#pragma once #include "llama.h" #include "llama-batch.h" #include "llama-cparams.h" #include "llama-model.h" #include "llama-kv-cache.h" #include "llama-adapter.h" #include "ggml-cpp.h" #include #include #include #include using llama_loras = std::unordered_map; // TODO: this is very WIP - improve struct llama_batch_manager_i { virtual ~llama_batch_manager_i() = default; //bool is_done() const; virtual llama_ubatch next() = 0; virtual bool prepare() = 0; virtual void restore() = 0; virtual void update() = 0; virtual void finalize() = 0; // TODO: might be temporary int64_t n_outputs_all = 0; }; // TODO: make implementation details private // TODO: become abstract base class, split the current implementation into different child classes struct llama_context { // TODO: store the worst-case graph build function and reuse it later llama_context( const llama_model & model, const llama_context_params & params, std::function fn_build_graph_worst); const struct llama_model & model; llama_cparams cparams; llama_sbatch sbatch; // TODO: revisit if needed llama_adapter_cvec cvec; llama_loras loras; std::vector backends; std::vector> set_n_threads_fns; ggml_backend_t backend_cpu = nullptr; ggml_threadpool_t threadpool = nullptr; ggml_threadpool_t threadpool_batch = nullptr; bool has_evaluated_once = false; mutable int64_t t_start_us; mutable int64_t t_load_us; mutable int64_t t_p_eval_us = 0; mutable int64_t t_eval_us = 0; mutable int64_t t_compute_start_us = 0; mutable int64_t n_queued_tokens = 0; mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) mutable int32_t n_eval = 0; // number of eval calls // host buffer for the model output (logits and embeddings) ggml_backend_buffer_ptr buf_output; // decode output (2-dimensional array: [n_outputs][n_vocab]) size_t logits_size = 0; // capacity (of floats) for logits float * logits = nullptr; std::vector output_ids; // map batch token positions to ids of the logits and embd buffers size_t output_size = 0; // capacity (of tokens positions) for the output buffers int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch bool logits_all = false; bool need_reserve = false; // embeddings output (2-dimensional array: [n_outputs][n_embd]) // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE size_t embd_size = 0; // capacity (of floats) for embeddings float * embd = nullptr; // sequence embeddings output (map of [n_embd] vectors) // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE std::map> embd_seq; // memory buffers used to evaluate the model std::vector buf_compute_meta; ggml_backend_sched_ptr sched; ggml_abort_callback abort_callback = nullptr; void * abort_callback_data = nullptr; // TODO: do not pass logits_all explicitly std::unique_ptr prepare_batch(const llama_batch & batch); // returns the result of ggml_backend_sched_graph_compute_async execution enum ggml_status compute_graph( ggml_cgraph * graph, bool batched); // max token position across all sequences in the current context llama_pos pos_max() const; // certain implementations could require a padding for the context size uint32_t get_ctx_padding(const llama_cparams & cparams) const; void reset(); void prepare_k_shift(); void prepare_defrag(); void set_inputs(const llama_ubatch & ubatch); ggml_tensor * build_lora_mm( ggml_context * ctx0, ggml_tensor * w, ggml_tensor * cur); ggml_tensor * build_lora_mm_id( ggml_context * ctx0, ggml_tensor * w, // struct ggml_tensor * as ggml_tensor * cur, // struct ggml_tensor * b ggml_tensor * ids); // input tensors struct ggml_tensor * inp_tokens; // I32 [n_batch] struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] struct ggml_tensor * inp_pos; // I32 [n_batch] struct ggml_tensor * inp_out_ids; // I32 [n_outputs] struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] struct ggml_tensor * inp_cls; // I32 [n_batch] // === encoder-decoder === // whether we are computing encoder output or decoder output bool is_encoding = false; // output of the encoder part of the encoder-decoder models std::vector embd_enc; std::vector> seq_ids_enc; struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc] struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch] // === unified KV cache === llama_kv_cache kv_self; struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] struct ggml_tensor * inp_KQ_mask_cnv; // [kv_size, n_batch] struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch] struct ggml_tensor * inp_KQ_mask_swa_cnv; // [kv_size, n_batch] struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch] struct ggml_tensor * inp_K_shift; // I32 [kv_size] // return true if need to reserve new worst-case graph void kv_self_update(); void build_attn_inp( ggml_context * ctx0, int32_t n_tokens, bool causal, bool swa, bool worst_case); void build_attn_kv_store( ggml_context * ctx0, ggml_cgraph * graph, ggml_tensor * k_cur, ggml_tensor * v_cur, int32_t n_tokens, int64_t il, bool worst_case); ggml_tensor * build_attn_qkv( ggml_context * ctx0, ggml_cgraph * graph, ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, int32_t n_tokens, float kq_scale, int il, bool worst_case); ggml_tensor * build_soft_max_ext( ggml_context * ctx0, ggml_tensor * kq, float kq_scale); ggml_tensor * get_rope_factors(int il); void build_k_shift( ggml_context * ctx0, ggml_cgraph * graph); // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache void build_defrag( ggml_context * ctx0, ggml_cgraph * graph); // === recurrent === // TODO: add recurrent cache // TODO: add mamba-specific llama_context // TODO: change these to build_mamba_inp and hide `state_copy` and `state_mask` inside the llama_context impl ggml_tensor * build_inp_s_copy( ggml_context * ctx0, bool worst_case); ggml_tensor * build_inp_s_mask( ggml_context * ctx0, bool worst_case); ggml_tensor * build_copy_mask_state( ggml_context * ctx0, ggml_cgraph * graph, ggml_tensor * s, ggml_tensor * state_copy, ggml_tensor * state_mask, int32_t n_tokens, int32_t n_state, int32_t n_seqs, bool worst_case); ggml_tensor * build_mamba_layer( ggml_context * ctx0, ggml_cgraph * graph, ggml_tensor * cur, ggml_tensor * state_copy, ggml_tensor * state_mask, const llama_ubatch & ubatch, int il, bool worst_case); struct ggml_tensor * inp_s_copy; // I32 [kv_size] struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] // === vision === // TODO: find a better way to accommodate mutli-dimension position encoding methods // number of position id each token get, 1 for each token in most cases. // when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate. int n_pos_per_token = 1; }; // Make sure enough space is available for outputs. // Returns max number of outputs for which space was reserved. size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs); // make the outputs have the same order they had in the user-provided batch void llama_output_reorder(struct llama_context & ctx); // For internal test use // TODO: remove const std::vector> & llama_internal_get_tensor_map(struct llama_context * ctx);