* Barebone Qwen2VL LLM convertor * Add Qwen2VL cli entrypoint * [WIP] add qwen2vl arch * Verify m-rope output * Add vl-rope/2d-rope support for qwen2vl ViT * update qwen2vl cli tool * update 5D tensor op workaround * [WIP] qwen2vl vision model * make batch and clip utils compatible with qwen2vl * [WIP] create inference workflow, gguf convert script but fix * correcting vision-rope behavior, add the missing last layer back to ViT * add arg parser to qwen2vl_surgery * replace variable size array with vector * cuda-gdb cmake preset * add fp32 mrope, vision rope kernel * add fp16 support for qwen2vl and m-rope * add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION` * fix rope op mode switching, out dated func args * update `llama_hparams` * update to keep up stream changes * resolve linter, test errors * add makefile entry, update speical image padding token * add mrope unit test, fix few compiler warnings * rename `mrope` related function, params * minor updates on debug util, bug fixs * add `m-rope` testcase to `test-backend-ops` * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * fix traililng whitespce * store `llama_hparams.rope_sections` with fixed size array * update position id tensor size check in GGML_OP_ROPE * minor updates * update `ggml_backend_*_supports_op` of unsupported backends * remote old `rope_section` compare operator --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			262 lines
		
	
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "ggml-cpu.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cassert>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| #if defined(__GNUC__)
 | |
| #pragma GCC diagnostic ignored "-Wdouble-promotion"
 | |
| #endif
 | |
| 
 | |
| #define MAX_NARGS 3
 | |
| 
 | |
| #undef MIN
 | |
| #undef MAX
 | |
| #define MIN(a, b) ((a) < (b) ? (a) : (b))
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| 
 | |
| #define GGML_SILU_FP16
 | |
| 
 | |
| //
 | |
| // logging
 | |
| //
 | |
| 
 | |
| #if (GGML_DEBUG >= 1)
 | |
| #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 5)
 | |
| #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_5(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 10)
 | |
| #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_10(...)
 | |
| #endif
 | |
| 
 | |
| #define GGML_PRINT(...) printf(__VA_ARGS__)
 | |
| 
 | |
| static float frand(void) {
 | |
|     return (float)rand()/(float)RAND_MAX;
 | |
| }
 | |
| 
 | |
| static int irand(int n) {
 | |
|     if (n == 0) return 0;
 | |
|     return rand()%n;
 | |
| }
 | |
| 
 | |
| static void get_random_dims(int64_t * dims, int ndims) {
 | |
|     dims[0] = dims[1] = dims[2] = dims[3] = 1;
 | |
| 
 | |
|     for (int i = 0; i < ndims; i++) {
 | |
|         dims[i] = 1 + irand(4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * get_random_tensor_f32(
 | |
|         struct ggml_context * ctx0,
 | |
|         int ndims,
 | |
|         const int64_t ne[],
 | |
|         float fmin,
 | |
|         float fmax) {
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
 | |
| 
 | |
|     switch (ndims) {
 | |
|         case 1:
 | |
|             for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                 ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                 for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                     ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                 for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                     for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                         ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 4:
 | |
|             for (int i3 = 0; i3 < ne[3]; i3++) {
 | |
|                 for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                     for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                         for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                             ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|     };
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
 | |
|     struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
 | |
| 
 | |
|     if (plan.work_size > 0) {
 | |
|         buf.resize(plan.work_size);
 | |
|         plan.work_data = buf.data();
 | |
|     }
 | |
| 
 | |
|     ggml_graph_compute(graph, &plan);
 | |
| }
 | |
| 
 | |
| int main(int /*argc*/, const char ** /*argv*/) {
 | |
|     struct ggml_init_params params = {
 | |
|         /* .mem_size   = */ 128*1024*1024,
 | |
|         /* .mem_buffer = */ NULL,
 | |
|         /* .no_alloc   = */ false,
 | |
|     };
 | |
| 
 | |
|     std::vector<uint8_t> work_buffer;
 | |
| 
 | |
|     struct ggml_context * ctx0 = ggml_init(params);
 | |
| 
 | |
|     struct ggml_tensor * x;
 | |
| 
 | |
|     // rope f32
 | |
|     for (int m = 0; m < 5; ++m) {
 | |
|         const int ndims = 4;
 | |
| 
 | |
|         const int64_t n_rot = 128;
 | |
|         const int64_t ne[4] = { 2*n_rot, 32, 73, 1 };
 | |
| 
 | |
|         const int n_past_0 = 100;
 | |
|         const int n_past_2 = 33;
 | |
| 
 | |
|         struct ggml_tensor * r0;
 | |
|         struct ggml_tensor * r1;
 | |
|         struct ggml_tensor * r2;
 | |
|         x = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
 | |
|         int mode = -1;
 | |
| 
 | |
|         if (m < 3) {
 | |
|             struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
 | |
|             struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
 | |
|             struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
 | |
| 
 | |
|             for (int i = 0; i < ne[2]; ++i) {
 | |
|                 ((int32_t *) p0->data)[i] = n_past_0 + i;
 | |
|                 ((int32_t *) p1->data)[i] = n_past_2 - n_past_0;
 | |
|                 ((int32_t *) p2->data)[i] = n_past_2 + i;
 | |
|             }
 | |
|             // test mode 0, 2, 4 (standard, GPT-NeoX, GLM)
 | |
|             mode = m == 0 ? 0 : m == 1 ? 2 : 4;
 | |
| 
 | |
|             // 100, 101, 102, ..., 172
 | |
|             r0 = ggml_rope(ctx0, x,  p0, n_rot, mode);
 | |
|             // -67, -67, -67, ..., -67
 | |
|             r1 = ggml_rope(ctx0, r0, p1, n_rot, mode); // "context swap", i.e. forget n_past_0 - n_past_2 tokens
 | |
| 
 | |
|             //  33,  34,  35, ..., 105
 | |
|             r2 = ggml_rope(ctx0, x,  p2, n_rot, mode);
 | |
|         } else {
 | |
|             // testing multi-dimension rope position embedding mode
 | |
|             struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4);
 | |
|             struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4);
 | |
|             struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4);
 | |
| 
 | |
|             int sections[4] = {16, 24, 24, 0};
 | |
|             mode = (m == 3) ? GGML_ROPE_TYPE_MROPE : GGML_ROPE_TYPE_VISION;
 | |
| 
 | |
|             for (int i = 0; i < ne[2]; ++i) {
 | |
|                 for (int j = 0; j < 4; ++j) {
 | |
|                     ((int32_t *) p0->data)[i + ne[2] * j] = n_past_0 + i + j;
 | |
|                     ((int32_t *) p1->data)[i + ne[2] * j] = n_past_2 - n_past_0;
 | |
|                     ((int32_t *) p2->data)[i + ne[2] * j] = n_past_2 + i + j;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // [[100, 101, 102, ..., 172],
 | |
|             // [101, 102, 103, ..., 173],
 | |
|             // [102, 103, 104, ..., 174]]
 | |
|             r0 = ggml_rope_multi(
 | |
|                 ctx0, x, p0, nullptr,
 | |
|                 n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1);
 | |
|             // [[-67, -67, -67, ..., -67]
 | |
|             // [-67, -67, -67, ..., -67]
 | |
|             // [-67, -67, -67, ..., -67]]
 | |
|             r1 = ggml_rope_multi(
 | |
|                 ctx0, r0, p1, nullptr,
 | |
|                 n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1);
 | |
| 
 | |
|             //  [[33,  34,  35, ..., 105]
 | |
|             //  [34,  35,  36, ..., 106]
 | |
|             //  [35,  36,  37, ..., 107]]
 | |
|             r2 = ggml_rope_multi(
 | |
|                 ctx0, x, p2, nullptr,
 | |
|                 n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1);
 | |
|         }
 | |
| 
 | |
|         ggml_cgraph * gf = ggml_new_graph(ctx0);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, r0);
 | |
|         ggml_build_forward_expand(gf, r1);
 | |
|         ggml_build_forward_expand(gf, r2);
 | |
| 
 | |
|         ggml_graph_compute_helper(work_buffer, gf, 4);
 | |
| 
 | |
|         // check that r1 and r2 are the same
 | |
|         {
 | |
|             double sum0 = 0.0f;
 | |
|             double sum1 = 0.0f;
 | |
|             double diff = 0.0f;
 | |
| 
 | |
|             const float * r1_data = (float *) r1->data;
 | |
|             const float * r2_data = (float *) r2->data;
 | |
| 
 | |
|             const int n_elements = ggml_nelements(r1);
 | |
| 
 | |
|             for (int i = 0; i < n_elements; ++i) {
 | |
|                 sum0 += fabs(r1_data[i]);
 | |
|                 sum1 += fabs(r2_data[i]);
 | |
|                 diff += fabs(r1_data[i] - r2_data[i]);
 | |
|                 //if (fabs(r1_data[i] - r2_data[i]) > 0.0001f) {
 | |
|                 //    printf("%d: %f %f\n", i, r1_data[i], r2_data[i]);
 | |
|                 //    printf("diff: %f\n", fabs(r1_data[i] - r2_data[i]));
 | |
|                 //}
 | |
|             }
 | |
| 
 | |
|             //for (int i = 4096; i < 4096 + 128; ++i) {
 | |
|             //    printf("%f %f\n", r1_data[i], r2_data[i]);
 | |
|             //}
 | |
| 
 | |
|             printf("mode: %d\n", mode);
 | |
|             printf("sum0: %f\n", sum0);
 | |
|             printf("sum1: %f\n", sum1);
 | |
|             printf("diff: %f\n", diff);
 | |
|             printf("rel err: %f\n", diff / sum0);
 | |
|             printf("rel err: %f\n", diff / sum1);
 | |
| 
 | |
|             GGML_ASSERT(diff / sum0 < 0.0001f);
 | |
|             GGML_ASSERT(diff / sum1 < 0.0001f);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_free(ctx0);
 | |
| 
 | |
|     return 0;
 | |
| }
 |