector<const char *> args;
const char * value_hint = nullptr; // help text or example for arg value
const char * value_hint_2 = nullptr; // for second arg value
@ -53,9 +54,11 @@ struct common_arg {
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
common_arg & set_examples(std::initializer_list<enum llama_example> examples);
common_arg & set_excludes(std::initializer_list<enum llama_example> excludes);
common_arg & set_env(const char * env);
common_arg & set_sparam();
bool in_example(enum llama_example ex);
bool is_exclude(enum llama_example ex);
bool get_value_from_env(std::string & output);
bool has_value_from_env();
std::string to_string();

529
common/chat-template.hpp Normal file
View file

@ -0,0 +1,529 @@
/*
Copyright 2024 Google LLC
Use of this source code is governed by an MIT-style
license that can be found in the LICENSE file or at
https://opensource.org/licenses/MIT.
*/
// SPDX-License-Identifier: MIT
#pragma once
#include "minja.hpp"
#include <json.hpp>
#include <string>
#include <vector>
using json = nlohmann::ordered_json;
namespace minja {
struct chat_template_caps {
bool supports_tools = false;
bool supports_tool_calls = false;
bool supports_tool_responses = false;
bool supports_system_role = false;
bool supports_parallel_tool_calls = false;
bool supports_tool_call_id = false;
// meta-llama/Llama-3.1-8B-Instruct expects arguments to be an object.
// Most other templates (and OpenAI's API) expect the arguments object to be stringified.
bool requires_object_arguments = false;
// CohereForAI/c4ai-command-r-plus simple variant
bool requires_non_null_content = false;
// MiniMaxAI/MiniMax-Text-01 special
bool requires_typed_content = false;
};
struct chat_template_inputs {
nlohmann::ordered_json messages;
nlohmann::ordered_json tools;
bool add_generation_prompt = true;
nlohmann::ordered_json extra_context;
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
};
struct chat_template_options {
bool apply_polyfills = true;
bool use_bos_token = true;
bool use_eos_token = true;
bool define_strftime_now = true;
bool polyfill_tools = true;
bool polyfill_tool_call_examples = true;
bool polyfill_tool_calls = true;
bool polyfill_tool_responses = true;
bool polyfill_system_role = true;
bool polyfill_object_arguments = true;
bool polyfill_typed_content = true;
};
class chat_template {
private:
chat_template_caps caps_;
std::string source_;
std::string bos_token_;
std::string eos_token_;
std::shared_ptr<minja::TemplateNode> template_root_;
std::string tool_call_example_;
std::string try_raw_render(
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json()) const
{
try {
chat_template_inputs inputs;
inputs.messages = messages;
inputs.tools = tools;
inputs.add_generation_prompt = add_generation_prompt;
inputs.extra_context = extra_context;
// Use fixed date for tests
inputs.now = std::chrono::system_clock::from_time_t(0);
chat_template_options opts;
opts.apply_polyfills = false;
auto prompt = apply(inputs, opts);
// fprintf(stderr, "try_raw_render: %s\n", prompt.c_str());
return prompt;
} catch (const std::exception & e) {
// fprintf(stderr, "try_raw_render error: %s\n", e.what());
return "";
}
}
public:
chat_template(const std::string & source, const std::string & bos_token, const std::string & eos_token)
: source_(source), bos_token_(bos_token), eos_token_(eos_token)
{
template_root_ = minja::Parser::parse(source_, {
/* .trim_blocks = */ true,
/* .lstrip_blocks = */ true,
/* .keep_trailing_newline = */ false,
});
auto contains = [](const std::string & haystack, const std::string & needle) {
return haystack.find(needle) != std::string::npos;
};
const std::string user_needle = "<User Needle>";
const std::string sys_needle = "<System Needle>";
const json dummy_str_user_msg = {{"role", "user"}, {"content", user_needle}};
const json dummy_typed_user_msg = {{"role", "user"}, {"content", json::array({{{"type", "text"}, {"text", user_needle}}})}};
caps_.requires_typed_content =
!contains(try_raw_render(json::array({dummy_str_user_msg}), {}, false), user_needle)
&& contains(try_raw_render(json::array({dummy_typed_user_msg}), {}, false), user_needle);
const auto dummy_user_msg = caps_.requires_typed_content
? dummy_typed_user_msg
: dummy_str_user_msg;
const json needle_system_msg = {
{"role", "system"},
{"content", caps_.requires_typed_content ? json::array({{{"type", "text"}, {"text", sys_needle}}}) : json(sys_needle)},
};
caps_.supports_system_role = contains(try_raw_render({needle_system_msg, dummy_user_msg,}, {}, false), sys_needle);
auto out = try_raw_render(json::array({
dummy_user_msg
}), json::array({
{
{"name", "some_tool"},
{"type", "function"},
{"function", {
{"name", "some_tool"},
{"description", "Some tool."},
{"parameters", {
{"type", "object"},
{"properties", {
{"arg", {
{"type", "string"},
{"description", "Some argument."},
}},
}},
{"required", json::array({ "arg" })},
}},
}},
},
}), false);
caps_.supports_tools = contains(out, "some_tool");
auto make_tool_calls_msg = [&](const json & tool_calls) {
return json {
{"role", "assistant"},
{"content", nullptr},
{"tool_calls", tool_calls},
};
};
auto make_tool_call = [](const std::string & tool_name, const json & arguments) {
return json {
{"id", "call_1___"},
{"type", "function"},
{"function", {
{"arguments", arguments},
{"name", tool_name},
}},
};
};
const json dummy_args_obj {{"argument_needle", "print('Hello, World!')"}};
// Note: the arguments are rendered in both cases, but may be double-escaped, which we don't want.
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({make_tool_call("ipython", dummy_args_obj.dump())})),
}), {}, false);
auto tool_call_renders_str_arguments = contains(out, "\"argument_needle\":") || contains(out, "'argument_needle':");
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({make_tool_call("ipython", dummy_args_obj)})),
}), {}, false);
auto tool_call_renders_obj_arguments = contains(out, "\"argument_needle\":") || contains(out, "'argument_needle':");
caps_.supports_tool_calls = tool_call_renders_str_arguments || tool_call_renders_obj_arguments;
caps_.requires_object_arguments = !tool_call_renders_str_arguments && tool_call_renders_obj_arguments;
auto out_empty = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", ""}}}), {}, false);
auto out_null = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", nullptr}}}), {}, false);
caps_.requires_non_null_content = contains(out_empty, user_needle) && !contains(out_null, user_needle);
if (caps_.supports_tool_calls) {
auto dummy_args = caps_.requires_object_arguments ? dummy_args_obj : json(dummy_args_obj.dump());
auto tc1 = make_tool_call("test_tool1", dummy_args);
auto tc2 = make_tool_call("test_tool2", dummy_args);
auto out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({tc1, tc2})),
}), {}, false);
caps_.supports_parallel_tool_calls = contains(out, "test_tool1") && contains(out, "test_tool2");
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({tc1})),
{
{"role", "tool"},
{"name", "test_tool1"},
{"content", "Some response!"},
{"tool_call_id", "call_911_"},
}
}), {}, false);
caps_.supports_tool_responses = contains(out, "Some response!");
caps_.supports_tool_call_id = contains(out, "call_911_");
}
try {
if (!caps_.supports_tools) {
const json user_msg {
{"role", "user"},
{"content", "Hey"},
};
const json args {
{"arg1", "some_value"},
};
const json tool_call_msg {
{"role", "assistant"},
{"content", nullptr},
{"tool_calls", json::array({
{
// TODO: detect if requires numerical id or fixed length == 6 like Nemo
{"id", "call_1___"},
{"type", "function"},
{"function", {
{"name", "tool_name"},
{"arguments", (caps_.requires_object_arguments ? args : json(minja::Value(args).dump(-1, /* to_json= */ true)))},
}},
},
})},
};
std::string prefix, full;
{
chat_template_inputs inputs;
inputs.messages = json::array({user_msg});
inputs.add_generation_prompt = true;
prefix = apply(inputs);
}
{
chat_template_inputs inputs;
inputs.messages = json::array({user_msg, tool_call_msg});
inputs.add_generation_prompt = false;
full = apply(inputs);
}
auto eos_pos_last = full.rfind(eos_token_);
if (eos_pos_last == prefix.size() - eos_token_.size() ||
(full[full.size() - 1] == '\n' && (eos_pos_last == full.size() - eos_token_.size() - 1))) {
full = full.substr(0, eos_pos_last);
}
size_t common_prefix_length = 0;
for (size_t i = 0; i < prefix.size() && i < full.size(); ++i) {
if (prefix[i] != full[i]) {
break;
}
if (prefix[i] == '<') {
// DeepSeek R1's template (as of 20250209) adds a trailing <think> if add_generation_prompt,
// but it removes thinking tags for past messages.
// The prefix and full strings diverge at <think> vs. <tool▁calls▁begin>, we avoid consuming the leading <.
continue;
}
common_prefix_length = i + 1;
}
auto example = full.substr(common_prefix_length);
if (example.find("tool_name") == std::string::npos && example.find("some_value") == std::string::npos) {
fprintf(stderr, "Failed to infer a tool call example (possible template bug)\n");
} else {
tool_call_example_ = example;
}
}
} catch (const std::exception & e) {
fprintf(stderr, "Failed to generate tool call example: %s\n", e.what());
}
}
const std::string & source() const { return source_; }
const std::string & bos_token() const { return bos_token_; }
const std::string & eos_token() const { return eos_token_; }
const chat_template_caps & original_caps() const { return caps_; }
// Deprecated, please use the form with chat_template_inputs and chat_template_options
std::string apply(
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json(),
bool apply_polyfills = true)
{
fprintf(stderr, "[%s] Deprecated!\n", __func__);
chat_template_inputs inputs;
inputs.messages = messages;
inputs.tools = tools;
inputs.add_generation_prompt = add_generation_prompt;
inputs.extra_context = extra_context;
inputs.now = std::chrono::system_clock::now();
chat_template_options opts;
opts.apply_polyfills = apply_polyfills;
return apply(inputs, opts);
}
std::string apply(
const chat_template_inputs & inputs,
const chat_template_options & opts = chat_template_options()) const
{
json actual_messages;
auto has_tools = inputs.tools.is_array() && !inputs.tools.empty();
auto has_tool_calls = false;
auto has_tool_responses = false;
auto has_string_content = false;
for (const auto & message : inputs.messages) {
if (message.contains("tool_calls") && !message["tool_calls"].is_null()) {
has_tool_calls = true;
}
if (message.contains("role") && message["role"] == "tool") {
has_tool_responses = true;
}
if (message.contains("content") && message["content"].is_string()) {
has_string_content = true;
}
}
auto polyfill_system_role = opts.polyfill_system_role && !caps_.supports_system_role;
auto polyfill_tools = opts.polyfill_tools && has_tools && !caps_.supports_tools;
auto polyfill_tool_call_example = polyfill_tools && opts.polyfill_tool_call_examples;
auto polyfill_tool_calls = opts.polyfill_tool_calls && has_tool_calls && !caps_.supports_tool_calls;
auto polyfill_tool_responses = opts.polyfill_tool_responses && has_tool_responses && !caps_.supports_tool_responses;
auto polyfill_object_arguments = opts.polyfill_object_arguments && has_tool_calls && caps_.requires_object_arguments;
auto polyfill_typed_content = opts.polyfill_typed_content && has_string_content && caps_.requires_typed_content;
auto needs_polyfills = opts.apply_polyfills && (false
|| polyfill_system_role
|| polyfill_tools
|| polyfill_tool_calls
|| polyfill_tool_responses
|| polyfill_object_arguments
|| polyfill_typed_content
);
if (needs_polyfills) {
actual_messages = json::array();
auto add_message = [&](const json & msg) {
if (polyfill_typed_content && msg.contains("content") && !msg.at("content").is_null() && msg.at("content").is_string()) {
actual_messages.push_back({
{"role", msg.at("role")},
{"content", {{
{"type", "text"},
{"text", msg.at("content")},
}}},
});
} else {
actual_messages.push_back(msg);
}
};
std::string pending_system;
auto flush_sys = [&]() {
if (!pending_system.empty()) {
add_message({
{"role", "user"},
{"content", pending_system},
});
pending_system.clear();
}
};
json adjusted_messages;
if (polyfill_tools) {
adjusted_messages = add_system(inputs.messages,
"You can call any of the following tools to satisfy the user's requests: " + minja::Value(inputs.tools).dump(2, /* to_json= */ true) +
(!polyfill_tool_call_example || tool_call_example_.empty() ? "" : "\n\nExample tool call syntax:\n\n" + tool_call_example_ + "\n\n"));
} else {
adjusted_messages = inputs.messages;
}
for (const auto & message_ : adjusted_messages) {
auto message = message_;
if (!message.contains("role") || !message.contains("content")) {
throw std::runtime_error("message must have 'role' and 'content' fields: " + message.dump());
}
std::string role = message.at("role");
if (message.contains("tool_calls")) {
if (polyfill_object_arguments || polyfill_tool_calls) {
for (auto & tool_call : message.at("tool_calls")) {
if (tool_call["type"] == "function") {
auto & function = tool_call.at("function");
auto & arguments = function.at("arguments");
if (arguments.is_string()) {
try {
arguments = json::parse(arguments.get<std::string>());
} catch (const std::exception & ecvt) {
fprintf(stderr, "Failed to parse arguments: %s\n", ecvt.what());
}
}
}
}
}
if (polyfill_tool_calls) {
auto content = message.at("content");
auto tool_calls = json::array();
for (const auto & tool_call : message.at("tool_calls")) {
if (tool_call.at("type") != "function") {
continue;
}
const auto & function = tool_call.at("function");
auto tc = json {
{"name", function.at("name")},
{"arguments", function.at("arguments")},
};
if (tool_call.contains("id")) {
tc["id"] = tool_call["id"];
}
tool_calls.push_back(tc);
}
auto obj = json {
{"tool_calls", tool_calls},
};
if (!content.is_null() && content != "") {
obj["content"] = content;
}
message["content"] = obj.dump(2);
message.erase("tool_calls");
}
}
if (polyfill_tool_responses && role == "tool") {
message["role"] = "user";
auto obj = json {
{"tool_response", {
{"content", message.at("content")},
}},
};
if (message.contains("name")) {
obj["tool_response"]["name"] = message.at("name");
}
if (message.contains("tool_call_id")) {
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
}
message["content"] = obj.dump(2);
message.erase("name");
}
if (!message["content"].is_null() && polyfill_system_role) {
std::string content = message.at("content");
if (role == "system") {
if (!pending_system.empty()) pending_system += "\n";
pending_system += content;
continue;
} else {
if (role == "user") {
if (!pending_system.empty()) {
message["content"] = pending_system + (content.empty() ? "" : "\n" + content);
pending_system.clear();
}
} else {
flush_sys();
}
}
}
add_message(message);
}
flush_sys();
} else {
actual_messages = inputs.messages;
}
auto context = minja::Context::make(json({
{"messages", actual_messages},
{"add_generation_prompt", inputs.add_generation_prompt},
}));
context->set("bos_token", opts.use_bos_token ? bos_token_ : "");
context->set("eos_token", opts.use_eos_token ? eos_token_ : "");
if (opts.define_strftime_now) {
auto now = inputs.now;
context->set("strftime_now", Value::callable([now](const std::shared_ptr<minja::Context> &, minja::ArgumentsValue & args) {
args.expectArgs("strftime_now", {1, 1}, {0, 0});
auto format = args.args[0].get<std::string>();
auto time = std::chrono::system_clock::to_time_t(now);
auto local_time = *std::localtime(&time);
std::ostringstream ss;
ss << std::put_time(&local_time, format.c_str());
return ss.str();
}));
}
if (!inputs.tools.is_null()) {
context->set("tools", minja::Value(inputs.tools));
}
if (!inputs.extra_context.is_null()) {
for (auto & kv : inputs.extra_context.items()) {
context->set(kv.key(), minja::Value(kv.value()));
}
}
auto ret = template_root_->render(context);
// fprintf(stderr, "actual_messages: %s\n", actual_messages.dump(2).c_str());
// fprintf(stderr, "apply: %s\n\n", ret.c_str());
return ret;
}
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
json messages_with_system = messages;
if (messages_with_system.size() > 0 && messages_with_system[0].at("role") == "system") {
std::string existing_system = messages_with_system.at(0).at("content");
messages_with_system[0] = json {
{"role", "system"},
{"content", existing_system + "\n\n" + system_prompt},
};
} else {
messages_with_system.insert(messages_with_system.begin(), json {
{"role", "system"},
{"content", system_prompt},
});
}
return messages_with_system;
}
};
} // namespace minja

966
common/chat.cpp Normal file
View file

@ -0,0 +1,966 @@
#include "chat.hpp"
#include "chat-template.hpp"
#include "json-schema-to-grammar.h"
#include "log.h"
#include "minja.hpp"
std::string common_chat_format_name(common_chat_format format) {
switch (format) {
case COMMON_CHAT_FORMAT_CONTENT_ONLY: return "Content-only";
case COMMON_CHAT_FORMAT_GENERIC: return "Generic";
case COMMON_CHAT_FORMAT_MISTRAL_NEMO: return "Mistral Nemo";
case COMMON_CHAT_FORMAT_LLAMA_3_X: return "Llama 3.x";
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS: return "Llama 3.x with builtin tools";
case COMMON_CHAT_FORMAT_DEEPSEEK_R1: return "DeepSeek R1";
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2: return "FireFunction v2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
default:
throw std::runtime_error("Unknown chat format");
}
}
const common_grammar_options grammar_options {
/* .dotall = */ false,
/* .compact_spaces = */ false,
// /* .compact_spaces = */ true,
};
static bool parse_json(std::string::const_iterator & it, const std::string::const_iterator & end, json & out) {
// // https://json.nlohmann.me/features/parsing/sax_interface/
struct json_error_locator : public nlohmann::json_sax<json> {
std::size_t position;
bool found_error;
json_error_locator() : position(0), found_error(false) {}
bool parse_error(std::size_t position, const std::string &, const json::exception &) override {
this->position = position - 1;
this->found_error = true;
return false;
}
bool null() override { return true; }
bool boolean(bool) override { return true; }
bool number_integer(number_integer_t) override { return true; }
bool number_unsigned(number_unsigned_t) override { return true; }
bool number_float(number_float_t, const string_t &) override { return true; }
bool string(string_t &) override { return true; }
bool binary(binary_t &) override { return true; }
bool start_object(std::size_t) override { return true; }
bool key(string_t &) override { return true; }
bool end_object() override { return true; }
bool start_array(std::size_t) override { return true; }
bool end_array() override { return true; }
};
json_error_locator err_loc;
json::sax_parse(it, end, &err_loc);
std::string::const_iterator temptative_end;
if (err_loc.found_error) {
temptative_end = it + err_loc.position;
} else {
temptative_end = end;
}
std::string json_sub {it, temptative_end};
try {
out = json::parse(json_sub);
it = temptative_end;
return true;
} catch (const std::exception &) {
return false;
}
}
/**
* Takes a prefix regex that must have 1 group to capture the function name, a closing suffix, and expects json parameters in between.
* Aggregates the prefix, suffix and in-between text into the content.
*/
static common_chat_msg parse_json_tool_calls(
const std::string& input,
const std::optional<std::regex> & trigger_opt,
const std::regex & function_regex,
const std::regex & close_regex) {
std::smatch match;
common_chat_msg result;
result.role = "assistant";
auto end = input.end();
auto it = input.begin();
if (trigger_opt) {
if (!std::regex_search(it, end, match, *trigger_opt)) {
result.content = input;
return result;
}
result.content = match.prefix().str();
it = match.suffix().first;
}
while (it != end) {
std::sregex_iterator rend;
std::sregex_iterator rit(it, end, function_regex);
if (rit == rend) {
fprintf(stderr, "No more tool calls found\n");
result.content += std::string(it, end);
break;
}
auto name = rit->str(1);
result.content += std::string(it, rit->prefix().second);
it = rit->suffix().first;
json arguments;
if (!parse_json(it, end, arguments)) {
throw std::runtime_error("Failed to parse json tool call arguments");
}
if (!std::regex_search(it, end, match, close_regex)) {
throw std::runtime_error("Malformed input, missing closing pattern");
}
it = match.suffix().first;
result.tool_calls.push_back({name, arguments.is_string() ? arguments.get<std::string>() : arguments.dump(), /* id= */ ""});
}
return result;
}
static common_chat_msg parse_prefixed_json_tool_call_array(const std::string& input, const std::string & prefix, size_t rstrip_prefix = 0) {
auto content_end = input.find(prefix);
size_t tc_start = std::string::npos;
common_chat_msg result;
result.role = "assistant";
const auto process_tool_calls = [&](const json & tool_calls) {
for (const auto & tool_call : tool_calls) {
const auto & arguments = tool_call["arguments"];
result.tool_calls.push_back({
tool_call["name"],
arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
tool_call.contains("id") ? tool_call["id"] : "",
});
}
};
if (content_end == std::string::npos) {
result.content = input;
} else {
tc_start = content_end + prefix.size() - rstrip_prefix;
result.content = input.substr(0, content_end);
auto tool_calls = json::parse(input.substr(tc_start));
process_tool_calls(tool_calls);
}
return result;
}
static void foreach_function(const json & tools, const std::function<void(const json &)> & fn) {
for (const auto & tool : tools) {
if (!tool.contains("type") || tool["type"] != "function" || !tool.contains("function")) {
LOG_INF("Skipping tool without function: %s", tool.dump(2).c_str());
continue;
}
fn(tool);
}
}
static std::string apply(
const common_chat_template & tmpl,
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json())
{
minja::chat_template_inputs tmpl_inputs;
tmpl_inputs.messages = messages;
tmpl_inputs.tools = tools;
tmpl_inputs.add_generation_prompt = add_generation_prompt;
tmpl_inputs.extra_context = extra_context;
// TODO: add flag to control date/time, if only for testing purposes.
// tmpl_inputs.now = std::chrono::system_clock::now();
minja::chat_template_options tmpl_opts;
tmpl_opts.use_bos_token = false;
tmpl_opts.use_eos_token = false;
return tmpl.apply(tmpl_inputs, tmpl_opts);
}
static common_chat_params common_chat_params_init_generic(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
auto tool_call_schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
auto tool_schema = json {
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", function["name"]},
}},
{"arguments", function["parameters"]},
}},
{"required", json::array({"name", "arguments"})},
};
if (function.contains("description")) {
tool_schema["description"] = function["description"];
}
if (inputs.parallel_tool_calls) {
tool_schema["properties"]["id"] = {
{"type", "string"},
{"minLength", 4},
};
tool_schema["required"].push_back("id");
}
tool_call_schemas.emplace_back(tool_schema);
});
const auto tool_call =
inputs.parallel_tool_calls
? json {
{"type", "object"},
{"properties", {
{"tool_calls", {
{"type", "array"},
{"items", tool_call_schemas.size() == 1 ? tool_call_schemas[0] : json {
{"anyOf", tool_call_schemas},
}},
{"minItems", 1},
}},
}},
{"required", json::array({"tool_calls"})},
}
: json {
{"type", "object"},
{"properties", {
{"tool_call", tool_call_schemas.size() == 1 ? tool_call_schemas[0] : json {
{"anyOf", tool_call_schemas},
}},
}},
{"required", json::array({"tool_call"})},
};
const auto schema =
inputs.tool_choice != "required"
? json {
{"anyOf", json::array({
tool_call,
{
{"type", "object"},
{"properties", {
{"response", inputs.json_schema.is_null()
? json {{"type", "string"}}
: inputs.json_schema
},
}},
{"required", json::array({"response"})},
},
})}
}
: tool_call;
data.grammar_lazy = false;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
builder.add_schema("root", schema);
}, grammar_options);
auto tweaked_messages = common_chat_template::add_system(
inputs.messages,
"Respond in JSON format, either with `tool_call` (a request to call tools) or with `response` reply to the user's request");
data.prompt = apply(tmpl, tweaked_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_GENERIC;
return data;
}
static common_chat_msg common_chat_parse_generic(const std::string & input) {
json data = json::parse(input);
common_chat_msg result;
result.role = "assistant";
if (data.contains("tool_calls")) {
for (const auto & tool_call : data["tool_calls"]) {
result.tool_calls.push_back({
tool_call["name"],
tool_call["arguments"].dump(),
tool_call.contains("id") ? tool_call["id"] : "",
});
}
} else if (data.contains("tool_call")) {
result.tool_calls.push_back({
data["tool_call"]["name"],
data["tool_call"]["arguments"].dump(),
/* id= */ "",
});
} else if (data.contains("response")) {
const auto & response = data["response"];
result.content = response.is_string() ? response.get<std::string>() : response.dump(2);
}
return result;
}
static common_chat_params common_chat_params_init_mistral_nemo(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
schemas.push_back({
{"type", "object"},
{"properties", {
// Important note: the model is probably trained to take a JSON stringified arguments value.
// It's hard to constrain that for now (while reusing the JSON schema conversion), so we're just expecting a plain object.
{"name", {
{"type", "string"},
{"const", function["name"]},
}},
{"arguments", function["parameters"]},
{"id", {
{"type", "string"},
// Nemo's template expects a 9-character alphanumeric ID.
{"pattern", "^[a-zA-Z0-9]{9}$"},
}},
}},
{"required", json::array({"name", "arguments", "id"})},
});
});
auto schema = json {
{"type", "array"},
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
}, grammar_options);
data.grammar_triggers.push_back({"[TOOL_CALLS]", /* .at_start = */ true});
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
return data;
}
static common_chat_msg common_chat_parse_mistral_nemo(const std::string & input) {
return parse_prefixed_json_tool_call_array(input, "[TOOL_CALLS]");
}
static common_chat_params common_chat_params_init_command_r7b(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
schemas.push_back({
{"type", "object"},
{"properties", {
{"tool_call_id", {
{"type", "string"},
// Command-R's template expects an integer string.
{"pattern", "^[0-9]{1,10}$"},
}},
{"tool_name", {
{"type", "string"},
{"const", function["name"]},
}},
{"parameters", function["parameters"]},
}},
{"required", json::array({"tool_call_id", "tool_name", "parameters"})},
});
});
auto schema = json {
{"type", "array"},
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"<|START_ACTION|>\" " + builder.add_schema("tool_calls", schema) + " \"<|END_ACTION|>\"");
}, grammar_options);
data.grammar_triggers.push_back({"<|START_ACTION|>", /* .at_start = */ false});
data.preserved_tokens = {
"<|START_RESPONSE|>",
"<|END_RESPONSE|>",
"<|START_THINKING|>",
"<|END_THINKING|>",
"<|END_ACTION|>",
};
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_COMMAND_R7B;
return data;
}
static common_chat_msg common_chat_parse_command_r7b(const std::string & input) {
static std::regex response_regex("<\\|START_RESPONSE\\|>([\\s\\S\\n\\r]*?)<\\|END_RESPONSE\\|>");
static std::regex thought_action_regex("<\\|START_THINKING\\|>([\\s\\S\\n\\r]*?)<\\|END_THINKING\\|><\\|START_ACTION\\|>([\\s\\S\\n\\r]*?)<\\|END_ACTION\\|>");
std::smatch match;
common_chat_msg result;
result.role = "assistant";
if (std::regex_match(input, match, response_regex)) {
result.content = match[1].str();
} else if (std::regex_match(input, match, thought_action_regex)) {
result.tool_plan = match[1].str();
auto actions_str = match[2].str();
auto actions = json::parse(actions_str);
for (const auto & action : actions) {
result.tool_calls.push_back({
/* .name = */ action["tool_name"],
/* .arguments = */ action["parameters"].dump(),
/* .id = */ action["tool_call_id"],
});
}
} else {
LOG_ERR("Failed to parse command_r output");
result.content = input;
}
return result;
}
static void expect_tool_parameters(const std::string & name, const json & parameters, const std::vector<std::string> & expected_properties) {
if (!parameters.is_object() || !parameters.contains("type") || parameters["type"] != "object" || !parameters.contains("properties") || !parameters.contains("required")) {
throw std::runtime_error("Parameters of tool " + name + " must be an object w/ required properties");
}
const auto & parameters_properties = parameters.at("properties");
const auto & parameters_required = parameters.at("required");
for (const auto & prop : expected_properties) {
if (!parameters_properties.contains(prop)) {
throw std::runtime_error("Parameters of tool " + name + " is missing property: " + prop);
}
if (std::find(parameters_required.begin(), parameters_required.end(), json(prop)) == parameters_required.end()) {
throw std::runtime_error("Parameters of tool " + name + " must have property marked as required: " + prop);
}
}
if (parameters_properties.size() != expected_properties.size()) {
throw std::runtime_error("Parameters of tool " + name + " must only have these properties:" + string_join(expected_properties, ", "));
}
}
static common_chat_params common_chat_params_init_llama_3_1_tool_calls(const common_chat_template & tmpl, const struct common_chat_inputs & inputs, bool allow_python_tag_builtin_tools) {
auto builtin_tools = json::array();
common_chat_params data;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
auto handle_builtin_tool = [&](const std::string & name, const json & parameters) {
if (name == "wolfram_alpha") {
// https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/tool_runtime/wolfram_alpha/wolfram_alpha.py
expect_tool_parameters(name, parameters, {"query"});
} else if (name == "web_search" || name == "brave_search") {
// https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/tool_runtime/brave_search/brave_search.py
expect_tool_parameters(name, parameters, {"query"});
} else if (name == "python" || name == "code_interpreter") {
// https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/inline/tool_runtime/code_interpreter/code_interpreter.py
expect_tool_parameters(name, parameters, {"code"});
} else {
return false;
}
std::vector<std::string> kvs;
for (const auto & [key, value] : parameters.at("properties").items()) {
kvs.push_back("\"" + key + "=\" " + builder.add_schema(name + "-args-" + key, value));
}
tool_rules.push_back(
builder.add_rule(
name + "-call",
"\"<|python_tag|>" + name + ".call(\" " + string_join(kvs, " \", \" ") + " \")\""));
builtin_tools.push_back(name);
return true;
};
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
builder.resolve_refs(parameters);
// https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/tool_runtime
if (allow_python_tag_builtin_tools) {
handle_builtin_tool(name, parameters);
}
tool_rules.push_back(
builder.add_rule(
name + "-call",
"\"{\" space "
"( \"\\\"type\\\":\" space \"\\\"function\\\",\" space )? "
"\"\\\"name\\\": \\\"" + name + "\\\", \\\"parameters\\\": \" " +
builder.add_schema(name + "-args", parameters) +
" \"}\""));
data.grammar_triggers.push_back({"{\"name\": \"" + name + "\"", /* .at_start = */ true});
});
data.grammar_triggers.push_back({"{\"name\":", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"name\":", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"name\":", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\"type\": \"function\"", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"type\": \"function\"", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"type\": \"function\"", /* .at_start = */ true});
if (!builtin_tools.empty()) {
data.grammar_triggers.push_back({"<|python_tag|>", /* .at_start = */ false});
}
builder.add_rule("root", string_join(tool_rules, " | "));
}, grammar_options);
data.additional_stops.push_back("<|eom_id|>");
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {
{"tools_in_user_message", false},
{"builtin_tools", builtin_tools.empty() ? json() : builtin_tools},
});
data.format = allow_python_tag_builtin_tools && !builtin_tools.empty()
? COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS
: COMMON_CHAT_FORMAT_LLAMA_3_X;
return data;
}
static common_chat_msg common_chat_parse_llama_3_1(const std::string & input, bool with_builtin_tools = false) {
// TODO: tighten & simplify the parser, don't accept leading text context.
static std::regex function_regex("\\{[\\s\\n\\r]*(?:\"type\"[\\s\\n\\r]*:[\\s\\n\\r]*\"function\"[\\s\\n\\r]*,[\\s\\n\\r]*|[\\s\\n\\r]*)\"name\"[\\s\\n\\r]*:[\\s\\n\\r]*\"([^\"]+)\"[\\s\\n\\r]*,[\\s\\n\\r]*\"parameters\": ");
static std::regex close_regex("\\}");
static std::regex builtin_call_regex("<\\|python_tag\\|>([^.(]+)\\.call\\((.*)\\)");
if (with_builtin_tools) {
std::smatch match;
if (std::regex_match(input, match, builtin_call_regex)) {
auto name = match[1].str();
auto raw_args = match[2].str();
// TODO: if/when builtin tools start accepting more than 1 argument, use parse_json for real parsing.
auto it_eq = raw_args.find('=');
auto arg_name = raw_args.substr(0, it_eq);
auto arg_value_str = raw_args.substr(it_eq + 1);
auto arg_value = json::parse(arg_value_str);
return {
/* .role = */ "assistant",
/* .content = */ match.prefix().str(),
/* .tool_calls = */ {
{
/* .name = */ match[1],
/* .arguments = */ (json {
{arg_name, arg_value},
}).dump(),
/* .id = */ "",
},
},
};
}
}
return parse_json_tool_calls(input, std::nullopt, function_regex, close_regex);
}
static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
auto args_rule = builder.add_schema(name + "-args", parameters);
tool_rules.push_back(builder.add_rule(name + "-call",
"\"<tool▁call▁begin>function<tool▁sep>" + name + "\\n```json\\n\" " + args_rule + " \"```<tool▁call▁end>\""));
});
data.grammar_triggers.push_back({"<tool▁calls▁begin>", /* .at_start = */ false});
data.preserved_tokens = {
"<tool▁sep>",
"<tool▁call▁end>",
};
builder.add_rule("root", "\"<tool▁calls▁begin>\" (" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " space");
}, grammar_options);
auto prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.prompt = prompt;
data.format = COMMON_CHAT_FORMAT_DEEPSEEK_R1;
return data;
}
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input) {
static std::regex trigger_regex("<tool▁calls▁begin>");
static std::regex function_regex("<tool▁call▁begin>function<tool▁sep>([^\n]+)\n```json\n");
static std::regex close_regex("```<tool▁call▁end>");
return parse_json_tool_calls(input, trigger_regex, function_regex, close_regex);
}
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
fprintf(stderr, "%s\n", __func__);
common_chat_params data;
data.prompt = apply(tmpl, inputs.messages, /* tools= */ nullptr, inputs.add_generation_prompt, {
{"datetime", "Jan 29 2025 13:00:00 GMT"},
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
});
if (!inputs.tools.is_null() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
schemas.push_back({
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", function["name"]},
}},
{"arguments", function["parameters"]},
}},
{"required", json::array({"name", "arguments", "id"})},
});
});
auto schema = json {
{"type", "array"},
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\" functools\"? " + builder.add_schema("tool_calls", schema));
}, grammar_options);
data.grammar_triggers.push_back({" functools[", /* .at_start = */ false});
data.format = COMMON_CHAT_FORMAT_FIREFUNCTION_V2;
} else {
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
}
return data;
}
static common_chat_msg common_chat_parse_firefunction_v2(const std::string & input) {
return parse_prefixed_json_tool_call_array(input, " functools[", /* rstrip_prefix= */ 1);
}
static common_chat_params common_chat_params_init_functionary_v3_2(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
// >>>all\nlet's call functions>>>fn1\n{"arg1": 1...}\n>>>fn2\n{"arg1": 1...}...
// Using ">>>f1\n", ">>>f2\n"... as trigger words for the grammar
common_chat_params data;
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2;
if (!inputs.tools.is_null() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> first_tool_rules;
std::vector<std::string> subsequent_tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
auto args_rule = builder.add_schema(name + "-args", parameters);
first_tool_rules.push_back(builder.add_rule(name + "-call", "\"" + name + "\\n\" " + args_rule));
subsequent_tool_rules.push_back(builder.add_rule(name + "-call2", "\">>>" + name + "\\n\" " + args_rule));
data.grammar_triggers.push_back({name, /* .at_start = */ true});
data.grammar_triggers.push_back({">>>" + name, /* .at_start = */ false});
});
auto first_rule = first_tool_rules.empty() ? "" : builder.add_rule("first_tool_call", string_join(first_tool_rules, " | ")) + " space";
if (inputs.parallel_tool_calls) {
auto subsequent_rule = builder.add_rule("subsequent_tool_call", string_join(subsequent_tool_rules, " | ")) + " space";
builder.add_rule("root", first_rule + " (" + subsequent_rule + ")*");
} else {
builder.add_rule("root", first_rule);
}
}, grammar_options);
}
return data;
}
static bool consume(std::string::const_iterator & it, const std::string::const_iterator & end, const std::string & expected) {
auto expected_it = expected.begin();
auto tmp_it = it;
while (tmp_it != end && expected_it != expected.end() && *tmp_it == *expected_it) {
++tmp_it;
++expected_it;
}
if (expected_it == expected.end()) {
it = tmp_it;
return true;
}
return false;
}
static common_chat_msg common_chat_parse_functionary_v3_2(const std::string & input) {
static std::regex function_regex(R"((?:>>>)?(\w+)\n)");
static std::regex close_regex(R"($|(?=>>>))");
std::string content;
auto it = input.begin();
const auto end = input.end();
if (consume(it, end, "all\n")) {
std::smatch match;
if (std::regex_search(it, end, match, function_regex)) {
auto fun_it = match.prefix().second;
content = std::string(it, fun_it);
it = fun_it;
} else {
common_chat_msg res;
res.role = "assistant";
res.content = std::string(it, end);
return res;
}
}
// TODO: tighten & simplify.
try {
auto res = parse_json_tool_calls(std::string(it, end), std::nullopt, function_regex, close_regex);
res.content = content + res.content;
return res;
} catch (const std::exception & e) {
LOG_ERR("Failed to parse functionary v3.2 input: %s\n", e.what());
common_chat_msg res;
res.role = "assistant";
res.content = input;
return res;
}
}
static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
// https://github.com/MeetKai/functionary/blob/main/tests/prompt_test_v3-llama3.1.txt
common_chat_params data;
json tools = inputs.tools.is_null() ? inputs.tools : json::array();
std::string python_code_argument_name;
auto has_raw_python = false;
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
const auto & parameters = function["parameters"];
std::string name = function["name"];
if (name == "python" || name == "ipython") {
if (!parameters.contains("type")) {
throw std::runtime_error("Missing type in python tool");
}
has_raw_python = true;
auto type = parameters.at("type");
if (type == "object") {
auto properties = parameters.at("properties");
for (auto it = properties.begin(); it != properties.end(); ++it) {
if (it.value().at("type") == "string") {
if (!python_code_argument_name.empty()) {
throw std::runtime_error("Multiple string arguments found in python tool");
}
python_code_argument_name = it.key();
}
}
if (python_code_argument_name.empty()) {
throw std::runtime_error("No string argument found in python tool");
}
} else if (type != "string") {
throw std::runtime_error("Invalid type in python tool: " + type.dump());
}
}
tool_rules.push_back(builder.add_rule(name + "-call", "\"<function=" + name + ">\" " + builder.add_schema(name + "-args", parameters) + " \"</function>\" space"));
});
if (has_raw_python) {
tool_rules.push_back(builder.add_rule("python-call", "\"<|python_tag|>\" .*"));
data.grammar_triggers.push_back({"<|python_tag|>", /* .at_start = */ false});
}
auto tool_call = builder.add_rule("tool_call", string_join(tool_rules, " | ")) + " space";
builder.add_rule("root", inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call);
data.grammar_triggers.push_back({"<function=", /* .at_start = */ false});
}, grammar_options);
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
// TODO: if (has_raw_python)
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1;
return data;
}
static common_chat_msg common_chat_parse_functionary_v3_1_llama_3_1(const std::string & input) {
// This version of Functionary still supports the llama 3.1 tool call format for the python tool.
static std::regex python_tag_regex(R"(<\|python_tag\|>([\s\S\n]*)$)");
std::smatch match;
if (std::regex_search(input, match, python_tag_regex)) {
auto code = match[1].str();
return {
/* .role = */ "assistant",
/* .content = */ match.prefix().str(),
/* .tool_calls = */ {
{
/* .name = */ "python",
/* .arguments = */ (json {{"code", code}}).dump(),
/* .id = */ "",
},
}
};
}
static std::regex function_regex(R"(<function=(\w+)>)");
static std::regex close_regex(R"(</function>)");
// TODO: tighten & simplify.
return parse_json_tool_calls(input, std::nullopt, function_regex, close_regex);
}
static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
// (content)?(<tool_call>{"name": "foo", "arguments": {"a": 1}}</tool_call>)*
data.grammar_lazy = inputs.tool_choice != "required";
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
builder.resolve_refs(parameters);
tool_rules.push_back(builder.add_schema(name + "-call", {
{"type", "object"},
{"properties", json {
{"name", json {{"const", name}}},
{"arguments", parameters},
}},
{"required", json::array({"name", "arguments"})},
}));
});
auto tool_call = "\"<tool_call>\" space " + builder.add_rule("tool_call", string_join(tool_rules, " | ")) + " \"</tool_call>\" space";
builder.add_rule("root", inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call);
data.grammar_triggers.push_back({"<tool_call>", /* .at_start = */ false});
data.preserved_tokens = { "</tool_call>" };
}, grammar_options);
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
return data;
}
static common_chat_msg common_chat_parse_hermes_2_pro(const std::string & input) {
try {
std::regex start_pattern(R"([\n\s]*<tool_call>)");
std::regex middle_pattern(R"([\n\s]*</tool_call>[\n\s]*<tool_call>)");
std::regex end_pattern(R"([\n\s]*</tool_call>[\n\s]*$)");
auto end = input.end();
std::sregex_iterator rend;
std::sregex_iterator rit(input.begin(), end, start_pattern);
if (rit == rend) {
return {
/* .role = */ "assistant",
/* .content = */ input,
/* .tool_calls = */ {},
};
}
common_chat_msg result;
result.role = "assistant";
result.content = rit->prefix();
auto it = rit->suffix().first;
while (it != end) {
json call;
if (!parse_json(it, end, call)) {
throw std::runtime_error("Failed to parse json tool call");
}
const auto & arguments = call["arguments"];
result.tool_calls.push_back({
call["name"],
arguments.dump(),
// arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
/* id= */ "",
});
rit = {it, end, middle_pattern};
if (rit != rend) {
it = rit->suffix().first;
} else {
rit = {it, end, end_pattern};
if (rit == rend) {
throw std::runtime_error("Malformed input, missing </tool_call>");
}
break;
}
}
return result;
} catch (const std::exception & e) {
return {
/* .role = */ "assistant",
/* .content = */ input,
/* .tool_calls = */ {},
};
}
}
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
data.grammar_lazy = false;
if (!inputs.json_schema.is_null()) {
if (!inputs.grammar.empty()) {
throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
}
data.grammar = json_schema_to_grammar(inputs.json_schema);
} else {
data.grammar = inputs.grammar.empty();
}
return data;
}
common_chat_params common_chat_params_init(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
auto has_tools = !inputs.tools.is_null() && inputs.tool_choice != "none";
LOG_DBG("[%s] has_tools=%s\n", __func__, has_tools ? "true" : "false");
if (has_tools && !inputs.grammar.empty()) {
throw std::runtime_error("Cannot specify grammar with tools");
}
const auto & src = tmpl.source();
if (src.find(">>>all") != std::string::npos) {
// Functionary prepends "all\n" to plain content outputs, so we use the parser no matter when
return common_chat_params_init_functionary_v3_2(tmpl, inputs);
}
if (src.find(" functools[") != std::string::npos) {
// Firefunction v2 requires datetime and functions in the context, even w/o tools.
return common_chat_params_init_firefunction_v2(tmpl, inputs);
}
if (!has_tools) {
return common_chat_params_init_without_tools(tmpl, inputs);
}
if (src.find("<tool_call>") != std::string::npos) {
return common_chat_params_init_hermes_2_pro(tmpl, inputs);
}
if (src.find("<|start_header_id|>") != std::string::npos
&& src.find("<function=") != std::string::npos) {
return common_chat_params_init_functionary_v3_1_llama_3_1(tmpl, inputs);
}
if (src.find("<|start_header_id|>ipython<|end_header_id|>") != std::string::npos) {
auto allow_python_tag_builtin_tools = src.find("<|python_tag|>") != std::string::npos;
return common_chat_params_init_llama_3_1_tool_calls(tmpl, inputs, allow_python_tag_builtin_tools);
}
if (src.find("<tool▁calls▁begin>") != std::string::npos) {
return common_chat_params_init_deepseek_r1(tmpl, inputs);
}
if (src.find("[TOOL_CALLS]") != std::string::npos) {
return common_chat_params_init_mistral_nemo(tmpl, inputs);
}
if (src.find("<|END_THINKING|><|START_ACTION|>") != std::string::npos) {
return common_chat_params_init_command_r7b(tmpl, inputs);
}
return common_chat_params_init_generic(tmpl, inputs);
}
static common_chat_msg common_chat_parse_content_only(const std::string & input) {
return {
/* .role = */ "assistant",
/* .content = */ input,
/* .tool_calls = */ {},
};
}
common_chat_msg common_chat_parse(const std::string & input, common_chat_format format) {
switch (format) {
case COMMON_CHAT_FORMAT_CONTENT_ONLY:
return common_chat_parse_content_only(input);
case COMMON_CHAT_FORMAT_GENERIC:
return common_chat_parse_generic(input);
case COMMON_CHAT_FORMAT_MISTRAL_NEMO:
return common_chat_parse_mistral_nemo(input);
case COMMON_CHAT_FORMAT_LLAMA_3_X:
return common_chat_parse_llama_3_1(input);
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS:
return common_chat_parse_llama_3_1(input, /* with_builtin_tools= */ true);
case COMMON_CHAT_FORMAT_DEEPSEEK_R1:
return common_chat_parse_deepseek_r1(input);
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2:
return common_chat_parse_functionary_v3_2(input);
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1:
return common_chat_parse_functionary_v3_1_llama_3_1(input);
case COMMON_CHAT_FORMAT_HERMES_2_PRO:
return common_chat_parse_hermes_2_pro(input);
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2:
return common_chat_parse_firefunction_v2(input);
case COMMON_CHAT_FORMAT_COMMAND_R7B:
return common_chat_parse_command_r7b(input);
default:
throw std::runtime_error("Unsupported format: " + common_chat_format_name(format));
}
}

52
common/chat.hpp Normal file
View file

@ -0,0 +1,52 @@
// Chat support (incl. tool call grammar constraining & output parsing) w/ generic & custom template handlers.
#pragma once
#include "common.h"
#include <json.hpp>
#include <optional>
#include <string>
#include <vector>
using json = nlohmann::ordered_json;
struct common_chat_inputs {
json messages;
json tools;
json tool_choice;
json json_schema;
bool parallel_tool_calls;
bool stream;
std::string grammar;
bool add_generation_prompt = true;
};
enum common_chat_format {
COMMON_CHAT_FORMAT_CONTENT_ONLY,
COMMON_CHAT_FORMAT_GENERIC,
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
struct common_chat_params {
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
json prompt;
std::string grammar;
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
};
struct common_chat_params common_chat_params_init(const common_chat_template & tmpl, const struct common_chat_inputs & params);
std::string common_chat_format_name(common_chat_format format);
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);

File diff suppressed because it is too large Load diff

View file

@ -2,8 +2,9 @@
#pragma once
#include "llama.h"
#include "llama-cpp.h"
#include <set>
#include <string>
#include <vector>
#include <sstream>
@ -24,20 +25,20 @@
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_lora_adapter_info {
struct common_adapter_lora_info {
std::string path;
float scale;
struct llama_adapter_lora * ptr;
};
struct common_lora_adapter_container : common_lora_adapter_info {
struct llama_lora_adapter * adapter;
};
using llama_tokens = std::vector<llama_token>;
// build info
extern int LLAMA_BUILD_NUMBER;
extern char const * LLAMA_COMMIT;
extern char const * LLAMA_COMPILER;
extern char const * LLAMA_BUILD_TARGET;
extern const char * LLAMA_COMMIT;
extern const char * LLAMA_COMPILER;
extern const char * LLAMA_BUILD_TARGET;
struct common_control_vector_load_info;
@ -78,18 +79,23 @@ enum llama_example {
LLAMA_EXAMPLE_LLAVA,
LLAMA_EXAMPLE_LOOKUP,
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_TTS,
LLAMA_EXAMPLE_COUNT,
};
enum common_sampler_type {
COMMON_SAMPLER_TYPE_NONE = 0,
COMMON_SAMPLER_TYPE_TOP_K = 1,
COMMON_SAMPLER_TYPE_TOP_P = 2,
COMMON_SAMPLER_TYPE_MIN_P = 3,
COMMON_SAMPLER_TYPE_TFS_Z = 4,
COMMON_SAMPLER_TYPE_TYPICAL_P = 5,
COMMON_SAMPLER_TYPE_TEMPERATURE = 6,
COMMON_SAMPLER_TYPE_DRY = 1,
COMMON_SAMPLER_TYPE_TOP_K = 2,
COMMON_SAMPLER_TYPE_TOP_P = 3,
COMMON_SAMPLER_TYPE_MIN_P = 4,
//COMMON_SAMPLER_TYPE_TFS_Z = 5,
COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
COMMON_SAMPLER_TYPE_XTC = 8,
COMMON_SAMPLER_TYPE_INFILL = 9,
COMMON_SAMPLER_TYPE_PENALTIES = 10,
};
// dimensionality reduction methods, used by cvector-generator
@ -98,42 +104,67 @@ enum dimre_method {
DIMRE_METHOD_MEAN,
};
// sampler parameters
struct common_sampler_params {
enum common_conversation_mode {
COMMON_CONVERSATION_MODE_DISABLED = 0,
COMMON_CONVERSATION_MODE_ENABLED = 1,
COMMON_CONVERSATION_MODE_AUTO = 2,
};
struct common_grammar_trigger {
std::string word;
bool at_start;
};
// sampling parameters
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
bool ignore_eos = false;
bool no_perf = false; // disable performance metrics
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float xtc_probability = 0.00f; // 0.0 = disabled
float xtc_threshold = 0.10f; // > 0.5 disables XTC
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool ignore_eos = false;
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TFS_Z,
COMMON_SAMPLER_TYPE_TYPICAL_P,
COMMON_SAMPLER_TYPE_TOP_P,
COMMON_SAMPLER_TYPE_MIN_P,
COMMON_SAMPLER_TYPE_TEMPERATURE
COMMON_SAMPLER_TYPE_XTC,
COMMON_SAMPLER_TYPE_TEMPERATURE,
};
std::string grammar; // optional BNF-like grammar to constrain sampling
std::string grammar; // optional BNF-like grammar to constrain sampling
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
std::set<llama_token> preserved_tokens;
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
@ -141,21 +172,45 @@ struct common_sampler_params {
std::string print() const;
};
struct common_params_speculative {
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_ctx = 0; // draft context size
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string model_url = ""; // model url to download // NOLINT
};
struct common_params_vocoder {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
};
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size
int32_t n_ctx = 4096; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
@ -166,28 +221,35 @@ struct common_params {
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold
float defrag_thold = 0.1f; // KV cache defragmentation threshold
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
struct cpu_params draft_cpuparams;
struct cpu_params draft_cpuparams_batch;
ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
struct common_sampler_params sparams;
struct common_params_sampling sampling;
struct common_params_speculative speculative;
struct common_params_vocoder vocoder;
std::string model = ""; // model path // NOLINT
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
std::string model_alias = "unknown"; // model alias // NOLINT
std::string model_alias = ""; // model alias // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string hf_token = ""; // HF token // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
@ -197,18 +259,16 @@ struct common_params {
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
std::string logdir = ""; // directory in which to save YAML log files // NOLINT
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
@ -236,7 +296,6 @@ struct common_params {
bool special = false; // enable special token output
bool interactive = false; // interactive mode
bool interactive_first = false; // wait for user input immediately
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
@ -259,8 +318,10 @@ struct common_params {
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector // NOLINT
@ -268,20 +329,22 @@ struct common_params {
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std::string embd_sep = "\n"; // separator of embendings
std::string embd_sep = "\n"; // separator of embeddings
bool reranking = false; // enable reranking support on server
// server params
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
int32_t timeout_write = timeout_read; // http write timeout in seconds
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
std::vector<std::string> api_keys;
@ -373,15 +436,18 @@ bool set_process_priority(enum ggml_sched_priority prio);
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
std::string string_format(const char * fmt, ...);
std::vector<std::string> string_split(std::string input, char separator);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
std::string string_repeat(const std::string & str, size_t n);
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
std::vector<T> values;
std::istringstream str_stream(str);
std::string token;
@ -394,6 +460,32 @@ static std::vector<T> string_split(const std::string & str, char delim) {
return values;
}
template<>
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
{
std::vector<std::string> parts;
size_t begin_pos = 0;
size_t separator_pos = input.find(separator);
while (separator_pos != std::string::npos) {
std::string part = input.substr(begin_pos, separator_pos - begin_pos);
parts.emplace_back(part);
begin_pos = separator_pos + 1;
separator_pos = input.find(separator, begin_pos);
}
parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
return parts;
}
static bool string_starts_with(const std::string & str,
const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
return str.rfind(prefix, 0) == 0;
}
static bool string_ends_with(const std::string & str,
const std::string & suffix) { // While we wait for C++20's std::string::ends_with...
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
}
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);
@ -416,25 +508,43 @@ std::string fs_get_cache_file(const std::string & filename);
// Model utils
//
// note: defines object's lifetime
struct common_init_result {
struct llama_model * model = nullptr;
struct llama_context * context = nullptr;
std::vector<common_lora_adapter_container> lora_adapters;
llama_model_ptr model;
llama_context_ptr context;
std::vector<llama_adapter_lora_ptr> lora;
};
struct common_init_result common_init_from_params(common_params & params);
struct llama_model_params common_model_params_to_llama (const common_params & params);
struct llama_model_params common_model_params_to_llama ( common_params & params);
struct llama_context_params common_context_params_to_llama(const common_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
std::pair<std::string, std::string> common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & hf_token);
// clear LoRA adapters from context, then apply new list of adapters
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
//
// Batch utils
//
void common_batch_clear(struct llama_batch & batch);
@ -445,6 +555,16 @@ void common_batch_add(
const std::vector<llama_seq_id> & seq_ids,
bool logits);
//
// Token utils
//
// longest common prefix
size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
// longet common subsequence
size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
//
// Vocab utils
//
@ -458,7 +578,7 @@ std::vector<llama_token> common_tokenize(
bool parse_special = false);
std::vector<llama_token> common_tokenize(
const struct llama_model * model,
const struct llama_vocab * vocab,
const std::string & text,
bool add_special,
bool parse_special = false);
@ -470,11 +590,21 @@ std::string common_token_to_piece(
llama_token token,
bool special = true);
std::string common_token_to_piece(
const struct llama_vocab * vocab,
llama_token token,
bool special = true);
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
// optionally renders special/control tokens
std::string common_detokenize(
llama_context * ctx,
const struct llama_context * ctx,
const std::vector<llama_token> & tokens,
bool special = true);
std::string common_detokenize(
const struct llama_vocab * vocab,
const std::vector<llama_token> & tokens,
bool special = true);
@ -482,33 +612,57 @@ std::string common_detokenize(
// Chat template utils
//
struct common_tool_call {
std::string name;
std::string arguments;
std::string id;
};
// same with llama_chat_message, but uses std::string
struct common_chat_msg {
std::string role;
std::string content;
std::vector<common_tool_call> tool_calls;
std::string tool_plan = "";
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl);
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
namespace minja {
class chat_template;
}
typedef minja::chat_template common_chat_template;
struct common_chat_templates {
bool has_explicit_template; // Model had builtin template or template overridde was specified.
std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
std::unique_ptr<common_chat_template> template_tool_use;
};
// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std::string common_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
std::string common_chat_apply_template(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & chat,
bool add_ass);
bool add_ass,
bool use_jinja);
// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
std::string common_chat_format_single(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass);
bool add_ass,
bool use_jinja);
// Returns an example of formatted chat
std::string common_chat_format_example(const struct llama_model * model,
const std::string & tmpl);
std::string common_chat_format_example(
const common_chat_template & tmpl, bool use_jinja);
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override);
//
// KV cache utils
@ -524,7 +678,8 @@ void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_si
// Embedding utils
//
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
// TODO: repace embd_norm with an enum
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
@ -553,18 +708,10 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
// Split utils
//
static const char * const LLM_KV_SPLIT_NO = "split.no";
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
namespace {
//
// YAML utils
//
const char * const LLM_KV_SPLIT_NO = "split.no";
const char * const LLM_KV_SPLIT_COUNT = "split.count";
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
void yaml_dump_non_result_info(
FILE * stream, const common_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
}

View file

@ -1,4 +1,6 @@
#include "json-schema-to-grammar.h"
#include "common.h"
#include <algorithm>
#include <fstream>
#include <map>
@ -11,11 +13,6 @@
using json = nlohmann::ordered_json;
template <typename Iterator>
static std::string join(Iterator begin, Iterator end, const std::string & separator);
static std::string repeat(const std::string & str, size_t n);
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
auto has_max = max_items != std::numeric_limits<int>::max();
@ -128,8 +125,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
if (sub_len > 0) {
auto from_sub = from.substr(i + 1);
auto to_sub = to.substr(i + 1);
auto sub_zeros = repeat("0", sub_len);
auto sub_nines = repeat("9", sub_len);
auto sub_zeros = string_repeat("0", sub_len);
auto sub_nines = string_repeat("9", sub_len);
auto to_reached = false;
out << "(";
@ -188,8 +185,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
auto max_digits = max_s.length();
for (auto digits = min_digits; digits < max_digits; digits++) {
uniform_range(min_s, repeat("9", digits));
min_s = "1" + repeat("0", digits);
uniform_range(min_s, string_repeat("9", digits));
min_s = "1" + string_repeat("0", digits);
out << " | ";
}
uniform_range(min_s, max_s);
@ -318,49 +315,6 @@ std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
template <typename Iterator>
std::string join(Iterator begin, Iterator end, const std::string & separator) {
std::ostringstream result;
if (begin != end) {
result << *begin;
for (Iterator it = begin + 1; it != end; ++it) {
result << separator << *it;
}
}
return result.str();
}
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
tokens.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
tokens.push_back(str.substr(start));
return tokens;
}
static std::string repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
std::smatch match;
std::string result;
@ -389,6 +343,7 @@ static std::string format_literal(const std::string & literal) {
class SchemaConverter {
private:
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
std::map<std::string, std::string> _rules;
@ -418,7 +373,7 @@ private:
for (size_t i = 0; i < alt_schemas.size(); i++) {
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
}
return join(rules.begin(), rules.end(), " | ");
return string_join(rules, " | ");
}
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
@ -481,7 +436,7 @@ private:
for (const auto & item : ret) {
results.push_back(to_rule(item));
}
return std::make_pair(join(results.begin(), results.end(), " "), false);
return std::make_pair(string_join(results, " "), false);
};
while (i < length) {
@ -539,7 +494,7 @@ private:
}
curly_brackets += '}';
i++;
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
auto nums = string_split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
int min_times = 0;
int max_times = std::numeric_limits<int>::max();
try {
@ -611,7 +566,7 @@ private:
}
return join_seq();
};
return _add_rule(name, "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space");
return _add_rule(name, "\"\\\"\" (" + to_rule(transform()) + ") \"\\\"\" space");
}
/*
@ -809,10 +764,11 @@ private:
public:
SchemaConverter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall)
bool dotall,
bool compact_spaces)
: _fetch_json(fetch_json), _dotall(dotall)
{
_rules["space"] = SPACE_RULE;
_rules["space"] = compact_spaces ? "\" \"?" : SPACE_RULE;
}
void resolve_refs(json & schema, const std::string & url) {
@ -854,7 +810,7 @@ public:
return;
}
std::string pointer = ref.substr(ref.find('#') + 1);
std::vector<std::string> tokens = split(pointer, "/");
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
@ -905,7 +861,7 @@ public:
for (const auto & v : schema["enum"]) {
enum_values.push_back(_generate_constant_rule(v));
}
return _add_rule(rule_name, "(" + join(enum_values.begin(), enum_values.end(), " | ") + ") space");
return _add_rule(rule_name, "(" + string_join(enum_values, " | ") + ") space");
} else if ((schema_type.is_null() || schema_type == "object")
&& (schema.contains("properties") ||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
@ -1019,10 +975,10 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
}
}
@ -1035,11 +991,35 @@ public:
}
};
std::string json_schema_to_grammar(const json & schema) {
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
auto copy = schema;
converter.resolve_refs(copy, "input");
converter.visit(copy, "");
std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
#ifdef LLAMA_USE_LLGUIDANCE
if (!force_gbnf) {
return "%llguidance {}\nstart: %json " + schema.dump();
}
#else
(void)force_gbnf;
#endif // LLAMA_USE_LLGUIDANCE
return build_grammar([&](const common_grammar_builder & callbacks) {
auto copy = schema;
callbacks.resolve_refs(copy);
callbacks.add_schema("", copy);
});
}
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall, options.compact_spaces);
common_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);
},
/* .add_schema = */ [&](const std::string & name, const nlohmann::ordered_json & schema) {
return converter.visit(schema, name == "root" ? "" : name);
},
/* .resolve_refs = */ [&](nlohmann::ordered_json & schema) {
converter.resolve_refs(schema, "");
}
};
cb(builder);
converter.check_errors();
return converter.format_grammar();
}

View file

@ -5,4 +5,18 @@
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);
struct common_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule;
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
std::function<void(nlohmann::ordered_json &)> resolve_refs;
};
struct common_grammar_options {
bool dotall = false;
bool compact_spaces = false;
};
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});

270
common/llguidance.cpp Normal file
View file

@ -0,0 +1,270 @@
#include "sampling.h"
#include "log.h"
#ifdef LLAMA_USE_LLGUIDANCE
# include "llguidance.h"
# include <cmath>
struct llama_sampler_llg {
const llama_vocab * vocab;
std::string grammar_kind;
std::string grammar_data;
LlgTokenizer * tokenizer;
LlgConstraint * grammar;
LlgMaskResult llg_res;
bool has_llg_res;
};
static LlgConstraint * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
const char * grammar_data) {
LlgConstraintInit cinit;
llg_constraint_init_set_defaults(&cinit, tokenizer);
const char * log_level = getenv("LLGUIDANCE_LOG_LEVEL");
if (log_level && *log_level) {
cinit.log_stderr_level = atoi(log_level);
}
auto c = llg_new_constraint_any(&cinit, grammar_kind, grammar_data);
if (llg_get_error(c)) {
LOG_ERR("llg error: %s\n", llg_get_error(c));
llg_free_constraint(c);
return nullptr;
}
return c;
}
static const char * llama_sampler_llg_name(const llama_sampler * /*smpl*/) {
return "llguidance";
}
static void llama_sampler_llg_accept_impl(llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
LlgCommitResult res;
llg_commit_token(ctx->grammar, token, &res);
ctx->has_llg_res = false;
}
}
static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
if (!ctx->has_llg_res) {
if (llg_compute_mask(ctx->grammar, &ctx->llg_res) == 0) {
ctx->has_llg_res = true;
} else {
LOG_ERR("llg error: %s\n", llg_get_error(ctx->grammar));
llg_free_constraint(ctx->grammar);
ctx->grammar = nullptr;
}
}
if (ctx->has_llg_res) {
if (ctx->llg_res.is_stop) {
for (size_t i = 0; i < cur_p->size; ++i) {
if (!llama_vocab_is_eog(ctx->vocab, cur_p->data[i].id)) {
cur_p->data[i].logit = -INFINITY;
}
}
} else {
const uint32_t * mask = ctx->llg_res.sample_mask;
for (size_t i = 0; i < cur_p->size; ++i) {
auto token = cur_p->data[i].id;
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
cur_p->data[i].logit = -INFINITY;
}
}
}
}
}
}
static void llama_sampler_llg_reset(llama_sampler * smpl) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (!ctx->grammar) {
return;
}
auto * grammar_new = llama_sampler_llg_new(ctx->tokenizer, ctx->grammar_kind.c_str(), ctx->grammar_data.c_str());
llg_free_constraint(ctx->grammar);
ctx->grammar = grammar_new;
ctx->has_llg_res = false;
}
static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_llg *) smpl->ctx;
auto * result = llama_sampler_init_llg(ctx->vocab, nullptr, nullptr);
// copy the state
{
auto * result_ctx = (llama_sampler_llg *) result->ctx;
if (ctx->grammar) {
result_ctx->grammar_kind = ctx->grammar_kind;
result_ctx->grammar_data = ctx->grammar_data;
result_ctx->grammar = llg_clone_constraint(ctx->grammar);
result_ctx->tokenizer = llg_clone_tokenizer(ctx->tokenizer);
}
}
return result;
}
static void llama_sampler_llg_free(llama_sampler * smpl) {
const auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
llg_free_constraint(ctx->grammar);
llg_free_tokenizer(ctx->tokenizer);
}
delete ctx;
}
static llama_sampler_i llama_sampler_llg_i = {
/* .name = */ llama_sampler_llg_name,
/* .accept = */ llama_sampler_llg_accept_impl,
/* .apply = */ llama_sampler_llg_apply,
/* .reset = */ llama_sampler_llg_reset,
/* .clone = */ llama_sampler_llg_clone,
/* .free = */ llama_sampler_llg_free,
};
static size_t llama_sampler_llg_tokenize_fn(const void * user_data, const uint8_t * bytes, size_t bytes_len,
uint32_t * output_tokens, size_t output_tokens_len) {
const llama_vocab * vocab = (const llama_vocab *) user_data;
int r = 0;
try {
r = llama_tokenize(vocab, (const char *) bytes, bytes_len, (int32_t *) output_tokens, output_tokens_len, false,
true);
} catch (const std::exception & e) {
GGML_ABORT("llama_tokenize failed: %s\n", e.what());
}
if (r < 0) {
return -r;
}
return r;
}
static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab) {
// TODO store the tokenizer in the vocab somehow
static const llama_vocab * vocab_cache;
static LlgTokenizer * tokenizer_cache;
if (vocab_cache == vocab) {
return llg_clone_tokenizer(tokenizer_cache);
}
auto tok_eos = llama_vocab_eot(vocab);
if (tok_eos == LLAMA_TOKEN_NULL) {
tok_eos = llama_vocab_eos(vocab);
}
size_t vocab_size = llama_vocab_n_tokens(vocab);
auto token_lens = new uint32_t[vocab_size];
// we typically have ~7 bytes per token; let's go on the safe side here
auto token_bytes_size = vocab_size * 16 + 1024 * 1024;
auto token_bytes = new uint8_t[token_bytes_size];
size_t offset = 0;
for (size_t i = 0; i < vocab_size; i++) {
size_t max_token = 1024;
if (token_bytes_size - offset < max_token) {
GGML_ABORT("token_bytes buffer too small\n");
}
llama_token token = i;
auto dp = (char *) token_bytes + offset;
auto size = llama_detokenize(vocab, &token, 1, dp, max_token, false, false);
if (size < 0) {
GGML_ABORT("llama_detokenize failed\n");
}
if (size == 0) {
size = llama_detokenize(vocab, &token, 1, dp + 1, max_token - 1, false, true);
if (size < 0) {
GGML_ABORT("llama_detokenize failed\n");
}
if (size != 0) {
*dp = '\xff'; // special token prefix marker
size += 1;
}
}
token_lens[i] = size;
offset += size;
}
LlgTokenizerInit tinit = {
/* .vocab_size = */ (uint32_t) vocab_size,
/* .tok_eos = */ (uint32_t) tok_eos,
/* .token_lens = */ token_lens,
/* .token_bytes = */ token_bytes,
/* .tokenizer_json = */ nullptr,
/* .tokenize_assumes_string = */ true,
/* .tokenize_fn = */ llama_sampler_llg_tokenize_fn,
/* .use_approximate_greedy_tokenize_fn = */ false,
/* .tokenize_user_data = */ vocab,
};
char error_buffer[1024];
LlgTokenizer * tokenizer = llg_new_tokenizer(&tinit, error_buffer, sizeof(error_buffer));
delete[] token_bytes;
delete[] token_lens;
if (tokenizer == nullptr) {
LOG_ERR("llg tokenizer error: %s\n", error_buffer);
return tokenizer;
}
if (tokenizer_cache) {
llg_free_tokenizer(tokenizer_cache);
}
vocab_cache = vocab;
tokenizer_cache = tokenizer;
return llg_clone_tokenizer(tokenizer_cache);
}
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * grammar_kind,
const char * grammar_data) {
auto * ctx = new llama_sampler_llg;
if (grammar_kind != nullptr && grammar_kind[0] != '\0') {
auto tokenizer = llama_sampler_llg_new_tokenizer(vocab);
*ctx = {
/* .vocab = */ vocab,
/* .grammar_kind = */ grammar_kind,
/* .grammar_data = */ grammar_data,
/* .tokenizer = */ tokenizer,
/* .grammar = */ llama_sampler_llg_new(tokenizer, grammar_kind, grammar_data),
/* .llg_res = */ {},
/* .has_llg_res = */ false,
};
} else {
*ctx = {
/* .vocab = */ vocab,
/* .grammar_kind = */ {},
/* .grammar_data = */ {},
/* .tokenizer = */ nullptr,
/* .grammar = */ nullptr,
/* .llg_res = */ {},
/* .has_llg_res = */ false,
};
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_llg_i,
/* .ctx = */ ctx
);
}
#else
llama_sampler * llama_sampler_init_llg(const llama_vocab *, const char *, const char *) {
LOG_WRN("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
return nullptr;
}
#endif // LLAMA_USE_LLGUIDANCE

View file

@ -14,16 +14,6 @@ void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
#define LOG_COL_DEFAULT "\033[0m"
#define LOG_COL_BOLD "\033[1m"
#define LOG_COL_RED "\033[31m"
#define LOG_COL_GREEN "\033[32m"
#define LOG_COL_YELLOW "\033[33m"
#define LOG_COL_BLUE "\033[34m"
#define LOG_COL_MAGENTA "\033[35m"
#define LOG_COL_CYAN "\033[36m"
#define LOG_COL_WHITE "\033[37m"
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@ -206,6 +196,7 @@ public:
vsnprintf(entry.msg.data(), entry.msg.size(), ss.str().c_str(), args_copy);
}
#endif
va_end(args_copy);
}
entry.level = level;

View file

@ -2,6 +2,17 @@
#include "ggml.h" // for ggml_log_level
#define LOG_CLR_TO_EOL "\033[K\r"
#define LOG_COL_DEFAULT "\033[0m"
#define LOG_COL_BOLD "\033[1m"
#define LOG_COL_RED "\033[31m"
#define LOG_COL_GREEN "\033[32m"
#define LOG_COL_YELLOW "\033[33m"
#define LOG_COL_BLUE "\033[34m"
#define LOG_COL_MAGENTA "\033[35m"
#define LOG_COL_CYAN "\033[36m"
#define LOG_COL_WHITE "\033[37m"
#ifndef __GNUC__
# define LOG_ATTRIBUTE_FORMAT(...)
#elif defined(__MINGW32__)

2883
common/minja.hpp Normal file

File diff suppressed because it is too large Load diff

View file

@ -65,13 +65,13 @@ constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
static llama_token try_draft(common_ngram_cache & nc_static, const common_ngram ngram_static) {
common_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
if (part_static_it == nc_static.end()) {
return -1;
return LLAMA_TOKEN_NULL;
}
const common_ngram_cache_part part_static = part_static_it->second;
int max_count_static = 0;
int sum_count_static = 0;
llama_token max_token = -1;
llama_token max_token = LLAMA_TOKEN_NULL;
for (std::pair<llama_token, int> token_count_static : part_static) {
const llama_token token = token_count_static.first;
@ -85,10 +85,10 @@ static llama_token try_draft(common_ngram_cache & nc_static, const common_ngram
}
if (sum_count_static < draft_min_sample_size_lax[LLAMA_NGRAM_STATIC-1]) {
return -1;
return LLAMA_TOKEN_NULL;
}
if (100*max_count_static < draft_min_percent_lax[LLAMA_NGRAM_STATIC-1]*sum_count_static) {
return -1;
return LLAMA_TOKEN_NULL;
}
return max_token;
}
@ -98,9 +98,9 @@ static llama_token try_draft(
common_ngram_cache & nc_primary, const std::vector<common_ngram> & ngrams_primary, common_ngram_cache_part & part_static,
const int * min_sample_size, const int * min_percent) {
llama_token drafted_token = -1;
llama_token drafted_token = LLAMA_TOKEN_NULL;
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == LLAMA_TOKEN_NULL; --i) {
const common_ngram ngram_primary = ngrams_primary[i];
common_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
@ -112,7 +112,7 @@ static llama_token try_draft(
int max_count_primary = 0;
int max_count_static = 0;
int sum_count_primary = 0;
llama_token max_token = -1;
llama_token max_token = LLAMA_TOKEN_NULL;
for (std::pair<llama_token, int> token_count_primary : part_primary) {
const llama_token token = token_count_primary.first;
@ -154,7 +154,7 @@ void common_ngram_cache_draft(
}
while ((int) draft.size()-1 < n_draft) {
llama_token drafted_token = -1;
llama_token drafted_token = LLAMA_TOKEN_NULL;
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
common_ngram ngram_static;
@ -177,17 +177,17 @@ void common_ngram_cache_draft(
}
ngrams_cd.push_back(ngram_cd);
}
if (drafted_token == -1) {
if (drafted_token == LLAMA_TOKEN_NULL) {
drafted_token = try_draft(nc_context, ngrams_cd, part_static, draft_min_sample_size_lax, draft_min_percent_lax);
}
if (drafted_token == -1) {
if (drafted_token == LLAMA_TOKEN_NULL) {
drafted_token = try_draft(nc_dynamic, ngrams_cd, part_static, draft_min_sample_size_strict, draft_min_percent_strict);
}
if (drafted_token == -1) {
if (drafted_token == LLAMA_TOKEN_NULL) {
drafted_token = try_draft(nc_static, ngram_static);
}
if (drafted_token == -1) {
if (drafted_token == LLAMA_TOKEN_NULL) {
break;
}

View file

@ -17,13 +17,13 @@ struct common_ngram {
common_ngram() {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
tokens[i] = -1;
tokens[i] = LLAMA_TOKEN_NULL;
}
}
common_ngram(const llama_token * input, const int ngram_size) {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
tokens[i] = i < ngram_size ? input[i] : -1;
tokens[i] = i < ngram_size ? input[i] : LLAMA_TOKEN_NULL;
}
}

View file

@ -99,7 +99,7 @@ struct ring_buffer {
};
struct common_sampler {
common_sampler_params params;
common_params_sampling params;
struct llama_sampler * grmr;
struct llama_sampler * chain;
@ -113,7 +113,10 @@ struct common_sampler {
void set_logits(struct llama_context * ctx, int idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_vocab = llama_vocab_n_tokens(vocab);
cur.resize(n_vocab);
@ -125,28 +128,53 @@ struct common_sampler {
}
};
std::string common_sampler_params::print() const {
std::string common_params_sampling::print() const {
char result[1024];
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
top_k, tfs_z, top_p, min_p, typ_p, temp,
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
mirostat, mirostat_eta, mirostat_tau);
return std::string(result);
}
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params) {
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
const llama_vocab * vocab = llama_model_get_vocab(model);
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
lparams.no_perf = params.no_perf;
std::vector<const char *> trigger_words;
trigger_words.reserve(params.grammar_trigger_words.size());
for (const auto & str : params.grammar_trigger_words) {
trigger_words.push_back(str.word.c_str());
}
struct llama_sampler * grmr;
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
#else
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
} else {
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
trigger_words.data(), trigger_words.size(),
params.grammar_trigger_tokens.data(), params.grammar_trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
}
auto * result = new common_sampler {
/* .params = */ params,
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
/* .grmr = */ grmr,
/* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
@ -155,70 +183,61 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
llama_sampler_chain_add(result->chain,
llama_sampler_init_logit_bias(
llama_n_vocab(model),
llama_vocab_n_tokens(vocab),
params.logit_bias.size(),
params.logit_bias.data()));
llama_sampler_chain_add(result->chain,
llama_sampler_init_penalties(
llama_n_vocab (model),
llama_token_eos(model),
llama_token_nl (model),
params.penalty_last_n,
params.penalty_repeat,
params.penalty_freq,
params.penalty_present,
params.penalize_nl,
params.ignore_eos));
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
if (params.temp > 0.0f) {
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TFS_Z:
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
} else if (params.mirostat == 2) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
} else {
GGML_ASSERT(false && "unknown mirostat version");
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
} else if (params.mirostat == 2) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
} else {
if (params.n_probs > 0) {
// some use cases require to sample greedily, but still obtain the probabilities of the top tokens
// ref: https://github.com/ggerganov/llama.cpp/pull/9605
//
// the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but
// it is much faster, since we avoid sorting all tokens and should give a good approximation
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs));
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
GGML_ASSERT(false && "unknown mirostat version");
}
return result;
@ -318,6 +337,45 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
return cur_p.data[cur_p.selected].id;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
std::vector<llama_token> result;
result.reserve(idxs.size());
size_t i = 0;
for (; i < draft.size(); i++) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
common_sampler_accept(gsmpl, id, true);
result.push_back(id);
if (draft[i] != id) {
break;
}
}
if (i == draft.size()) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
common_sampler_accept(gsmpl, id, true);
result.push_back(id);
}
return result;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
std::vector<int> idxs(draft.size() + 1);
for (size_t i = 0; i < idxs.size(); ++i) {
idxs[i] = i;
}
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
}
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
return llama_sampler_get_seed(gsmpl->chain);
}
@ -366,36 +424,45 @@ std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY: return 'd';
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
case COMMON_SAMPLER_TYPE_TFS_Z: return 'f';
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
case COMMON_SAMPLER_TYPE_XTC: return 'x';
case COMMON_SAMPLER_TYPE_INFILL: return 'i';
case COMMON_SAMPLER_TYPE_PENALTIES: return 'e';
default : return '?';
}
}
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY: return "dry";
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
case COMMON_SAMPLER_TYPE_TFS_Z: return "tfs_z";
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
case COMMON_SAMPLER_TYPE_INFILL: return "infill";
case COMMON_SAMPLER_TYPE_PENALTIES: return "penalties";
default : return "";
}
}
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
{ "dry", COMMON_SAMPLER_TYPE_DRY },
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
{ "tfs_z", COMMON_SAMPLER_TYPE_TFS_Z },
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
{ "xtc", COMMON_SAMPLER_TYPE_XTC },
{ "infill", COMMON_SAMPLER_TYPE_INFILL },
{ "penalties", COMMON_SAMPLER_TYPE_PENALTIES },
};
// since samplers names are written multiple ways
@ -409,8 +476,6 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min-p", COMMON_SAMPLER_TYPE_MIN_P },
{ "tfs-z", COMMON_SAMPLER_TYPE_TFS_Z },
{ "tfs", COMMON_SAMPLER_TYPE_TFS_Z },
{ "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
};
@ -436,12 +501,15 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
std::unordered_map<char, common_sampler_type> sampler_name_map = {
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY), COMMON_SAMPLER_TYPE_DRY },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TFS_Z), COMMON_SAMPLER_TYPE_TFS_Z },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE }
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES), COMMON_SAMPLER_TYPE_PENALTIES },
};
std::vector<common_sampler_type> samplers;

View file

@ -36,7 +36,7 @@ struct common_sampler;
// llama_sampler API overloads
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params);
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params);
void common_sampler_free(struct common_sampler * gsmpl);
@ -60,6 +60,27 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
//
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
// generalized version of common_sampler_sample
//
// will cross-reference the sampled tokens with a batch of draft tokens and accept those that match
// if the sampler disagrees at some point, we stop and return the accepted tokens up to now
//
// common_sampler_sample_n(gsmpl, ctx, { idx }, {});
//
// is equivalent to
//
// common_sampler_sample(gsmpl, ctx, idx);
// common_sampler_accept(gsmpl, token, true);
//
// requires: idxs.size() == draft.size() + 1
//
// returns at least 1 token, up to idxs.size()
//
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first = false);
// assume idxs == [ 0, 1, 2, ..., draft.size() ]
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first = false);
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
// helpers
@ -81,3 +102,6 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
const char * grammar_kind, const char * grammar_data);

277
common/speculative.cpp Normal file
View file

@ -0,0 +1,277 @@
#include "speculative.h"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include <cstring>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
struct common_speculative {
struct llama_context * ctx;
struct common_sampler * smpl;
llama_batch batch;
llama_tokens prompt;
};
struct common_speculative * common_speculative_init(
struct llama_context * ctx_dft) {
auto * result = new common_speculative {
/* .ctx = */ ctx_dft,
/* .smpl = */ nullptr,
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
/* .prompt = */ {},
};
// TODO: optimize or pass from outside?
#if 0
{
common_params_sampling params;
params.no_perf = false;
params.top_k = 40;
params.top_p = 0.9;
params.samplers = {
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TOP_P,
COMMON_SAMPLER_TYPE_INFILL,
};
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
}
#else
{
common_params_sampling params;
params.no_perf = false;
params.top_k = 10;
params.samplers = {
COMMON_SAMPLER_TYPE_TOP_K,
};
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
}
#endif
return result;
}
void common_speculative_free(struct common_speculative * spec) {
if (spec == nullptr) {
return;
}
common_sampler_free(spec->smpl);
llama_batch_free(spec->batch);
delete spec;
}
bool common_speculative_are_compatible(
const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft) {
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
const struct llama_model * model_dft = llama_get_model(ctx_dft);
const struct llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
const struct llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
const bool vocab_type_tgt = llama_vocab_type(vocab_tgt);
LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
const bool vocab_type_dft = llama_vocab_type(vocab_dft);
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
if (vocab_type_tgt != vocab_type_dft) {
LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
return false;
}
if (llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)) {
LOG_ERR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__);
LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_tgt), llama_vocab_get_add_bos(vocab_tgt), llama_vocab_eos(vocab_tgt), llama_vocab_get_add_eos(vocab_tgt));
LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_dft), llama_vocab_get_add_bos(vocab_dft), llama_vocab_eos(vocab_dft), llama_vocab_get_add_eos(vocab_dft));
return false;
}
{
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
__func__, n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
return false;
}
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
LOG_ERR("%s: draft vocab vocab must match target vocab to use speculation but "
"token %d content differs - target '%s', draft '%s'\n", __func__, i,
common_token_to_piece(ctx_tgt, i).c_str(),
common_token_to_piece(ctx_dft, i).c_str());
return false;
}
}
}
return true;
}
llama_tokens common_speculative_gen_draft(
struct common_speculative * spec,
struct common_speculative_params params,
const llama_tokens & prompt_tgt,
llama_token id_last) {
auto & batch = spec->batch;
auto & ctx = spec->ctx;
auto & smpl = spec->smpl;
auto & prompt = spec->prompt;
int reuse_i = 0;
int reuse_n = 0;
const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
// reuse as much as possible from the old draft context
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
for (int i = 0; i < (int) prompt.size(); ++i) {
int cur = 0;
while (i_start + cur < (int) prompt_tgt.size() &&
i + cur < (int) prompt.size() &&
prompt_tgt[i_start + cur] == prompt[i + cur]) {
cur++;
}
if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
reuse_i = i;
reuse_n = cur;
}
}
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
llama_tokens result;
result.reserve(params.n_draft);
if (reuse_n == 0) {
llama_kv_cache_clear(ctx);
prompt.clear();
} else {
// this happens when a previous draft has been discarded (for example, due to being too small), but the
// target model agreed with it. in this case, we simply pass back the previous results to save compute
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
result.push_back(prompt[i]);
if (params.n_draft <= (int) result.size()) {
break;
}
}
return result;
}
if (reuse_i > 0) {
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
}
if (reuse_n < (int) prompt.size()) {
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
prompt.erase(prompt.begin() + reuse_n, prompt.end());
}
}
// prepare a batch to evaluate any new tokens in the prompt
common_batch_clear(batch);
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
prompt.push_back(prompt_tgt[i]);
}
// we should rarely end-up here during normal decoding
if (batch.n_tokens > 0) {
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
llama_decode(ctx, batch);
}
const llama_pos n_past = prompt.size();
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
common_batch_clear(batch);
common_batch_add (batch, id_last, n_past, { 0 }, true);
prompt.push_back(id_last);
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
llama_decode(ctx, batch);
common_sampler_reset(smpl);
// sample n_draft tokens from the draft model
for (int i = 0; i < params.n_draft; ++i) {
common_batch_clear(batch);
common_sampler_sample(smpl, ctx, 0, true);
const auto * cur_p = common_sampler_get_candidates(smpl);
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
}
// add drafted token for each sequence
const llama_token id = cur_p->data[0].id;
// only collect very high-confidence draft tokens
if (cur_p->data[0].p < params.p_min) {
break;
}
common_sampler_accept(smpl, id, true);
result.push_back(id);
if (params.n_draft <= (int) result.size()) {
break;
}
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
// evaluate the drafted tokens on the draft model
llama_decode(ctx, batch);
prompt.push_back(id);
}
return result;
}

28
common/speculative.h Normal file
View file

@ -0,0 +1,28 @@
#pragma once
#include "llama.h"
#include "common.h"
struct common_speculative;
struct common_speculative_params {
int n_draft = 16; // max drafted tokens
int n_reuse = 256;
float p_min = 0.9f; // min probabiliy required to accept a token in the draft
};
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);
void common_speculative_free(struct common_speculative * spec);
bool common_speculative_are_compatible(
const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft);
// sample up to n_draft tokens and add them to the batch using the draft model
llama_tokens common_speculative_gen_draft(
struct common_speculative * spec,
struct common_speculative_params params,
const llama_tokens & prompt,
llama_token id_last);

File diff suppressed because it is too large Load diff

View file

@ -1,233 +0,0 @@
// Various helper functions and utilities for training
#pragma once
#include <string>
#include <random>
#include <vector>
#include "ggml.h"
#include "llama.h"
#define LLAMA_TRAIN_MAX_NODES 16384
typedef std::string mt19937_state;
struct train_state {
struct ggml_opt_context * opt;
uint64_t train_its;
uint64_t train_samples;
uint64_t train_tokens;
uint64_t train_epochs;
size_t shuffle_samples_hash; // fn, sample_count, *zip(sample_begins, sample_sizes)
mt19937_state shuffle_rng_state_current;
mt19937_state shuffle_rng_state_next;
size_t shuffle_sample_count;
size_t shuffle_next_sample;
};
struct train_params_common {
const char * fn_train_data;
const char * fn_checkpoint_in;
const char * fn_checkpoint_out;
const char * pattern_fn_it;
const char * fn_latest;
bool print_usage;
int save_every;
uint32_t seed;
int n_ctx;
int n_threads;
int n_batch;
int n_gradient_accumulation;
int n_epochs;
int n_gpu_layers;
bool custom_n_ctx;
bool use_flash;
bool use_checkpointing;
std::string sample_start;
bool include_sample_start;
bool escape;
bool overlapping_samples;
bool fill_with_next_samples;
bool separate_with_eos;
bool separate_with_bos;
bool sample_random_offsets;
bool force_reshuffle;
int warmup;
int cos_decay_steps;
float cos_decay_restart;
float cos_decay_min;
bool enable_restart;
int opt_past;
float opt_delta;
int opt_max_no_improvement;
int adam_n_iter;
float adam_alpha;
float adam_min_alpha;
float adam_decay;
int adam_decay_min_ndim;
float adam_beta1;
float adam_beta2;
float adam_gclip;
float adam_eps_f;
};
typedef void (*save_train_files_callback)(void * data, struct train_state * train);
struct train_opt_callback_data {
struct train_params_common * params;
struct train_state * train;
save_train_files_callback save_cb;
void * save_data;
struct llama_context * lctx;
int last_save_iter;
llama_token * tokens_data;
size_t tokens_size;
size_t * samples_begin;
size_t * samples_size;
size_t * shuffled_samples_offs;
size_t * shuffled_samples_begin;
size_t * shuffled_samples_size;
size_t samples_count;
struct ggml_tensor * tokens_input;
struct ggml_tensor * target_probs;
int first_iter;
int first_epoch;
int iter_at_last_epoch;
int64_t last_time;
double millis_per_iter;
};
struct train_state * init_train_state();
void free_train_state(struct train_state * state);
struct train_params_common get_default_train_params_common();
void print_common_train_usage(int /*argc*/, char ** argv, const struct train_params_common * params);
bool consume_common_train_arg(int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param);
void finish_processing_train_args(struct train_params_common * params);
struct random_normal_distribution;
struct random_uniform_distribution;
struct random_normal_distribution * init_random_normal_distribution (int seed, float mean, float std, float min, float max);
struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max);
void free_random_normal_distribution (struct random_normal_distribution * rnd);
void free_random_uniform_distribution(struct random_uniform_distribution * rnd);
struct ggml_tensor * randomize_tensor_normal (struct ggml_tensor * tensor, struct random_normal_distribution * rnd);
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd);
// generate random float in interval [0,1)
float frand();
float frand_normal (struct random_normal_distribution * rnd);
float frand_uniform(struct random_uniform_distribution * rnd);
int clamp (const int v, const int min, const int max);
float fclamp(const float v, const float min, const float max);
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0);
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1);
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2);
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3);
size_t tokenize_file(
struct llama_context * lctx,
const char * filename,
const std::string & sample_start,
bool include_sample_start,
bool overlapping_samples,
unsigned context_length,
std::vector<llama_token> & out_tokens,
std::vector<size_t> & out_samples_begin,
std::vector<size_t> & out_samples_size);
int64_t get_example_targets_batch(
struct llama_context * lctx,
struct ggml_tensor * tokens_input,
struct ggml_tensor * target_probs,
int64_t example_id,
const size_t * samples_offs,
const size_t * samples_begin,
const size_t * samples_size,
size_t samples_count,
const llama_token * train_data,
size_t n_train_data,
bool separate_with_eos,
bool separate_with_bos,
bool fill_with_next_samples,
bool sample_random_offsets);
void mt19937_set_state(std::mt19937& rng, const mt19937_state& rng_state);
mt19937_state mt19937_get_state(const std::mt19937& rng);
mt19937_state mt19937_seed_to_state(unsigned seed);
mt19937_state shuffle_samples(
const mt19937_state & rng_state,
size_t * shuffled_offs,
size_t * shuffled_begins,
size_t * shuffled_sizes,
const size_t * begins,
const size_t * sizes,
size_t count);
size_t hash_combine(size_t h1, size_t h2);
size_t compute_samples_hash(
const char* fn,
const size_t* samples_begin,
const size_t* samples_size,
size_t sample_count);
std::string replace_str(const char * s, const char * needle, const char * replacement);
void print_duration(double milliseconds);
float cosine_decay(
int64_t step,
int64_t decay_steps,
float minimum);
float cosine_decay_restart(
int64_t step,
int64_t decay_steps,
float minimum,
float restart_step_mult);
float learning_schedule(
int64_t step,
int64_t warmup_steps,
int64_t decay_steps,
float learning_rate,
float overall_minimum,
float cos_decay_minimum,
float cos_decay_restart_step_mult,
bool enable_restart);
void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name);
void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt);
void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt);
bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train);
void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train);
std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration);
void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel);

File diff suppressed because it is too large Load diff

View file

@ -17,7 +17,7 @@
#
# python3 convert_hf_to_gguf_update.py <huggingface_token>
#
# - Copy-paste the generated get_vocab_base_pre() function into convert_hf_to_gguf.py
# - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
# - Update llama.cpp with the new pre-tokenizer if necessary
#
# TODO: generate tokenizer tests for llama.cpp
@ -65,42 +65,50 @@ else:
# TODO: add models here, base models preferred
models = [
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
]

View file

@ -12,6 +12,7 @@ import json
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
from transformers import AutoConfig
import torch
@ -225,12 +226,15 @@ def get_base_tensor_name(lora_tensor_name: str) -> str:
base_name = lora_tensor_name.replace("base_model.model.", "")
base_name = base_name.replace(".lora_A.weight", ".weight")
base_name = base_name.replace(".lora_B.weight", ".weight")
# models produced by mergekit-extract-lora have token embeddings in the adapter
base_name = base_name.replace(".lora_embedding_A", ".weight")
base_name = base_name.replace(".lora_embedding_B", ".weight")
return base_name
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file")
description="Convert a Hugging Face PEFT LoRA adapter to a GGUF file")
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
@ -256,17 +260,27 @@ def parse_args() -> argparse.Namespace:
help="only print out what will be done, without writing any new files",
)
parser.add_argument(
"--base", type=Path, required=True,
help="directory containing base model file",
"--base", type=Path,
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
)
parser.add_argument(
"--base-model-id", type=str,
help="the model ID of the base model, if it is not available locally or in the adapter config. If specified, it will ignore --base and load the base model config from the Hugging Face hub (Example: 'meta-llama/Llama-3.2-1B-Instruct')",
)
parser.add_argument(
"lora_path", type=Path,
help="directory containing LoRA adapter file",
help="directory containing Hugging Face PEFT LoRA config (adapter_model.json) and weights (adapter_model.safetensors or adapter_model.bin)",
)
return parser.parse_args()
def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
# normally, adapter does not come with base model config, we need to load it from AutoConfig
config = AutoConfig.from_pretrained(hf_model_id)
return config.to_dict()
if __name__ == '__main__':
args = parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
@ -281,8 +295,9 @@ if __name__ == '__main__':
ftype = ftype_map[args.outtype]
dir_base_model: Path = args.base
dir_base_model: Path | None = args.base
dir_lora: Path = args.lora_path
base_model_id: str | None = args.base_model_id
lora_config = dir_lora / "adapter_config.json"
input_model = dir_lora / "adapter_model.safetensors"
@ -301,9 +316,32 @@ if __name__ == '__main__':
input_model = os.path.join(dir_lora, "adapter_model.bin")
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
# load LoRA config
with open(lora_config, "r") as f:
lparams: dict[str, Any] = json.load(f)
# load base model
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)
if base_model_id is not None:
logger.info(f"Loading base model from Hugging Face: {base_model_id}")
hparams = load_hparams_from_hf(base_model_id)
elif dir_base_model is None:
if "base_model_name_or_path" in lparams:
model_id = lparams["base_model_name_or_path"]
logger.info(f"Loading base model from Hugging Face: {model_id}")
try:
hparams = load_hparams_from_hf(model_id)
except OSError as e:
logger.error(f"Failed to load base model config: {e}")
logger.error("Please try downloading the base model and add its path to --base")
sys.exit(1)
else:
logger.error("'base_model_name_or_path' is not found in adapter_config.json")
logger.error("Base model config is required. Please download the base model and add its path to --base")
sys.exit(1)
else:
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)
with torch.inference_mode():
try:
model_class = Model.from_model_architecture(hparams["architectures"][0])
@ -323,13 +361,15 @@ if __name__ == '__main__':
self.dir_model_card = dir_lora_model
self.lora_alpha = float(lora_alpha)
def set_vocab(self):
pass
def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
def set_gguf_parameters(self):
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
super().set_gguf_parameters()
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
@ -342,12 +382,20 @@ if __name__ == '__main__':
if self.lazy:
tensor = LazyTorchTensor.from_eager(tensor)
base_name = get_base_tensor_name(name)
is_lora_a = ".lora_A.weight" in name
is_lora_b = ".lora_B.weight" in name
# note: mergekit-extract-lora also adds token embeddings to the adapter
is_lora_a = ".lora_A.weight" in name or ".lora_embedding_A" in name
is_lora_b = ".lora_B.weight" in name or ".lora_embedding_B" in name
if not is_lora_a and not is_lora_b:
if ".base_layer.weight" in name:
continue
# mergekit-extract-lora add these layernorm to the adapter, we need to keep them
if "_layernorm" in name or ".norm" in name:
yield (base_name, tensor)
continue
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
sys.exit(1)
if base_name in tensor_map:
@ -375,15 +423,24 @@ if __name__ == '__main__':
if name == "lm_head.weight" and len(dest) == 0:
raise ValueError("lm_head is present in adapter, but is ignored in base model")
for dest_name, dest_data in dest:
# mergekit-extract-lora add these layernorm to the adapter
if "_norm" in dest_name:
assert dest_data.dim() == 1
yield (dest_name, dest_data)
continue
# otherwise, we must get the lora_A and lora_B tensors
assert isinstance(dest_data, LoraTorchTensor)
lora_a, lora_b = dest_data.get_lora_A_B()
# note: mergekit-extract-lora flip and transpose A and B
# here we only need to transpose token_embd.lora_a, see llm_build_inp_embd()
if "token_embd.weight" in dest_name:
lora_a = lora_a.T
yield (dest_name + ".lora_a", lora_a)
yield (dest_name + ".lora_b", lora_b)
with open(lora_config, "r") as f:
lparams: dict[str, Any] = json.load(f)
alpha: float = lparams["lora_alpha"]
model_instance = LoraModel(
@ -396,6 +453,7 @@ if __name__ == '__main__':
dry_run=args.dry_run,
dir_lora_model=dir_lora,
lora_alpha=alpha,
hparams=hparams,
)
logger.info("Exporting model...")

View file

@ -23,10 +23,10 @@ $ curl -L {model-url} -o ~/{model}.gguf
Then, if you are not already in the repo directory, `cd` into `llama.cpp` and:
```
$ ./build/bin/llama-simple -m ~/{model}.gguf -c {context-size} -p "{your-prompt}"
$ ./build/bin/llama-cli -m ~/{model}.gguf -c {context-size} -p "{your-prompt}"
```
Here, we show `llama-simple`, but any of the executables under `examples` should work, in theory. Be sure to set `context-size` to a reasonable number (say, 4096) to start with; otherwise, memory could spike and kill your terminal.
Here, we show `llama-cli`, but any of the executables under `examples` should work, in theory. Be sure to set `context-size` to a reasonable number (say, 4096) to start with; otherwise, memory could spike and kill your terminal.
To see what it might look like visually, here's an old demo of an interactive session running on a Pixel 5 phone:

View file

@ -27,13 +27,6 @@ We recommend using openmp since it's easier to modify the cores being used.
### llama.cpp compilation
Makefile:
```bash
make GGML_BLIS=1 -j
# make GGML_BLIS=1 llama-benchmark-matmult
```
CMake:
```bash

View file

@ -23,6 +23,8 @@ The llama.cpp CANN backend is designed to support Ascend NPU. It utilize the abi
## News
- 2024.11
- Support F16 and F32 data type model for Ascend 310P NPU.
- 2024.8
- Support `Q4_0` and `Q8_0` data type for Ascend NPU.
- 2024.7
@ -40,9 +42,11 @@ The llama.cpp CANN backend is designed to support Ascend NPU. It utilize the abi
### Ascend NPU
**Verified devices**
| Ascend NPU | Status |
|:-----------------------------:|:-------:|
| Atlas 300T A2 | Support |
| Atlas 300I Duo | Support |
*Notes:*

View file

@ -34,13 +34,16 @@ The SYCL backend would be broken by some PRs due to no online CI.
The following release is verified with good quality:
|Commit ID|Tag|Release|Verified Platform|
|-|-|-|-|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1|
|Commit ID|Tag|Release|Verified Platform| Update date|
|-|-|-|-|-|
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
## News
- 2024.11
- Use syclcompat to improve the performance on some platforms. This requires to use oneAPI 2025.0 or newer.
- 2024.8
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
@ -130,7 +133,7 @@ The docker build option is currently limited to *intel GPU* targets.
### Build image
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" -f .devops/llama-cli-intel.Dockerfile .
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
```
*Notes*:
@ -310,12 +313,14 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
@ -333,8 +338,9 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE
## AMD
# Use FP32, FP16 is not supported
# Find your GGML_SYCL_HIP_TARGET with rocminfo, under the key 'Name:'
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_HIP_TARGET=${GGML_SYCL_HIP_TARGET} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:'
GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# build all binary
cmake --build build --config Release -j -v
@ -377,7 +383,7 @@ found 2 SYCL devices:
|Chosen Device ID|Setting|
|-|-|
|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action|
|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:0"` or no action|
|1|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
|0 & 1|`export ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|
@ -644,6 +650,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|--------------------|---------------------------------------|---------------------------------------------|
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |

View file

@ -7,124 +7,75 @@ git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
```
In order to build llama.cpp you have four different options.
The following sections describe how to build with different backends and options.
- Using `make`:
- On Linux or MacOS:
## CPU Build
```bash
make
```
Build llama.cpp using `CMake`:
- On Windows (x86/x64 only, arm64 requires cmake):
```bash
cmake -B build
cmake --build build --config Release
```
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
2. Extract `w64devkit` on your pc.
3. Run `w64devkit.exe`.
4. Use the `cd` command to reach the `llama.cpp` folder.
5. From here you can run:
```bash
make
```
**Notes**:
- Notes:
- For `Q4_0_4_4` quantization type build, add the `GGML_NO_LLAMAFILE=1` flag. For example, use `make GGML_NO_LLAMAFILE=1`.
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, run `make LLAMA_DEBUG=1`
- For faster compilation, add the `-j` argument to run multiple jobs in parallel, or use a generator that does this automatically such as Ninja. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/)
- For debug builds, there are two cases:
- Using `CMake`:
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
```bash
cmake -B build
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
```
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
```bash
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
For more details and a list of supported generators, see the [CMake documentation](https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html).
- For static builds, add `-DBUILD_SHARED_LIBS=OFF`:
```
cmake -B build -DBUILD_SHARED_LIBS=OFF
cmake --build build --config Release
```
**Notes**:
- For `Q4_0_4_4` quantization type build, add the `-DGGML_LLAMAFILE=OFF` cmake option. For example, use `cmake -B build -DGGML_LLAMAFILE=OFF`.
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, there are two cases:
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
- Tab Workload: Desktop-development with C++
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
- For Windows on ARM (arm64, WoA) build with:
```bash
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
cmake --build build-arm64-windows-llvm-release
```
Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_N_M CPU kernels.
For building with ninja generator and clang compiler as default:
-set path:set LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.41.34120\lib\x64\uwp;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
cmake --preset x64-windows-llvm-release
cmake --build build-x64-windows-llvm-release
```
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
```bash
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
- Tab Workload: Desktop-development with C++
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
- For Windows on ARM (arm64, WoA) build with:
```bash
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
cmake --build build-arm64-windows-llvm-release
```
Note: Building for arm64 could also be done just with MSVC (with the build-arm64-windows-MSVC preset, or the standard CMake build instructions). But MSVC does not support inline ARM assembly-code, used e.g. for the accelerated Q4_0_4_8 CPU kernels.
- Using `gmake` (FreeBSD):
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
2. Add your user to **video** group
3. Install compilation dependencies.
```bash
sudo pkg install gmake automake autoconf pkgconf llvm15 openblas
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
```
## Metal Build
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `GGML_NO_METAL=1` flag or the `GGML_METAL=OFF` cmake option.
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
argument.
## BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS. There are currently several different BLAS implementations available for build and use:
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Using BLAS doesn't affect the generation performance. There are currently several different BLAS implementations available for build and use:
### Accelerate Framework:
### Accelerate Framework
This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.
### OpenBLAS:
### OpenBLAS
This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.
- Using `make`:
- On Linux:
```bash
make GGML_OPENBLAS=1
```
- On Windows:
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
2. Download the latest version of [OpenBLAS for Windows](https://github.com/xianyi/OpenBLAS/releases).
3. Extract `w64devkit` on your pc.
4. From the OpenBLAS zip that you just downloaded copy `libopenblas.a`, located inside the `lib` folder, inside `w64devkit\x86_64-w64-mingw32\lib`.
5. From the same OpenBLAS zip copy the content of the `include` folder inside `w64devkit\x86_64-w64-mingw32\include`.
6. Run `w64devkit.exe`.
7. Use the `cd` command to reach the `llama.cpp` folder.
8. From here you can run:
```bash
make GGML_OPENBLAS=1
```
- Using `CMake` on Linux:
```bash
@ -136,14 +87,6 @@ This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS i
Check [BLIS.md](./backend/BLIS.md) for more information.
### SYCL
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
### Intel oneMKL
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
@ -161,49 +104,101 @@ Building through oneAPI compilers will make avx_vnni instruction set available f
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
### CUDA
### Other BLAS libraries
This provides GPU acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
Any other BLAS library can be used by setting the `GGML_BLAS_VENDOR` option. See the [CMake documentation](https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors) for a list of supported vendors.
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
## Metal Build
- Using `make`:
```bash
make GGML_CUDA=1
```
- Using `CMake`:
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `-DGGML_METAL=OFF` cmake option.
```bash
cmake -B build -DGGML_CUDA=ON
cmake --build build --config Release
```
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers 0` command-line argument.
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used.
## SYCL
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
## CUDA
This provides GPU acceleration using an NVIDIA GPU. Make sure to have the [CUDA toolkit](https://developer.nvidia.com/cuda-toolkit) installed.
#### Download directly from NVIDIA
You may find the official downloads here: [NVIDIA developer site](https://developer.nvidia.com/cuda-downloads).
#### Compile and run inside a Fedora Toolbox Container
We also have a [guide](./cuda-fedora.md) for setting up CUDA toolkit in a Fedora [toolbox container](https://containertoolbx.org/).
**Recommended for:**
- ***Particularly*** *convenient* for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
- Toolbox is installed by default: [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde).
- *Optionally* toolbox packages are available: [Arch Linux](https://archlinux.org/), [Red Hat Enterprise Linux >= 8.5](https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux), or [Ubuntu](https://ubuntu.com/download)
### Compilation
```bash
cmake -B build -DGGML_CUDA=ON
cmake --build build --config Release
```
### Override Compute Capability Specifications
If `nvcc` cannot detect your gpu, you may get compile-warnings such as:
```text
nvcc warning : Cannot find valid GPU for '-arch=native', default arch is used
```
To override the `native` GPU detection:
#### 1. Take note of the `Compute Capability` of your NVIDIA devices: ["CUDA: Your GPU Compute > Capability"](https://developer.nvidia.com/cuda-gpus).
```text
GeForce RTX 4090 8.9
GeForce RTX 3080 Ti 8.6
GeForce RTX 3070 8.6
```
#### 2. Manually list each varying `Compute Capability` in the `CMAKE_CUDA_ARCHITECTURES` list.
```bash
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES="86;89"
```
### Runtime CUDA environmental variables
You may set the [cuda environmental variables](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) at runtime.
```bash
# Use `CUDA_VISIBLE_DEVICES` to hide the first compute device.
CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
```
### Unified Memory
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted. In Windows this setting is available in the NVIDIA control panel as `System Memory Fallback`.
### Performance Tuning
The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
### MUSA
## MUSA
This provides GPU acceleration using the MUSA cores of your Moore Threads MTT GPU. Make sure to have the MUSA SDK installed. You can download it from here: [MUSA SDK](https://developer.mthreads.com/sdk/download/musa).
- Using `make`:
```bash
make GGML_MUSA=1
```
- Using `CMake`:
```bash
@ -217,20 +212,16 @@ The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enab
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
### hipBLAS
## HIP
This provides BLAS acceleration on HIP-supported AMD GPUs.
This provides GPU acceleration on HIP-supported AMD GPUs.
Make sure to have ROCm installed.
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html#rocm-install-quick).
- Using `make`:
```bash
make GGML_HIPBLAS=1
```
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
@ -247,19 +238,14 @@ You can download it from your Linux distro's package manager or from here: [ROCm
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build -- -j 16
```
- Using `make` (example for target gfx1030, build with 16 CPU threads):
```bash
make -j16 GGML_HIPBLAS=1 GGML_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
@ -268,23 +254,16 @@ You can download it from your Linux distro's package manager or from here: [ROCm
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| Option | Legal values | Default | Description |
|------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
### Vulkan
## Vulkan
**Windows**
#### w64devkit
### w64devkit
Download and extract [w64devkit](https://github.com/skeeto/w64devkit/releases).
Download and extract [`w64devkit`](https://github.com/skeeto/w64devkit/releases).
Download and install the [Vulkan SDK](https://vulkan.lunarg.com/sdk/home#windows). When selecting components, only the Vulkan SDK Core is required.
Download and install the [`Vulkan SDK`](https://vulkan.lunarg.com/sdk/home#windows) with the default settings.
Launch `w64devkit.exe` and run the following commands to copy Vulkan dependencies:
```sh
@ -300,18 +279,47 @@ Libs: -lvulkan-1
EOF
```
Switch into the `llama.cpp` directory and run `make GGML_VULKAN=1`.
#### MSYS2
Switch into the `llama.cpp` directory and build using CMake.
```sh
cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
```
### Git Bash MINGW64
Download and install [`Git-SCM`](https://git-scm.com/downloads/win) with the default settings
Download and install [`Visual Studio Community Edition`](https://visualstudio.microsoft.com/) and make sure you select `C++`
Download and install [`CMake`](https://cmake.org/download/) with the default settings
Download and install the [`Vulkan SDK`](https://vulkan.lunarg.com/sdk/home#windows) with the default settings.
Go into your `llama.cpp` directory and right click, select `Open Git Bash Here` and then run the following commands
```
cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
```
Now you can load the model in conversation mode using `Vulkan`
```sh
build/bin/Release/llama-cli -m "[PATH TO MODEL]" -ngl 100 -c 16384 -t 10 -n -2 -cnv
```
### MSYS2
Install [MSYS2](https://www.msys2.org/) and then run the following commands in a UCRT terminal to install dependencies.
```sh
pacman -S git \
mingw-w64-ucrt-x86_64-gcc \
mingw-w64-ucrt-x86_64-cmake \
mingw-w64-ucrt-x86_64-vulkan-devel \
mingw-w64-ucrt-x86_64-shaderc
```
Switch into `llama.cpp` directory and build using CMake.
```sh
pacman -S git \
mingw-w64-ucrt-x86_64-gcc \
mingw-w64-ucrt-x86_64-cmake \
mingw-w64-ucrt-x86_64-vulkan-devel \
mingw-w64-ucrt-x86_64-shaderc
```
Switch into the `llama.cpp` directory and build using CMake.
```sh
cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
@ -323,7 +331,7 @@ You don't need to install Vulkan SDK. It will be installed inside the container.
```sh
# Build the image
docker build -t llama-cpp-vulkan -f .devops/llama-cli-vulkan.Dockerfile .
docker build -t llama-cpp-vulkan --target light -f .devops/vulkan.Dockerfile .
# Then, use it:
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
@ -360,7 +368,7 @@ cmake --build build --config Release
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
```
### CANN
## CANN
This provides NPU acceleration using the AI cores of your Ascend NPU. And [CANN](https://www.hiascend.com/en/software/cann) is a hierarchical APIs to help you to quickly build AI applications and service based on Ascend NPU.
For more information about Ascend NPU in [Ascend Community](https://www.hiascend.com/en/).
@ -375,22 +383,26 @@ cmake --build build --config release
You can test with:
`./build/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -ngl 32`
If the fllowing info is output on screen, you are using `llama.cpp by CANN backend`:
```bash
llm_load_tensors: CANN buffer size = 13313.00 MiB
./build/bin/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -ngl 32
```
If the following info is output on screen, you are using `llama.cpp` with the CANN backend:
```bash
llm_load_tensors: CANN model buffer size = 13313.00 MiB
llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
```
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
### Android
## Android
To read documentation for how to build on Android, [click here](./android.md)
### Arm CPU optimized mulmat kernels
## Notes about GPU-accelerated backends
Llama.cpp includes a set of optimized mulmat kernels for the Arm architecture, leveraging Arm® Neon™, int8mm and SVE instructions. These kernels are enabled at build time through the appropriate compiler cpu-type flags, such as `-DCMAKE_C_FLAGS=-march=armv8.2a+i8mm+sve`. Note that these optimized kernels require the model to be quantized into one of the formats: `Q4_0_4_4` (Arm Neon), `Q4_0_4_8` (int8mm) or `Q4_0_8_8` (SVE). The SVE mulmat kernel specifically requires a vector width of 256 bits. When running on devices with a different vector width, it is recommended to use the `Q4_0_4_8` (int8mm) or `Q4_0_4_4` (Arm Neon) formats for better performance. Refer to [examples/quantize/README.md](../examples/quantize/README.md) for more information on the quantization formats.
The GPU may still be used to accelerate some parts of the computation even when using the `-ngl 0` option. You can fully disable GPU acceleration by using `--device none`.
To support `Q4_0_4_4`, you must build with `GGML_NO_LLAMAFILE=1` (`make`) or `-DGGML_LLAMAFILE=OFF` (`cmake`).
In most cases, it is possible to build and use multiple backends at the same time. For example, you can build llama.cpp with both CUDA and Vulkan support by using the `-DGGML_CUDA=ON -DGGML_VULKAN=ON` options with CMake. At runtime, you can specify which backend devices to use with the `--device` option. To see a list of available devices, use the `--list-devices` option.
Backends can be built as dynamic libraries that can be loaded dynamically at runtime. This allows you to use the same llama.cpp binary on different machines with different GPUs. To enable this feature, use the `GGML_BACKEND_DL` option when building.

Some files were not shown because too many files have changed in this diff Show more