// This file contains primitives that expose the tensor core PTX instructions for CUDA code. // The primitives can be used in a similar way as the nvcuda::wmma interface but with a well-defined memory layout. // The documentation for the PTX instructions can be found under: // https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-multiply-accumulate-operation-using-mma-instruction // // Like with nvcuda::wmma there are three types of matrix tiles: A, B, and C with A @ B = C. // A is a row-major matrix with shape I x K. // B is a column-major matrix with shape K x J. // C is a column-major matrix with shape I x J. // Note that along their lowest dimension I, J, and K are measured in physical 32 bit elements instead of logical elements. // The functions get_i, get_j, and get_k can be used to get the physical 32 bit index of the lth element of a thread within a tile. // All matrix tiles have ne physical 32 bit elements per warp. // // As described in the documentation, all pointers for load_ldmatrix must be to shared memory and aligned to 16 bytes. #include "common.cuh" #if CUDART_VERSION >= 11800 static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) { int ret = 0; #ifdef NEW_MMA_AVAILABLE asm("movmatrix.sync.aligned.m8n8.trans.b16 %0, %1;" : "+r"(ret) : "r"(x)); #else NO_DEVICE_CODE; #endif // defined(NEW_MMA_AVAILABLE) return ret; } #else static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) { // Imagine transposing row-major matrix to column-major matrix. const int src_i_low = 2 * (threadIdx.x % 4); const int src_i_high = src_i_low + 1; const int src_j = threadIdx.x / 4; const int src_laneid_low = src_i_low * 4 + src_j / 2; const int src_laneid_high = src_i_high * 4 + src_j / 2; const int shift_low = ((src_j + 0) % 2) * 16; const int shift_high = ((src_j + 1) % 2) * 16; const int ret_low = (__shfl_sync(0xFFFFFFFF, x, src_laneid_low, WARP_SIZE) >> shift_low) & 0x0000FFFF; const int ret_high = (__shfl_sync(0xFFFFFFFF, x, src_laneid_high, WARP_SIZE) << shift_high) & 0xFFFF0000; return ret_low | ret_high; } #endif // CUDART_VERSION >= 11800 template struct mma_A_I16K4 { static_assert(sizeof(T) == 4, "bad type size"); static constexpr int I = 16; static constexpr int K = 4; static constexpr int ne = 2; T x[ne]; static __device__ __forceinline__ int get_i(const int l) { const int ret = (l%2) * (I/2) + threadIdx.x / K; GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < I); return ret; } static __device__ __forceinline__ int get_k(const int /* l */) { const int ret = threadIdx.x % K; GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < K); return ret; } __device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) { #pragma unroll for (int l = 0; l < ne; ++l) { x[l] = xs0[get_i(l)*stride + get_k(l)]; } } __device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) { #ifdef NEW_MMA_AVAILABLE int * xi = (int *) x; const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride; asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];" : "+r"(xi[0]), "+r"(xi[1]) : "l"(xs)); #else load_generic(xs0, stride); #endif // NEW_MMA_AVAILABLE } }; template struct mma_A_I16K8 { static_assert(sizeof(T) == 4, "bad type size"); static constexpr int I = 16; static constexpr int K = 8; static constexpr int ne = 4; T x[ne]; static __device__ __forceinline__ int get_i(const int l) { const int ret = (l%2) * (I/2) + threadIdx.x / (K/2); GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < I); return ret; } static __device__ __forceinline__ int get_k(const int l) { const int ret = (l/2) * (K/2) + threadIdx.x % (K/2); GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < K); return ret; } __device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) { #pragma unroll for (int l = 0; l < ne; ++l) { x[l] = xs0[get_i(l)*stride + get_k(l)]; } } __device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) { #ifdef NEW_MMA_AVAILABLE int * xi = (int * ) x; const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2); asm("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];" : "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3]) : "l"(xs)); #else GGML_UNUSED(xs0); GGML_UNUSED(stride); NO_DEVICE_CODE; #endif // NEW_MMA_AVAILABLE } __device__ __forceinline__ void load_ldmatrix_trans(const T * __restrict__ xs0, const int & stride) { #ifdef NEW_MMA_AVAILABLE int * xi = (int * ) x; const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2); asm("ldmatrix.sync.aligned.m8n8.x4.trans.b16 {%0, %1, %2, %3}, [%4];" : "+r"(xi[0]), "+r"(xi[2]), "+r"(xi[1]), "+r"(xi[3]) : "l"(xs)); #else GGML_UNUSED(xs0); GGML_UNUSED(stride); NO_DEVICE_CODE; #endif // NEW_MMA_AVAILABLE } __device__ __forceinline__ void transpose() { int * xi = (int *) x; xi[0] = ggml_cuda_movmatrix(xi[0]); const int tmp = ggml_cuda_movmatrix(xi[1]); xi[1] = ggml_cuda_movmatrix(xi[2]); xi[2] = tmp; xi[3] = ggml_cuda_movmatrix(xi[3]); } }; template struct mma_B_J8K4 { static_assert(sizeof(T) == 4, "bad type size"); static constexpr int J = 8; static constexpr int K = 4; static constexpr int ne = 1; T x[ne]; static __device__ __forceinline__ int get_j(const int /* l */) { const int ret = threadIdx.x / K; GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < J); return ret; } static __device__ __forceinline__ int get_k(const int /* l */) { const int ret = threadIdx.x % K; GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < K); return ret; } __device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) { #pragma unroll for (int l = 0; l < ne; ++l) { x[l] = xs0[get_j(l)*stride + get_k(l)]; } } __device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) { #ifdef NEW_MMA_AVAILABLE int * xi = (int *) x; const int * xs = (const int *) xs0 + (threadIdx.x%J)*stride; asm("ldmatrix.sync.aligned.m8n8.x1.b16 {%0}, [%1];" : "+r"(xi[0]) : "l"(xs)); #else load_generic(xs0, stride); #endif // NEW_MMA_AVAILABLE } }; template struct mma_B_J8K8 { static_assert(sizeof(T) == 4, "bad type size"); static constexpr int J = 8; static constexpr int K = 8; static constexpr int ne = 2; T x[ne]; static __device__ __forceinline__ int get_j(const int /* l */) { const int ret = threadIdx.x / (K/2); GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < J); return ret; } static __device__ __forceinline__ int get_k(const int l) { const int ret = l * (K/2) + threadIdx.x % (K/2); GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < K); return ret; } __device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) { #pragma unroll for (int l = 0; l < ne; ++l) { x[l] = xs0[get_j(l)*stride + get_k(l)]; } } __device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) { #ifdef NEW_MMA_AVAILABLE int * xi = (int *) x; const int * xs = (const int *) xs0 + (threadIdx.x%J)*stride + ((threadIdx.x/J)*(K/2)) % K; asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];" : "+r"(xi[0]), "+r"(xi[1]) : "l"(xs)); #else load_generic(xs0, stride); #endif // NEW_MMA_AVAILABLE } }; template struct mma_C_I16J8 {}; template <> struct mma_C_I16J8 { static constexpr int I = 16; static constexpr int J = 8; static constexpr int ne = 4; int x[ne] = {0}; static __device__ __forceinline__ int get_i(const int l) { const int ret = (l/2) * (I/2) + threadIdx.x / (J/2); GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < I); return ret; } static __device__ __forceinline__ int get_j(const int l) { const int ret = 2 * (threadIdx.x % (J/2)) + l%2; GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < J); return ret; } __device__ __forceinline__ void mma(const mma_A_I16K4 & mma_A, const mma_B_J8K4 & mma_B) { #ifdef NEW_MMA_AVAILABLE #if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};" : "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3]) : "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_B.x[0])); #else // On Turing m16n8k16 mma is not available, use 2x m8n8k16 mma instead: asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};" : "+r"(x[0]), "+r"(x[1]) : "r"(mma_A.x[0]), "r"(mma_B.x[0])); asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};" : "+r"(x[2]), "+r"(x[3]) : "r"(mma_A.x[1]), "r"(mma_B.x[0])); #endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE #else GGML_UNUSED(mma_A); GGML_UNUSED(mma_B); NO_DEVICE_CODE; #endif // NEW_MMA_AVAILABLE } __device__ __forceinline__ void mma(const mma_A_I16K8 & mma_A, const mma_B_J8K8 & mma_B) { #ifdef NEW_MMA_AVAILABLE #if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};" : "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3]) : "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_A.x[2]), "r"(mma_A.x[3]), "r"(mma_B.x[0]), "r"(mma_B.x[1])); #else // On Turing m16n8k32 mma is not available, use 4x m8n8k16 mma instead: asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};" : "+r"(x[0]), "+r"(x[1]) : "r"(mma_A.x[0]), "r"(mma_B.x[0])); asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};" : "+r"(x[2]), "+r"(x[3]) : "r"(mma_A.x[1]), "r"(mma_B.x[0])); asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};" : "+r"(x[0]), "+r"(x[1]) : "r"(mma_A.x[2]), "r"(mma_B.x[1])); asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};" : "+r"(x[2]), "+r"(x[3]) : "r"(mma_A.x[3]), "r"(mma_B.x[1])); #endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE #else GGML_UNUSED(mma_A); GGML_UNUSED(mma_B); NO_DEVICE_CODE; #endif // NEW_MMA_AVAILABLE } }; template <> struct mma_C_I16J8 { static constexpr int I = 16; static constexpr int J = 4; static constexpr int ne = 2; half2 x[ne] = {{0.0f, 0.0f}, {0.0f, 0.0f}}; static __device__ __forceinline__ int get_i(const int l) { const int ret = l * (I/2) + threadIdx.x / J; GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < I); return ret; } static __device__ __forceinline__ int get_j(const int /* l */) { const int ret = threadIdx.x % J; GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < J); return ret; } __device__ __forceinline__ void mma(const mma_A_I16K8 & mma_A, const mma_B_J8K8 & mma_B) { #ifdef NEW_MMA_AVAILABLE int * Axi = (int *) mma_A.x; int * Bxi = (int *) mma_B.x; int * xi = (int *) x; #if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE asm("mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3, %4, %5}, {%6, %7}, {%0, %1};" : "+r"(xi[0]), "+r"(xi[1]) : "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1])); #else // On Turing m16n8k16 mma is not available, use 2x m8n8k8 mma instead: asm("mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3}, {%4}, {%0, %1};" : "+r"(xi[0]), "+r"(xi[1]) : "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0])); asm("mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3}, {%4}, {%0, %1};" : "+r"(xi[0]), "+r"(xi[1]) : "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1])); #endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE #else GGML_UNUSED(mma_A); GGML_UNUSED(mma_B); NO_DEVICE_CODE; #endif // NEW_MMA_AVAILABLE } __device__ __forceinline__ mma_B_J8K8 to_mma_B() { mma_B_J8K8 mma_B; int * xi = (int *) x; int * Bxi = (int *) mma_B.x; Bxi[0] = ggml_cuda_movmatrix(xi[0]); Bxi[1] = ggml_cuda_movmatrix(xi[1]); return mma_B; } }; template <> struct mma_C_I16J8 { static constexpr int I = 16; static constexpr int J = 8; static constexpr int ne = 4; float x[ne] = {0.0f, 0.0f, 0.0f, 0.0f}; static __device__ __forceinline__ int get_i(const int l) { const int ret = (l/2) * (I/2) + threadIdx.x / (J/2); GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < I); return ret; } static __device__ __forceinline__ int get_j(const int l) { const int ret = 2 * (threadIdx.x % (J/2)) + l%2; GGML_CUDA_ASSUME(ret >= 0); GGML_CUDA_ASSUME(ret < J); return ret; } __device__ __forceinline__ void mma(const mma_A_I16K8 & mma_A, const mma_B_J8K8 & mma_B) { #ifdef NEW_MMA_AVAILABLE int * Axi = (int *) mma_A.x; int * Bxi = (int *) mma_B.x; int * xi = (int *) x; #if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE asm("mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};" : "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3]) : "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1])); #else // On Turing m16n8k16 mma is not available, use 2x m8n8k8 mma instead: asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};" : "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3]) : "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0])); asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};" : "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3]) : "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1])); #endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE #else GGML_UNUSED(mma_A); GGML_UNUSED(mma_B); NO_DEVICE_CODE; #endif // NEW_MMA_AVAILABLE } __device__ __forceinline__ mma_B_J8K8 to_mma_B() { mma_B_J8K8 mma_B; mma_B.x[0] = make_half2(x[0], x[1]); mma_B.x[1] = make_half2(x[2], x[3]); int * Bxi = (int *) mma_B.x; Bxi[0] = ggml_cuda_movmatrix(Bxi[0]); Bxi[1] = ggml_cuda_movmatrix(Bxi[1]); return mma_B; } __device__ __forceinline__ void load_generic(const float * __restrict__ xs0, const int & stride) { #pragma unroll for (int l = 0; l < ne; ++l) { x[l] = xs0[get_j(l)*stride + get_i(l)]; } } };