964 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			964 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| 
 | |
| import logging
 | |
| import os
 | |
| import shutil
 | |
| import struct
 | |
| import tempfile
 | |
| from dataclasses import dataclass
 | |
| from enum import Enum, auto
 | |
| from math import prod
 | |
| from pathlib import Path
 | |
| from io import BufferedWriter
 | |
| from typing import IO, Any, Sequence, Mapping
 | |
| from string import ascii_letters, digits
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| from .constants import (
 | |
|     GGUF_DEFAULT_ALIGNMENT,
 | |
|     GGUF_MAGIC,
 | |
|     GGUF_VERSION,
 | |
|     GGMLQuantizationType,
 | |
|     GGUFEndian,
 | |
|     GGUFValueType,
 | |
|     Keys,
 | |
|     RopeScalingType,
 | |
|     PoolingType,
 | |
|     TokenType,
 | |
|     ExpertGatingFuncType,
 | |
| )
 | |
| 
 | |
| from .quants import quant_shape_from_byte_shape
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| 
 | |
| SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf"
 | |
| 
 | |
| 
 | |
| @dataclass
 | |
| class TensorInfo:
 | |
|     shape: Sequence[int]
 | |
|     dtype: GGMLQuantizationType
 | |
|     nbytes: int
 | |
|     tensor: np.ndarray[Any, Any] | None = None
 | |
| 
 | |
| 
 | |
| @dataclass
 | |
| class GGUFValue:
 | |
|     value: Any
 | |
|     type: GGUFValueType
 | |
| 
 | |
| 
 | |
| class WriterState(Enum):
 | |
|     NO_FILE = auto()
 | |
|     EMPTY   = auto()
 | |
|     HEADER  = auto()
 | |
|     KV_DATA = auto()
 | |
|     TI_DATA = auto()
 | |
|     WEIGHTS = auto()
 | |
| 
 | |
| 
 | |
| class GGUFWriter:
 | |
|     fout: list[BufferedWriter] | None
 | |
|     path: Path | None
 | |
|     temp_file: tempfile.SpooledTemporaryFile[bytes] | None
 | |
|     tensors: list[dict[str, TensorInfo]]
 | |
|     kv_data: list[dict[str, GGUFValue]]
 | |
|     state: WriterState
 | |
|     _simple_value_packing = {
 | |
|         GGUFValueType.UINT8:   "B",
 | |
|         GGUFValueType.INT8:    "b",
 | |
|         GGUFValueType.UINT16:  "H",
 | |
|         GGUFValueType.INT16:   "h",
 | |
|         GGUFValueType.UINT32:  "I",
 | |
|         GGUFValueType.INT32:   "i",
 | |
|         GGUFValueType.FLOAT32: "f",
 | |
|         GGUFValueType.UINT64:  "Q",
 | |
|         GGUFValueType.INT64:   "q",
 | |
|         GGUFValueType.FLOAT64: "d",
 | |
|         GGUFValueType.BOOL:    "?",
 | |
|     }
 | |
| 
 | |
|     def __init__(
 | |
|         self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
 | |
|         split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
 | |
|     ):
 | |
|         self.fout = None
 | |
|         self.path = Path(path) if path else None
 | |
|         self.arch = arch
 | |
|         self.endianess = endianess
 | |
|         self.data_alignment = GGUF_DEFAULT_ALIGNMENT
 | |
|         self.use_temp_file = use_temp_file
 | |
|         self.temp_file = None
 | |
|         self.tensors = [{}]
 | |
|         self.kv_data = [{}]
 | |
|         self.split_max_tensors = split_max_tensors
 | |
|         self.split_max_size = split_max_size
 | |
|         self.dry_run = dry_run
 | |
|         self.small_first_shard = small_first_shard
 | |
|         logger.info("gguf: This GGUF file is for {0} Endian only".format(
 | |
|             "Big" if self.endianess == GGUFEndian.BIG else "Little",
 | |
|         ))
 | |
|         self.state = WriterState.NO_FILE
 | |
| 
 | |
|         if self.small_first_shard:
 | |
|             self.tensors.append({})
 | |
| 
 | |
|         self.add_architecture()
 | |
| 
 | |
|     def get_total_parameter_count(self) -> tuple[int, int, int, int]:
 | |
|         total_params = 0
 | |
|         shared_params = 0
 | |
|         expert_params = 0
 | |
| 
 | |
|         expert_sum = 0
 | |
|         n_expert_tensors = 0
 | |
| 
 | |
|         last_lora_a: tuple[str, TensorInfo] | None = None
 | |
| 
 | |
|         for tensors in self.tensors:
 | |
|             for name, info in tensors.items():
 | |
| 
 | |
|                 shape = info.shape
 | |
| 
 | |
|                 if name.endswith(".lora_a"):
 | |
|                     last_lora_a = (name, info)
 | |
|                     continue
 | |
|                 elif name.endswith(".lora_b"):
 | |
|                     if last_lora_a is None or last_lora_a[0] != name[:-1] + "a":
 | |
|                         # Bail when the LoRA pair can't be found trivially
 | |
|                         logger.warning("can't measure LoRA size correctly, tensor order is unusual")
 | |
|                         return 0, 0, 0, 0
 | |
|                     else:
 | |
|                         shape = (*shape[:-1], last_lora_a[1].shape[-1])
 | |
| 
 | |
|                 size = prod(shape)
 | |
| 
 | |
|                 if "_exps." in name:
 | |
|                     expert_params += (size // shape[-3])
 | |
|                     expert_sum += shape[-3]
 | |
|                     n_expert_tensors += 1
 | |
|                 else:
 | |
|                     shared_params += size
 | |
| 
 | |
|                 total_params += size
 | |
| 
 | |
|         # Hopefully this should work even for variable-expert-count models
 | |
|         expert_count = (expert_sum // n_expert_tensors) if n_expert_tensors > 0 else 0
 | |
| 
 | |
|         # Negate the total to signal it's likely not exact
 | |
|         if last_lora_a is not None:
 | |
|             total_params = -total_params
 | |
| 
 | |
|         # NOTE: keep the output in the same order as accepted by 'size_label' in gguf-py/gguf/utility.py
 | |
|         return total_params, shared_params, expert_params, expert_count
 | |
| 
 | |
|     def format_shard_names(self, path: Path) -> list[Path]:
 | |
|         if len(self.tensors) == 1:
 | |
|             return [path]
 | |
|         return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))]
 | |
| 
 | |
|     def open_output_file(self, path: Path | None = None) -> None:
 | |
|         if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
 | |
|             # allow calling this multiple times as long as the path is the same
 | |
|             return
 | |
| 
 | |
|         if self.state is not WriterState.NO_FILE:
 | |
|             raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
 | |
| 
 | |
|         if path is not None:
 | |
|             self.path = path
 | |
| 
 | |
|         if self.path is not None:
 | |
|             filenames = self.print_plan()
 | |
|             self.fout = [open(filename, "wb") for filename in filenames]
 | |
|             self.state = WriterState.EMPTY
 | |
| 
 | |
|     def print_plan(self) -> list[Path]:
 | |
|         logger.info("Writing the following files:")
 | |
|         assert self.path is not None
 | |
|         filenames = self.format_shard_names(self.path)
 | |
|         assert len(filenames) == len(self.tensors)
 | |
|         for name, tensors in zip(filenames, self.tensors):
 | |
|             logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}")
 | |
| 
 | |
|         if self.dry_run:
 | |
|             logger.info("Dry run, not writing files")
 | |
|             for name in filenames:
 | |
|                 print(name)  # noqa: NP100
 | |
|             exit()
 | |
| 
 | |
|         return filenames
 | |
| 
 | |
|     def add_shard_kv_data(self) -> None:
 | |
|         if len(self.tensors) == 1:
 | |
|             return
 | |
| 
 | |
|         total_tensors = sum(len(t) for t in self.tensors)
 | |
|         assert self.fout is not None
 | |
|         total_splits = len(self.fout)
 | |
|         self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits))
 | |
|         for i, kv_data in enumerate(self.kv_data):
 | |
|             kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16)
 | |
|             kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16)
 | |
|             kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32)
 | |
| 
 | |
|     def write_header_to_file(self, path: Path | None = None) -> None:
 | |
|         if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0):
 | |
|             logger.warning("Model fails split requirements, not splitting")
 | |
| 
 | |
|         self.open_output_file(path)
 | |
| 
 | |
|         if self.state is not WriterState.EMPTY:
 | |
|             raise ValueError(f'Expected output file to be empty, got {self.state}')
 | |
| 
 | |
|         assert self.fout is not None
 | |
|         assert len(self.fout) == len(self.tensors)
 | |
|         assert len(self.kv_data) == 1
 | |
| 
 | |
|         self.add_shard_kv_data()
 | |
| 
 | |
|         for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data):
 | |
|             fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True))
 | |
|             fout.write(self._pack("I", GGUF_VERSION))
 | |
|             fout.write(self._pack("Q", len(tensors)))
 | |
|             fout.write(self._pack("Q", len(kv_data)))
 | |
|             fout.flush()
 | |
|         self.state = WriterState.HEADER
 | |
| 
 | |
|     def write_kv_data_to_file(self) -> None:
 | |
|         if self.state is not WriterState.HEADER:
 | |
|             raise ValueError(f'Expected output file to contain the header, got {self.state}')
 | |
|         assert self.fout is not None
 | |
| 
 | |
|         for fout, kv_data in zip(self.fout, self.kv_data):
 | |
|             kv_bytes = bytearray()
 | |
| 
 | |
|             for key, val in kv_data.items():
 | |
|                 kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
 | |
|                 kv_bytes += self._pack_val(val.value, val.type, add_vtype=True)
 | |
| 
 | |
|             fout.write(kv_bytes)
 | |
| 
 | |
|         self.flush()
 | |
|         self.state = WriterState.KV_DATA
 | |
| 
 | |
|     def write_ti_data_to_file(self) -> None:
 | |
|         if self.state is not WriterState.KV_DATA:
 | |
|             raise ValueError(f'Expected output file to contain KV data, got {self.state}')
 | |
|         assert self.fout is not None
 | |
| 
 | |
|         for fout, tensors in zip(self.fout, self.tensors):
 | |
|             ti_data = bytearray()
 | |
|             offset_tensor = 0
 | |
| 
 | |
|             for name, ti in tensors.items():
 | |
|                 ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
 | |
|                 n_dims = len(ti.shape)
 | |
|                 ti_data += self._pack("I", n_dims)
 | |
|                 for j in range(n_dims):
 | |
|                     ti_data += self._pack("Q", ti.shape[n_dims - 1 - j])
 | |
|                 ti_data += self._pack("I", ti.dtype)
 | |
|                 ti_data += self._pack("Q", offset_tensor)
 | |
|                 offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)
 | |
| 
 | |
|             fout.write(ti_data)
 | |
|             fout.flush()
 | |
|         self.state = WriterState.TI_DATA
 | |
| 
 | |
|     def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
 | |
|         if any(key in kv_data for kv_data in self.kv_data):
 | |
|             raise ValueError(f'Duplicated key name {key!r}')
 | |
| 
 | |
|         self.kv_data[0][key] = GGUFValue(value=val, type=vtype)
 | |
| 
 | |
|     def add_uint8(self, key: str, val: int) -> None:
 | |
|         self.add_key_value(key,val, GGUFValueType.UINT8)
 | |
| 
 | |
|     def add_int8(self, key: str, val: int) -> None:
 | |
|         self.add_key_value(key, val, GGUFValueType.INT8)
 | |
| 
 | |
|     def add_uint16(self, key: str, val: int) -> None:
 | |
|         self.add_key_value(key, val, GGUFValueType.UINT16)
 | |
| 
 | |
|     def add_int16(self, key: str, val: int) -> None:
 | |
|         self.add_key_value(key, val, GGUFValueType.INT16)
 | |
| 
 | |
|     def add_uint32(self, key: str, val: int) -> None:
 | |
|         self.add_key_value(key, val, GGUFValueType.UINT32)
 | |
| 
 | |
|     def add_int32(self, key: str, val: int) -> None:
 | |
|         self.add_key_value(key, val, GGUFValueType.INT32)
 | |
| 
 | |
|     def add_float32(self, key: str, val: float) -> None:
 | |
|         self.add_key_value(key, val, GGUFValueType.FLOAT32)
 | |
| 
 | |
|     def add_uint64(self, key: str, val: int) -> None:
 | |
|         self.add_key_value(key, val, GGUFValueType.UINT64)
 | |
| 
 | |
|     def add_int64(self, key: str, val: int) -> None:
 | |
|         self.add_key_value(key, val, GGUFValueType.INT64)
 | |
| 
 | |
|     def add_float64(self, key: str, val: float) -> None:
 | |
|         self.add_key_value(key, val, GGUFValueType.FLOAT64)
 | |
| 
 | |
|     def add_bool(self, key: str, val: bool) -> None:
 | |
|         self.add_key_value(key, val, GGUFValueType.BOOL)
 | |
| 
 | |
|     def add_string(self, key: str, val: str) -> None:
 | |
|         if not val:
 | |
|             return
 | |
|         self.add_key_value(key, val, GGUFValueType.STRING)
 | |
| 
 | |
|     def add_array(self, key: str, val: Sequence[Any]) -> None:
 | |
|         if len(val) == 0:
 | |
|             return
 | |
|         self.add_key_value(key, val, GGUFValueType.ARRAY)
 | |
| 
 | |
|     @staticmethod
 | |
|     def ggml_pad(x: int, n: int) -> int:
 | |
|         return ((x + n - 1) // n) * n
 | |
| 
 | |
|     def add_tensor_info(
 | |
|         self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
 | |
|         tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
 | |
|     ) -> None:
 | |
|         if self.state is not WriterState.NO_FILE:
 | |
|             raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
 | |
| 
 | |
|         if any(name in tensors for tensors in self.tensors):
 | |
|             raise ValueError(f'Duplicated tensor name {name!r}')
 | |
| 
 | |
|         if raw_dtype is None:
 | |
|             if tensor_dtype == np.float16:
 | |
|                 dtype = GGMLQuantizationType.F16
 | |
|             elif tensor_dtype == np.float32:
 | |
|                 dtype = GGMLQuantizationType.F32
 | |
|             elif tensor_dtype == np.float64:
 | |
|                 dtype = GGMLQuantizationType.F64
 | |
|             elif tensor_dtype == np.int8:
 | |
|                 dtype = GGMLQuantizationType.I8
 | |
|             elif tensor_dtype == np.int16:
 | |
|                 dtype = GGMLQuantizationType.I16
 | |
|             elif tensor_dtype == np.int32:
 | |
|                 dtype = GGMLQuantizationType.I32
 | |
|             elif tensor_dtype == np.int64:
 | |
|                 dtype = GGMLQuantizationType.I64
 | |
|             else:
 | |
|                 raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
 | |
|         else:
 | |
|             dtype = raw_dtype
 | |
|             if tensor_dtype == np.uint8:
 | |
|                 tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
 | |
| 
 | |
|         # make sure there is at least one tensor before splitting
 | |
|         if len(self.tensors[-1]) > 0:
 | |
|             if (  # split when over tensor limit
 | |
|                 self.split_max_tensors != 0
 | |
|                 and len(self.tensors[-1]) >= self.split_max_tensors
 | |
|             ) or (   # split when over size limit
 | |
|                 self.split_max_size != 0
 | |
|                 and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size
 | |
|             ):
 | |
|                 self.tensors.append({})
 | |
| 
 | |
|         self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)
 | |
| 
 | |
|     def add_tensor(
 | |
|         self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
 | |
|         raw_dtype: GGMLQuantizationType | None = None,
 | |
|     ) -> None:
 | |
|         if self.endianess == GGUFEndian.BIG:
 | |
|             tensor.byteswap(inplace=True)
 | |
|         if self.use_temp_file and self.temp_file is None:
 | |
|             fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
 | |
|             fp.seek(0)
 | |
|             self.temp_file = fp
 | |
| 
 | |
|         shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
 | |
|         self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype)
 | |
| 
 | |
|         if self.temp_file is None:
 | |
|             self.tensors[-1][name].tensor = tensor
 | |
|             return
 | |
| 
 | |
|         tensor.tofile(self.temp_file)
 | |
|         self.write_padding(self.temp_file, tensor.nbytes)
 | |
| 
 | |
|     def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None:
 | |
|         pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
 | |
|         if pad != 0:
 | |
|             fp.write(bytes([0] * pad))
 | |
| 
 | |
|     def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
 | |
|         if self.state is not WriterState.TI_DATA and self.state is not WriterState.WEIGHTS:
 | |
|             raise ValueError(f'Expected output file to contain tensor info or weights, got {self.state}')
 | |
|         assert self.fout is not None
 | |
| 
 | |
|         if self.endianess == GGUFEndian.BIG:
 | |
|             tensor.byteswap(inplace=True)
 | |
| 
 | |
|         file_id = -1
 | |
|         for i, tensors in enumerate(self.tensors):
 | |
|             if len(tensors) > 0:
 | |
|                 file_id = i
 | |
|                 break
 | |
| 
 | |
|         fout = self.fout[file_id]
 | |
| 
 | |
|         # pop the first tensor info
 | |
|         # TODO: cleaner way to get the first key
 | |
|         first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0]
 | |
|         ti = self.tensors[file_id].pop(first_tensor_name)
 | |
|         assert ti.nbytes == tensor.nbytes
 | |
| 
 | |
|         self.write_padding(fout, fout.tell())
 | |
|         tensor.tofile(fout)
 | |
|         self.write_padding(fout, tensor.nbytes)
 | |
| 
 | |
|         self.state = WriterState.WEIGHTS
 | |
| 
 | |
|     def write_tensors_to_file(self, *, progress: bool = False) -> None:
 | |
|         self.write_ti_data_to_file()
 | |
| 
 | |
|         assert self.fout is not None
 | |
| 
 | |
|         for fout in self.fout:
 | |
|             self.write_padding(fout, fout.tell())
 | |
| 
 | |
|         if self.temp_file is None:
 | |
|             shard_bar = None
 | |
|             bar = None
 | |
| 
 | |
|             if progress:
 | |
|                 from tqdm import tqdm
 | |
| 
 | |
|                 total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())
 | |
| 
 | |
|                 if len(self.fout) > 1:
 | |
|                     shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
 | |
|                 bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
 | |
| 
 | |
|             for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
 | |
|                 if shard_bar is not None:
 | |
|                     shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
 | |
|                     total = sum(ti.nbytes for ti in tensors.values())
 | |
|                     shard_bar.reset(total=(total if total > 0 else None))
 | |
| 
 | |
|                 # relying on the fact that Python dicts preserve insertion order (since 3.7)
 | |
|                 for ti in tensors.values():
 | |
|                     assert ti.tensor is not None  # can only iterate once over the tensors
 | |
|                     assert ti.tensor.nbytes == ti.nbytes
 | |
|                     ti.tensor.tofile(fout)
 | |
|                     if shard_bar is not None:
 | |
|                         shard_bar.update(ti.nbytes)
 | |
|                     if bar is not None:
 | |
|                         bar.update(ti.nbytes)
 | |
|                     self.write_padding(fout, ti.nbytes)
 | |
|                     ti.tensor = None
 | |
|         else:
 | |
|             self.temp_file.seek(0)
 | |
| 
 | |
|             shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1])
 | |
|             self.flush()
 | |
|             self.temp_file.close()
 | |
| 
 | |
|         self.state = WriterState.WEIGHTS
 | |
| 
 | |
|     def flush(self) -> None:
 | |
|         assert self.fout is not None
 | |
|         for fout in self.fout:
 | |
|             fout.flush()
 | |
| 
 | |
|     def close(self) -> None:
 | |
|         if self.fout is not None:
 | |
|             for fout in self.fout:
 | |
|                 fout.close()
 | |
|             self.fout = None
 | |
| 
 | |
|     def add_type(self, type_name: str) -> None:
 | |
|         self.add_string(Keys.General.TYPE, type_name)
 | |
| 
 | |
|     def add_architecture(self) -> None:
 | |
|         self.add_string(Keys.General.ARCHITECTURE, self.arch)
 | |
| 
 | |
|     def add_quantization_version(self, quantization_version: int) -> None:
 | |
|         self.add_uint32(Keys.General.QUANTIZATION_VERSION, quantization_version)
 | |
| 
 | |
|     def add_custom_alignment(self, alignment: int) -> None:
 | |
|         self.data_alignment = alignment
 | |
|         self.add_uint32(Keys.General.ALIGNMENT, alignment)
 | |
| 
 | |
|     def add_file_type(self, ftype: int) -> None:
 | |
|         self.add_uint32(Keys.General.FILE_TYPE, ftype)
 | |
| 
 | |
|     def add_name(self, name: str) -> None:
 | |
|         self.add_string(Keys.General.NAME, name)
 | |
| 
 | |
|     def add_author(self, author: str) -> None:
 | |
|         self.add_string(Keys.General.AUTHOR, author)
 | |
| 
 | |
|     def add_version(self, version: str) -> None:
 | |
|         self.add_string(Keys.General.VERSION, version)
 | |
| 
 | |
|     def add_organization(self, organization: str) -> None:
 | |
|         self.add_string(Keys.General.ORGANIZATION, organization)
 | |
| 
 | |
|     def add_finetune(self, finetune: str) -> None:
 | |
|         self.add_string(Keys.General.FINETUNE, finetune)
 | |
| 
 | |
|     def add_basename(self, basename: str) -> None:
 | |
|         self.add_string(Keys.General.BASENAME, basename)
 | |
| 
 | |
|     def add_description(self, description: str) -> None:
 | |
|         self.add_string(Keys.General.DESCRIPTION, description)
 | |
| 
 | |
|     def add_quantized_by(self, quantized: str) -> None:
 | |
|         self.add_string(Keys.General.QUANTIZED_BY, quantized)
 | |
| 
 | |
|     def add_size_label(self, size_label: str) -> None:
 | |
|         self.add_string(Keys.General.SIZE_LABEL, size_label)
 | |
| 
 | |
|     def add_license(self, license: str) -> None:
 | |
|         self.add_string(Keys.General.LICENSE, license)
 | |
| 
 | |
|     def add_license_name(self, license: str) -> None:
 | |
|         self.add_string(Keys.General.LICENSE_NAME, license)
 | |
| 
 | |
|     def add_license_link(self, license: str) -> None:
 | |
|         self.add_string(Keys.General.LICENSE_LINK, license)
 | |
| 
 | |
|     def add_url(self, url: str) -> None:
 | |
|         self.add_string(Keys.General.URL, url)
 | |
| 
 | |
|     def add_doi(self, doi: str) -> None:
 | |
|         self.add_string(Keys.General.DOI, doi)
 | |
| 
 | |
|     def add_uuid(self, uuid: str) -> None:
 | |
|         self.add_string(Keys.General.UUID, uuid)
 | |
| 
 | |
|     def add_repo_url(self, repo_url: str) -> None:
 | |
|         self.add_string(Keys.General.REPO_URL, repo_url)
 | |
| 
 | |
|     def add_source_url(self, url: str) -> None:
 | |
|         self.add_string(Keys.General.SOURCE_URL, url)
 | |
| 
 | |
|     def add_source_doi(self, doi: str) -> None:
 | |
|         self.add_string(Keys.General.SOURCE_DOI, doi)
 | |
| 
 | |
|     def add_source_uuid(self, uuid: str) -> None:
 | |
|         self.add_string(Keys.General.SOURCE_UUID, uuid)
 | |
| 
 | |
|     def add_source_repo_url(self, repo_url: str) -> None:
 | |
|         self.add_string(Keys.General.SOURCE_REPO_URL, repo_url)
 | |
| 
 | |
|     def add_base_model_count(self, source_count: int) -> None:
 | |
|         self.add_uint32(Keys.General.BASE_MODEL_COUNT, source_count)
 | |
| 
 | |
|     def add_base_model_name(self, source_id: int, name: str) -> None:
 | |
|         self.add_string(Keys.General.BASE_MODEL_NAME.format(id=source_id), name)
 | |
| 
 | |
|     def add_base_model_author(self, source_id: int, author: str) -> None:
 | |
|         self.add_string(Keys.General.BASE_MODEL_AUTHOR.format(id=source_id), author)
 | |
| 
 | |
|     def add_base_model_version(self, source_id: int, version: str) -> None:
 | |
|         self.add_string(Keys.General.BASE_MODEL_VERSION.format(id=source_id), version)
 | |
| 
 | |
|     def add_base_model_organization(self, source_id: int, organization: str) -> None:
 | |
|         self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization)
 | |
| 
 | |
|     def add_base_model_description(self, source_id: int, description: str) -> None:
 | |
|         self.add_string(Keys.General.BASE_MODEL_DESCRIPTION.format(id=source_id), description)
 | |
| 
 | |
|     def add_base_model_url(self, source_id: int, url: str) -> None:
 | |
|         self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url)
 | |
| 
 | |
|     def add_base_model_doi(self, source_id: int, doi: str) -> None:
 | |
|         self.add_string(Keys.General.BASE_MODEL_DOI.format(id=source_id), doi)
 | |
| 
 | |
|     def add_base_model_uuid(self, source_id: int, uuid: str) -> None:
 | |
|         self.add_string(Keys.General.BASE_MODEL_UUID.format(id=source_id), uuid)
 | |
| 
 | |
|     def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None:
 | |
|         self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url)
 | |
| 
 | |
|     def add_dataset_count(self, source_count: int) -> None:
 | |
|         self.add_uint32(Keys.General.DATASET_COUNT, source_count)
 | |
| 
 | |
|     def add_dataset_name(self, source_id: int, name: str) -> None:
 | |
|         self.add_string(Keys.General.DATASET_NAME.format(id=source_id), name)
 | |
| 
 | |
|     def add_dataset_author(self, source_id: int, author: str) -> None:
 | |
|         self.add_string(Keys.General.DATASET_AUTHOR.format(id=source_id), author)
 | |
| 
 | |
|     def add_dataset_version(self, source_id: int, version: str) -> None:
 | |
|         self.add_string(Keys.General.DATASET_VERSION.format(id=source_id), version)
 | |
| 
 | |
|     def add_dataset_organization(self, source_id: int, organization: str) -> None:
 | |
|         self.add_string(Keys.General.DATASET_ORGANIZATION.format(id=source_id), organization)
 | |
| 
 | |
|     def add_dataset_description(self, source_id: int, description: str) -> None:
 | |
|         self.add_string(Keys.General.DATASET_DESCRIPTION.format(id=source_id), description)
 | |
| 
 | |
|     def add_dataset_url(self, source_id: int, url: str) -> None:
 | |
|         self.add_string(Keys.General.DATASET_URL.format(id=source_id), url)
 | |
| 
 | |
|     def add_dataset_doi(self, source_id: int, doi: str) -> None:
 | |
|         self.add_string(Keys.General.DATASET_DOI.format(id=source_id), doi)
 | |
| 
 | |
|     def add_dataset_uuid(self, source_id: int, uuid: str) -> None:
 | |
|         self.add_string(Keys.General.DATASET_UUID.format(id=source_id), uuid)
 | |
| 
 | |
|     def add_dataset_repo_url(self, source_id: int, repo_url: str) -> None:
 | |
|         self.add_string(Keys.General.DATASET_REPO_URL.format(id=source_id), repo_url)
 | |
| 
 | |
|     def add_tags(self, tags: Sequence[str]) -> None:
 | |
|         self.add_array(Keys.General.TAGS, tags)
 | |
| 
 | |
|     def add_languages(self, languages: Sequence[str]) -> None:
 | |
|         self.add_array(Keys.General.LANGUAGES, languages)
 | |
| 
 | |
|     def add_tensor_data_layout(self, layout: str) -> None:
 | |
|         self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
 | |
| 
 | |
|     def add_vocab_size(self, size: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size)
 | |
| 
 | |
|     def add_context_length(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_embedding_length(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_features_length(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.FEATURES_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_posnet_embedding_length(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.PosNet.EMBEDDING_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_posnet_block_count(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.PosNet.BLOCK_COUNT.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_convnext_embedding_length(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.ConvNext.EMBEDDING_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_convnext_block_count(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.ConvNext.BLOCK_COUNT.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_block_count(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_leading_dense_block_count(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_feed_forward_length(self, length: int | Sequence[int]) -> None:
 | |
|         if isinstance(length, int):
 | |
|             self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
 | |
|         else:
 | |
|             self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_expert_feed_forward_length(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_expert_shared_feed_forward_length(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_parallel_residual(self, use: bool) -> None:
 | |
|         self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
 | |
| 
 | |
|     def add_decoder_start_token_id(self, id: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)
 | |
| 
 | |
|     def add_head_count(self, count: int | Sequence[int]) -> None:
 | |
|         if isinstance(count, int):
 | |
|             self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
 | |
|         else:
 | |
|             self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_head_count_kv(self, count: int | Sequence[int]) -> None:
 | |
|         if isinstance(count, int):
 | |
|             self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
 | |
|         else:
 | |
|             self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_key_length(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_value_length(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_max_alibi_bias(self, bias: float) -> None:
 | |
|         self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)
 | |
| 
 | |
|     def add_clamp_kqv(self, value: float) -> None:
 | |
|         self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_logit_scale(self, value: float) -> None:
 | |
|         self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_attn_logit_softcapping(self, value: float) -> None:
 | |
|         self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_final_logit_softcapping(self, value: float) -> None:
 | |
|         self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_expert_count(self, count: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_expert_used_count(self, count: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_expert_shared_count(self, count: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_expert_weights_scale(self, value: float) -> None:
 | |
|         self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_expert_weights_norm(self, value: bool) -> None:
 | |
|         self.add_bool(Keys.LLM.EXPERT_WEIGHTS_NORM.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_expert_gating_func(self, value: ExpertGatingFuncType) -> None:
 | |
|         self.add_uint32(Keys.LLM.EXPERT_GATING_FUNC.format(arch=self.arch), value.value)
 | |
| 
 | |
|     def add_swin_norm(self, value: bool) -> None:
 | |
|         self.add_bool(Keys.LLM.SWIN_NORM.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_rescale_every_n_layers(self, count: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.RESCALE_EVERY_N_LAYERS.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_time_mix_extra_dim(self, dim: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.TIME_MIX_EXTRA_DIM.format(arch=self.arch), dim)
 | |
| 
 | |
|     def add_time_decay_extra_dim(self, dim: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.TIME_DECAY_EXTRA_DIM.format(arch=self.arch), dim)
 | |
| 
 | |
|     def add_residual_scale(self, value: float) -> None:
 | |
|         self.add_float32(Keys.LLM.RESIDUAL_SCALE.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_embedding_scale(self, value: float) -> None:
 | |
|         self.add_float32(Keys.LLM.EMBEDDING_SCALE.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_wkv_head_size(self, size: int) -> None:
 | |
|         self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size)
 | |
| 
 | |
|     def add_token_shift_count(self, count: int) -> None:
 | |
|         self.add_uint32(Keys.LLM.TOKEN_SHIFT_COUNT.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_layer_norm_eps(self, value: float) -> None:
 | |
|         self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_layer_norm_rms_eps(self, value: float) -> None:
 | |
|         self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_group_norm_eps(self, value: float) -> None:
 | |
|         self.add_float32(Keys.Attention.GROUPNORM_EPS.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_group_norm_groups(self, value: int) -> None:
 | |
|         self.add_uint32(Keys.Attention.GROUPNORM_GROUPS.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_causal_attention(self, value: bool) -> None:
 | |
|         self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_q_lora_rank(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_kv_lora_rank(self, length: int) -> None:
 | |
|         self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_relative_attn_buckets_count(self, value: int) -> None:
 | |
|         self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_sliding_window(self, value: int) -> None:
 | |
|         self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_attention_scale(self, value: float) -> None:
 | |
|         self.add_float32(Keys.Attention.SCALE.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_pooling_type(self, value: PoolingType) -> None:
 | |
|         self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
 | |
| 
 | |
|     def add_rope_dimension_count(self, count: int) -> None:
 | |
|         self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_rope_dimension_sections(self, dims: Sequence[int]) -> None:
 | |
|         self.add_array(Keys.Rope.DIMENSION_SECTIONS.format(arch=self.arch), dims)
 | |
| 
 | |
|     def add_rope_freq_base(self, value: float) -> None:
 | |
|         self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_rope_scaling_type(self, value: RopeScalingType) -> None:
 | |
|         self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value)
 | |
| 
 | |
|     def add_rope_scaling_factor(self, value: float) -> None:
 | |
|         self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_rope_scaling_attn_factors(self, value: float) -> None:
 | |
|         self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
 | |
|         self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_rope_scaling_finetuned(self, value: bool) -> None:
 | |
|         self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
 | |
|         self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_ssm_conv_kernel(self, value: int) -> None:
 | |
|         self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_ssm_inner_size(self, value: int) -> None:
 | |
|         self.add_uint32(Keys.SSM.INNER_SIZE.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_ssm_state_size(self, value: int) -> None:
 | |
|         self.add_uint32(Keys.SSM.STATE_SIZE.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_ssm_time_step_rank(self, value: int) -> None:
 | |
|         self.add_uint32(Keys.SSM.TIME_STEP_RANK.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_ssm_dt_b_c_rms(self, value: bool) -> None:
 | |
|         self.add_bool(Keys.SSM.DT_B_C_RMS.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_tokenizer_model(self, model: str) -> None:
 | |
|         self.add_string(Keys.Tokenizer.MODEL, model)
 | |
| 
 | |
|     def add_tokenizer_pre(self, pre: str) -> None:
 | |
|         self.add_string(Keys.Tokenizer.PRE, pre)
 | |
| 
 | |
|     def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
 | |
|         self.add_array(Keys.Tokenizer.LIST, tokens)
 | |
| 
 | |
|     def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
 | |
|         self.add_array(Keys.Tokenizer.MERGES, merges)
 | |
| 
 | |
|     def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None:
 | |
|         self.add_array(Keys.Tokenizer.TOKEN_TYPE, types)
 | |
| 
 | |
|     def add_token_type_count(self, value: int) -> None:
 | |
|         self.add_uint32(Keys.Tokenizer.TOKEN_TYPE_COUNT, value)
 | |
| 
 | |
|     def add_token_scores(self, scores: Sequence[float]) -> None:
 | |
|         self.add_array(Keys.Tokenizer.SCORES, scores)
 | |
| 
 | |
|     def add_bos_token_id(self, id: int) -> None:
 | |
|         self.add_uint32(Keys.Tokenizer.BOS_ID, id)
 | |
| 
 | |
|     def add_eos_token_id(self, id: int) -> None:
 | |
|         self.add_uint32(Keys.Tokenizer.EOS_ID, id)
 | |
| 
 | |
|     def add_unk_token_id(self, id: int) -> None:
 | |
|         self.add_uint32(Keys.Tokenizer.UNK_ID, id)
 | |
| 
 | |
|     def add_sep_token_id(self, id: int) -> None:
 | |
|         self.add_uint32(Keys.Tokenizer.SEP_ID, id)
 | |
| 
 | |
|     def add_pad_token_id(self, id: int) -> None:
 | |
|         self.add_uint32(Keys.Tokenizer.PAD_ID, id)
 | |
| 
 | |
|     def add_mask_token_id(self, id: int) -> None:
 | |
|         self.add_uint32(Keys.Tokenizer.MASK_ID, id)
 | |
| 
 | |
|     def add_add_bos_token(self, value: bool) -> None:
 | |
|         self.add_bool(Keys.Tokenizer.ADD_BOS, value)
 | |
| 
 | |
|     def add_add_eos_token(self, value: bool) -> None:
 | |
|         self.add_bool(Keys.Tokenizer.ADD_EOS, value)
 | |
| 
 | |
|     def add_add_space_prefix(self, value: bool) -> None:
 | |
|         self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
 | |
| 
 | |
|     def add_remove_extra_whitespaces(self, value: bool) -> None:
 | |
|         self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value)
 | |
| 
 | |
|     def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None:
 | |
|         self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap)
 | |
| 
 | |
|     def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
 | |
|         if not isinstance(value, str):
 | |
|             template_default = None
 | |
|             template_names = set()
 | |
| 
 | |
|             for choice in value:
 | |
|                 name = choice.get('name', '')
 | |
|                 template = choice.get('template')
 | |
| 
 | |
|                 # Allowing non-alphanumerical characters in template name is probably not a good idea, so filter it
 | |
|                 name = ''.join((c if c in ascii_letters + digits else '_' for c in name))
 | |
| 
 | |
|                 if name and template is not None:
 | |
|                     if name == 'default':
 | |
|                         template_default = template
 | |
|                     else:
 | |
|                         template_names.add(name)
 | |
|                         self.add_string(Keys.Tokenizer.CHAT_TEMPLATE_N.format(name=name), template)
 | |
| 
 | |
|             if template_names:
 | |
|                 self.add_array(Keys.Tokenizer.CHAT_TEMPLATES, list(template_names))
 | |
| 
 | |
|             if template_default is None:
 | |
|                 return
 | |
| 
 | |
|             value = template_default
 | |
| 
 | |
|         self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
 | |
| 
 | |
|     def add_eot_token_id(self, id: int) -> None:
 | |
|         self.add_uint32(Keys.Tokenizer.EOT_ID, id)
 | |
| 
 | |
|     def add_eom_token_id(self, id: int) -> None:
 | |
|         self.add_uint32(Keys.Tokenizer.EOM_ID, id)
 | |
| 
 | |
|     def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
 | |
|         pack_prefix = ''
 | |
|         if not skip_pack_prefix:
 | |
|             pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
 | |
|         return struct.pack(f'{pack_prefix}{fmt}', value)
 | |
| 
 | |
|     def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes:
 | |
|         kv_data = bytearray()
 | |
| 
 | |
|         if add_vtype:
 | |
|             kv_data += self._pack("I", vtype)
 | |
| 
 | |
|         pack_fmt = self._simple_value_packing.get(vtype)
 | |
|         if pack_fmt is not None:
 | |
|             kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
 | |
|         elif vtype == GGUFValueType.STRING:
 | |
|             encoded_val = val.encode("utf-8") if isinstance(val, str) else val
 | |
|             kv_data += self._pack("Q", len(encoded_val))
 | |
|             kv_data += encoded_val
 | |
|         elif vtype == GGUFValueType.ARRAY:
 | |
| 
 | |
|             if not isinstance(val, Sequence):
 | |
|                 raise ValueError("Invalid GGUF metadata array, expecting sequence")
 | |
| 
 | |
|             if len(val) == 0:
 | |
|                 raise ValueError("Invalid GGUF metadata array. Empty array")
 | |
| 
 | |
|             if isinstance(val, bytes):
 | |
|                 ltype = GGUFValueType.UINT8
 | |
|             else:
 | |
|                 ltype = GGUFValueType.get_type(val[0])
 | |
|                 if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
 | |
|                     raise ValueError("All items in a GGUF array should be of the same type")
 | |
|             kv_data += self._pack("I", ltype)
 | |
|             kv_data += self._pack("Q", len(val))
 | |
|             for item in val:
 | |
|                 kv_data += self._pack_val(item, ltype, add_vtype=False)
 | |
|         else:
 | |
|             raise ValueError("Invalid GGUF metadata value type or value")
 | |
| 
 | |
|         return kv_data
 | |
| 
 | |
|     @staticmethod
 | |
|     def format_n_bytes_to_str(num: int) -> str:
 | |
|         if num == 0:
 | |
|             return "negligible - metadata only"
 | |
|         fnum = float(num)
 | |
|         for unit in ("", "K", "M", "G"):
 | |
|             if abs(fnum) < 1000.0:
 | |
|                 return f"{fnum:3.1f}{unit}"
 | |
|             fnum /= 1000.0
 | |
|         return f"{fnum:.1f}T - over 1TB, split recommended"
 |