#version 450 #extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #include "mul_mat_vec_base.comp" layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; shared FLOAT_TYPE sccache[BLOCK_SIZE/16][16]; FLOAT_TYPE temp[NUM_COLS][NUM_ROWS]; void calc_superblock(const uint a_offset, const uint b_offset, const uint itid, const uint ix, const uint ql_offset, const uint qh_offset, const uint s_offset, const uint y_offset, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows, const bool all_threads) { const uint y_idx = i * QUANT_K + y_offset; [[unroll]] for (uint n = 0; n < num_rows; ++n) { const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; if (!all_threads) { // when we don't have enough blocks to use all threads barrier(); if (i < num_blocks_per_row) sccache[ix][itid] = FLOAT_TYPE(data_a[ib0 + i].scales[itid]); barrier(); if (i >= num_blocks_per_row) continue; } const uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16); const uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16); const uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F; const uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F; const uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F; const uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F; const uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16); const uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4; const uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2; const uint32_t qh4_u32 = (qh_u32 & 0x30303030); const uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2; const uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32; const uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32; const uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32; const uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32; const vec4 q0 = vec4(unpack8(q0_u32)) - 32; const vec4 q1 = vec4(unpack8(q1_u32)) - 32; const vec4 q2 = vec4(unpack8(q2_u32)) - 32; const vec4 q3 = vec4(unpack8(q3_u32)) - 32; if (all_threads) { barrier(); sccache[ix][itid] = FLOAT_TYPE(data_a[ib0 + i].scales[itid]); barrier(); } const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { vec4 by0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 ]); vec4 by32 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 8]); vec4 by64 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 16]); vec4 by96 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 24]); FLOAT_TYPE sum[4] = {0, 0, 0, 0}; [[unroll]] for (uint l = 0; l < 4; ++l) { sum[0] = fma(FLOAT_TYPE(by0[l]), q0[l], sum[0]); sum[1] = fma(FLOAT_TYPE(by32[l]), q1[l], sum[1]); sum[2] = fma(FLOAT_TYPE(by64[l]), q2[l], sum[2]); sum[3] = fma(FLOAT_TYPE(by96[l]), q3[l], sum[3]); } temp[j][n] = fma(fma(sum[0], sccache[ix][s_offset], fma(sum[1], sccache[ix][s_offset + 2], fma(sum[2], sccache[ix][s_offset + 4], sum[3] * sccache[ix][s_offset + 6]))), d, temp[j][n]); } } } void compute_outputs(const uint first_row, const uint num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; const uint tid = gl_LocalInvocationID.x; const uint itid = tid%16; // 0...15 const uint ix = tid/16; const uint v_im = itid/8; // 0 or 1. 0 computes 0..., 1 computes 128... const uint v_in = itid - 8*v_im; // 0...7 const uint l0 = 4 * v_in; // 0, 4, 8, ..., 28 const uint is = v_in / 4; const uint ql_offset = 64*v_im + l0; const uint qh_offset = 32*v_im + l0; const uint s_offset = 8*v_im + is; const uint y_offset = 128*v_im + l0; [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { temp[j][i] = FLOAT_TYPE(0); } } const uint nbr_par_th = num_blocks_per_row%it_size; const uint nbr_all_th = num_blocks_per_row - nbr_par_th; uint i0 = 0; [[unroll]] for (; i0 < nbr_all_th; i0 += it_size) calc_superblock(a_offset, b_offset, itid, ix, ql_offset, qh_offset, s_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, true); calc_superblock(a_offset, b_offset, itid, ix, ql_offset, qh_offset, s_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, false); reduce_result(temp, d_offset, first_row, num_rows, tid); } void main() { const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); // do NUM_ROWS at a time, unless there aren't enough remaining rows if (first_row + NUM_ROWS <= p.stride_d) { compute_outputs(first_row, NUM_ROWS); } else { if (first_row >= p.stride_d) { return; } compute_outputs(first_row, p.stride_d - first_row); } }