#version 450 #extension GL_EXT_shader_explicit_arithmetic_types : require #include "mul_mat_vec_base.comp" layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 1) const uint NUM_ROWS = 1; shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; const uint tid = gl_LocalInvocationID.x; const uint itid = tid%16; // 0...16 const uint ix = tid/16; const uint step = 8; const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128... const uint v_in = itid - step*v_im; // 0...15 or 0...7 const uint l0 = 2*v_in; // 0...15 const uint q_offset = 32*v_im + l0; const uint s_offset = 8*v_im; const uint y_offset = 128*v_im + l0; FLOAT_TYPE temp[NUM_ROWS]; [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { temp[i] = FLOAT_TYPE(0); } [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y_idx = i * QUANT_K + y_offset; B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; B_TYPE_VEC2 b48 = data_b_v2[(b_offset + y_idx) / 2 + 24]; B_TYPE_VEC2 b64 = data_b_v2[(b_offset + y_idx) / 2 + 32]; B_TYPE_VEC2 b80 = data_b_v2[(b_offset + y_idx) / 2 + 40]; B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; [[unroll]] for (uint n = 0; n < num_rows; ++n) { const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; f16vec2 d = data_a[ib0 + i].d; const FLOAT_TYPE dall = d.x; const FLOAT_TYPE dmin = d.y; uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0]; uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1]; uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F; uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F; uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F; uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F; uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32)); uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32)); uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32)); uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32)); uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0]; uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]; uvec2 qs0 = uvec2(unpack8(qs0_u16)); uvec2 qs16 = uvec2(unpack8(qs16_u16)); FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); [[unroll]] for (int l = 0; l < 2; ++l) { sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3), fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3), fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3), fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3), fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3), fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3), fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3), fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1)))))))); sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]), fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]), fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]), fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]), fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]), fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]), fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]), fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2)))))))); } temp[n] = fma(dall, sum1, fma(-dmin, sum2, temp[n])); } } // sum up partial sums and write back result [[unroll]] for (uint n = 0; n < num_rows; ++n) { tmpsh[n][tid] = temp[n]; } barrier(); [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { [[unroll]] for (uint n = 0; n < num_rows; ++n) { tmpsh[n][tid] += tmpsh[n][tid + s]; } } barrier(); } if (tid == 0) { [[unroll]] for (uint n = 0; n < num_rows; ++n) { data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); } } } void main() { const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); // do NUM_ROWS at a time, unless there aren't enough remaining rows if (first_row + NUM_ROWS <= p.stride_d) { compute_outputs(first_row, NUM_ROWS); } else { if (first_row >= p.stride_d) { return; } compute_outputs(first_row, p.stride_d - first_row); } }