* ggml : fix cpy op for IQ-quants to use reference impl ggml-ci * ggml : disable tests involving i-matrix quantization * ggml : update ggml_backend_cpu_device_supports_op ggml-ci
		
			
				
	
	
		
			4104 lines
		
	
	
	
		
			148 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4104 lines
		
	
	
	
		
			148 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file defines tests for various GGML ops and backends.
 | |
| // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
 | |
| // For the backward pass it asserts that the gradients from backpropagation are consistent
 | |
| // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
 | |
| // It is also possible to check the performance ("perf" mode).
 | |
| //
 | |
| // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
 | |
| // and section 3 defines which tests to run.
 | |
| // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
 | |
| // then go to section 3 and add an instantiation of your struct.
 | |
| 
 | |
| 
 | |
| // ##############################
 | |
| // ## Section 1: General Setup ##
 | |
| // ##############################
 | |
| 
 | |
| 
 | |
| #include <ggml.h>
 | |
| #include <ggml-alloc.h>
 | |
| #include <ggml-backend.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cfloat>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <cinttypes>
 | |
| #include <memory>
 | |
| #include <random>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string>
 | |
| #include <thread>
 | |
| #include <future>
 | |
| #include <vector>
 | |
| 
 | |
| static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
 | |
|     size_t nels = ggml_nelements(tensor);
 | |
|     std::vector<float> data(nels);
 | |
|     {
 | |
|         // parallel initialization
 | |
|         static const size_t n_threads = std::thread::hardware_concurrency();
 | |
|         // static RNG initialization (revisit if n_threads stops being constant)
 | |
|         static std::vector<std::default_random_engine> generators = []() {
 | |
|             std::random_device rd;
 | |
|             std::vector<std::default_random_engine> vec;
 | |
|             vec.reserve(n_threads);
 | |
|             //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
 | |
|             for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
 | |
|             return vec;
 | |
|         }();
 | |
| 
 | |
|         auto init_thread = [&](size_t ith, size_t start, size_t end) {
 | |
|             std::uniform_real_distribution<float> distribution(min, max);
 | |
|             auto & gen = generators[ith];
 | |
|             for (size_t i = start; i < end; i++) {
 | |
|                 data[i] = distribution(gen);
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         std::vector<std::future<void>> tasks;
 | |
|         tasks.reserve(n_threads);
 | |
|         for (size_t i = 0; i < n_threads; i++) {
 | |
|             size_t start =     i*nels/n_threads;
 | |
|             size_t end   = (i+1)*nels/n_threads;
 | |
|             tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
 | |
|         }
 | |
|         for (auto & t : tasks) {
 | |
|             t.get();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
 | |
|         ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
 | |
|     } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
 | |
|         GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
 | |
| 
 | |
|          // dummy importance matrix
 | |
|         std::vector<float> imatrix(tensor->ne[0], 1.0f);
 | |
|         const float * im = imatrix.data();
 | |
|         if (!ggml_quantize_requires_imatrix(tensor->type)) {
 | |
|             // when the imatrix is optional, we want to test both quantization with and without imatrix
 | |
|             // use one of the random numbers to decide
 | |
|             if (data[0] > 0.5f*(min + max)) {
 | |
|                 im = nullptr;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
 | |
|         {
 | |
|             // parallel quantization by block
 | |
|             size_t blck_size = ggml_blck_size(tensor->type);
 | |
|             size_t n_blocks = nels / blck_size;
 | |
| 
 | |
|             auto quantize_thread = [&](size_t start, size_t end) {
 | |
|                 ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
 | |
|                     start * blck_size, end - start, blck_size, im);
 | |
|             };
 | |
| 
 | |
|             const size_t min_blocks_per_thread = 1;
 | |
|             const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
 | |
|                                                       std::max<size_t>(1, n_blocks / min_blocks_per_thread));
 | |
|             std::vector<std::future<void>> tasks;
 | |
|             tasks.reserve(n_threads);
 | |
|             for (size_t i = 0; i < n_threads; i++) {
 | |
|                 size_t start =     i*n_blocks/n_threads;
 | |
|                 size_t end   = (i+1)*n_blocks/n_threads;
 | |
|                 tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
 | |
|             }
 | |
|             for (auto & t : tasks) {
 | |
|                 t.get();
 | |
|             }
 | |
|         }
 | |
|         ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
 | |
|     } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
 | |
|         // This is going to create some weird integers though.
 | |
|         ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
 | |
|     } else if (tensor->type == GGML_TYPE_I64) {
 | |
|         // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
 | |
|         const size_t nbytes_half = ggml_nbytes(tensor)/2;
 | |
|         ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
 | |
|         ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
 | |
|     } else {
 | |
|         GGML_ABORT("fatal error");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::vector<float> tensor_to_float(const ggml_tensor * t) {
 | |
|     std::vector<float> tv;
 | |
|     tv.reserve(ggml_nelements(t));
 | |
| 
 | |
|     std::vector<uint8_t> buf(ggml_nbytes(t));
 | |
|     ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
 | |
| 
 | |
|     const auto * tt = ggml_get_type_traits(t->type);
 | |
|     size_t bs = ggml_blck_size(t->type);
 | |
|     std::vector<float> vq(ggml_blck_size(t->type));
 | |
|     bool quantized = ggml_is_quantized(t->type);
 | |
| 
 | |
|     // access elements by index to avoid gaps in views
 | |
|     for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
 | |
|         for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
 | |
|             for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
 | |
|                 for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
 | |
|                     size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
 | |
|                     if (t->type == GGML_TYPE_F16) {
 | |
|                         tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
 | |
|                     } else if (t->type == GGML_TYPE_BF16) {
 | |
|                         tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
 | |
|                     } else if (t->type == GGML_TYPE_F32) {
 | |
|                         tv.push_back(*(float *) &buf[i]);
 | |
|                     } else if (t->type == GGML_TYPE_I64) {
 | |
|                         tv.push_back((float)*(int64_t *) &buf[i]);
 | |
|                     } else if (t->type == GGML_TYPE_I32) {
 | |
|                         tv.push_back((float)*(int32_t *) &buf[i]);
 | |
|                     } else if (t->type == GGML_TYPE_I16) {
 | |
|                         tv.push_back((float)*(int16_t *) &buf[i]);
 | |
|                     } else if (t->type == GGML_TYPE_I8) {
 | |
|                         tv.push_back((float)*(int8_t *) &buf[i]);
 | |
|                     } else if (quantized) {
 | |
|                         tt->to_float(&buf[i], vq.data(), bs);
 | |
|                         tv.insert(tv.end(), vq.begin(), vq.end());
 | |
|                     } else {
 | |
|                         GGML_ABORT("fatal error");
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return tv;
 | |
| }
 | |
| 
 | |
| // normalized mean squared error = mse(a, b) / mse(a, 0)
 | |
| static double nmse(const float * a, const float * b, size_t n) {
 | |
|     double mse_a_b = 0.0;
 | |
|     double mse_a_0 = 0.0;
 | |
| 
 | |
|     for (size_t i = 0; i < n; i++) {
 | |
|         float a_i = a[i];
 | |
|         float b_i = b[i];
 | |
| 
 | |
|         mse_a_b += (a_i - b_i) * (a_i - b_i);
 | |
|         mse_a_0 += a_i * a_i;
 | |
|     }
 | |
| 
 | |
|     return mse_a_b / mse_a_0;
 | |
| }
 | |
| 
 | |
| // maximum absolute asymmetry between a and b
 | |
| // asymmetry: (a - b) / (a + b)
 | |
| // This is more stable than relative error if one of the values fluctuates towards zero.
 | |
| // n: number of values to compare.
 | |
| // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
 | |
| //     a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
 | |
| static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
 | |
|     double sum = 0.0f;
 | |
| 
 | |
|     size_t nvalid = 0;
 | |
|     for (size_t i = 0; i < n; i++) {
 | |
|         if (!expected_vals.empty()) {
 | |
|             bool matches_any = false;
 | |
|             for (const float & ev : expected_vals) {
 | |
|                 if (fabsf(a[i] - ev) < 1e-3f) {
 | |
|                     matches_any = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (!matches_any) {
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
 | |
| 
 | |
|         sum += fabsf(asymm);
 | |
|         nvalid++;
 | |
|     }
 | |
| 
 | |
|     return sum/nvalid;
 | |
| }
 | |
| 
 | |
| // utils for printing the variables of the test cases
 | |
| 
 | |
| template<typename T>
 | |
| static std::string var_to_str(const T & x) {
 | |
|     return std::to_string(x);
 | |
| }
 | |
| 
 | |
| template<typename T, size_t N>
 | |
| static std::string var_to_str(const T (&x)[N]) {
 | |
|     std::string s = "[";
 | |
|     for (size_t i = 0; i < N; i++) {
 | |
|         if (i > 0) {
 | |
|             s += ",";
 | |
|         }
 | |
|         s += var_to_str(x[i]);
 | |
|     }
 | |
|     s += "]";
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| template<typename T, size_t N>
 | |
| static std::string var_to_str(const std::array<T, N> & x) {
 | |
|     std::string s = "[";
 | |
|     for (size_t i = 0; i < N; i++) {
 | |
|         if (i > 0) {
 | |
|             s += ",";
 | |
|         }
 | |
|         s += var_to_str(x[i]);
 | |
|     }
 | |
|     s += "]";
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| static std::string var_to_str(ggml_type type) {
 | |
|     return ggml_type_name(type);
 | |
| }
 | |
| 
 | |
| static std::string var_to_str(ggml_op_pool pool) {
 | |
|     switch (pool) {
 | |
|         case GGML_OP_POOL_AVG:  return "avg";
 | |
|         case GGML_OP_POOL_MAX:  return "max";
 | |
|         default:                return std::to_string(pool);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
 | |
| 
 | |
| #define VARS_TO_STR1(a) VAR_TO_STR(a)
 | |
| #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
 | |
| #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
 | |
| #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
 | |
| #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
 | |
| #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
 | |
| #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
 | |
| #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
 | |
| #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
 | |
| #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
 | |
| #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
 | |
| #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
 | |
| 
 | |
| #ifdef GGML_USE_SYCL
 | |
| static bool inline _isinf(float f) {
 | |
|     return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
 | |
| }
 | |
| #else
 | |
| static bool inline _isinf(float f) { return std::isinf(f); }
 | |
| #endif
 | |
| 
 | |
| // accept FLT_MAX as infinity
 | |
| static bool isinf_or_max(float f) {
 | |
|     return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
 | |
| }
 | |
| 
 | |
| static bool ggml_is_view_op(enum ggml_op op) {
 | |
|     return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
 | |
| }
 | |
| 
 | |
| enum test_mode {
 | |
|     MODE_TEST,
 | |
|     MODE_PERF,
 | |
|     MODE_GRAD,
 | |
| };
 | |
| 
 | |
| struct test_case {
 | |
|     virtual ~test_case() {}
 | |
| 
 | |
|     virtual std::string op_desc(ggml_tensor * t) {
 | |
|         return ggml_op_desc(t);
 | |
|     }
 | |
| 
 | |
|     virtual std::string vars() {
 | |
|         return "";
 | |
|     }
 | |
| 
 | |
|     virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
 | |
| 
 | |
|     virtual double max_nmse_err() {
 | |
|         return 1e-7;
 | |
|     }
 | |
| 
 | |
|     virtual double max_maa_err() {
 | |
|         return 1e-4;
 | |
|     }
 | |
| 
 | |
|     virtual float grad_eps() {
 | |
|         return 1e-1f;
 | |
|     }
 | |
| 
 | |
|     // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
 | |
|     // If true,  estimate gradient with 4 points, neglects 5th order derivative and higher.
 | |
|     virtual bool grad_precise() {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
 | |
|     virtual int64_t grad_nmax() {
 | |
|         return 10000;
 | |
|     }
 | |
| 
 | |
|     // No effect if empty.
 | |
|     // If not empty, skip all gradient checks where the numerical result does not match any of the values.
 | |
|     // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
 | |
|     virtual std::vector<float> grad_expect() {
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     virtual void initialize_tensors(ggml_context * ctx) {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             init_tensor_uniform(t);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     virtual size_t op_size(ggml_tensor * t) {
 | |
|         size_t size = ggml_nbytes(t);
 | |
|         // add source tensors
 | |
|         for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|             if (t->src[i] != NULL) {
 | |
|                 size += ggml_nbytes(t->src[i]);
 | |
|             }
 | |
|         }
 | |
|         return size;
 | |
|     }
 | |
| 
 | |
|     virtual uint64_t op_flops(ggml_tensor * t) {
 | |
|         GGML_UNUSED(t);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ggml_cgraph * gf = nullptr;
 | |
|     ggml_cgraph * gb = nullptr;
 | |
| 
 | |
|     static const int sentinel_size = 1024;
 | |
| 
 | |
|     test_mode mode;
 | |
| 
 | |
|     std::vector<ggml_tensor *> sentinels;
 | |
| 
 | |
|     void add_sentinel(ggml_context * ctx) {
 | |
|         if (mode == MODE_PERF || mode == MODE_GRAD) {
 | |
|             return;
 | |
|         }
 | |
|         ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
 | |
|         ggml_format_name(sentinel, "sent_%zu", sentinels.size());
 | |
|         sentinels.push_back(sentinel);
 | |
|     }
 | |
| 
 | |
|     // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
 | |
| 
 | |
|     ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
 | |
|         ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
 | |
|         add_sentinel(ctx);
 | |
|         return t;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
 | |
|         ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
 | |
|         add_sentinel(ctx);
 | |
|         return t;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
 | |
|         ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
 | |
|         add_sentinel(ctx);
 | |
|         return t;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
 | |
|         ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
 | |
|         add_sentinel(ctx);
 | |
|         return t;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
 | |
|         ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
 | |
|         add_sentinel(ctx);
 | |
|         return t;
 | |
|     }
 | |
| 
 | |
|     bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
 | |
|         mode = MODE_TEST;
 | |
| 
 | |
|         ggml_init_params params = {
 | |
|             /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
 | |
|             /* .mem_base = */ NULL,
 | |
|             /* .no_alloc = */ true,
 | |
|         };
 | |
|         ggml_context * ctx = ggml_init(params);
 | |
|         GGML_ASSERT(ctx);
 | |
| 
 | |
|         gf = ggml_new_graph(ctx);
 | |
| 
 | |
|         // pre-graph sentinel
 | |
|         add_sentinel(ctx);
 | |
| 
 | |
|         ggml_tensor * out = build_graph(ctx);
 | |
| 
 | |
|         if (op_name != nullptr && op_desc(out) != op_name) {
 | |
|             //printf("  %s: skipping\n", op_desc(out).c_str());
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         printf("  %s(%s): ", op_desc(out).c_str(), vars().c_str());
 | |
|         fflush(stdout);
 | |
| 
 | |
|         // check if the backends support the ops
 | |
|         bool supported = true;
 | |
|         for (ggml_backend_t backend : {backend1, backend2}) {
 | |
|             for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|                 if (!ggml_backend_supports_op(backend, t)) {
 | |
|                     printf("not supported [%s] ", ggml_backend_name(backend));
 | |
|                     supported = false;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (!supported) {
 | |
|             printf("\n");
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // post-graph sentinel
 | |
|         add_sentinel(ctx);
 | |
| 
 | |
|         // allocate
 | |
|         ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
 | |
|         if (buf == NULL) {
 | |
|             printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
 | |
|             ggml_free(ctx);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // build graph
 | |
|         ggml_build_forward_expand(gf, out);
 | |
| 
 | |
|         // add sentinels as graph nodes so that they are checked in the callback
 | |
|         for (ggml_tensor * sentinel : sentinels) {
 | |
|             ggml_graph_add_node(gf, sentinel);
 | |
|         }
 | |
| 
 | |
|         // randomize tensors
 | |
|         initialize_tensors(ctx);
 | |
| 
 | |
|         // compare
 | |
|         struct callback_userdata {
 | |
|             bool   ok;
 | |
|             double max_err;
 | |
|             ggml_backend_t backend1;
 | |
|             ggml_backend_t backend2;
 | |
|         };
 | |
| 
 | |
|         callback_userdata ud {
 | |
|             true,
 | |
|             max_nmse_err(),
 | |
|             backend1,
 | |
|             backend2
 | |
|         };
 | |
| 
 | |
|         auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
 | |
|             callback_userdata * ud = (callback_userdata *) user_data;
 | |
|             const char * bn1 = ggml_backend_name(ud->backend1);
 | |
|             const char * bn2 = ggml_backend_name(ud->backend2);
 | |
| 
 | |
|             if (t1->op == GGML_OP_NONE) {
 | |
|                 // sentinels must be unchanged
 | |
|                 std::vector<uint8_t> t1_data(ggml_nbytes(t1));
 | |
|                 std::vector<uint8_t> t2_data(ggml_nbytes(t2));
 | |
|                 ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
 | |
|                 ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
 | |
| 
 | |
|                 if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
 | |
|                     printf("sentinel mismatch: %s ", t1->name);
 | |
|                     ud->ok = false;
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             std::vector<float> f1 = tensor_to_float(t1);
 | |
|             std::vector<float> f2 = tensor_to_float(t2);
 | |
| 
 | |
|             for (size_t i = 0; i < f1.size(); i++) {
 | |
|                 // check for nans
 | |
|                 if (std::isnan(f1[i]) || std::isnan(f2[i])) {
 | |
|                     printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
 | |
|                     ud->ok = false;
 | |
|                     return true;
 | |
|                 }
 | |
|                 // check for infs: both must be inf of the same sign, or both must be finite
 | |
|                 if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
 | |
|                     if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
 | |
|                         if (std::signbit(f1[i]) != std::signbit(f2[i])) {
 | |
|                             printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
 | |
|                             ud->ok = false;
 | |
|                             return true;
 | |
|                         }
 | |
|                     } else {
 | |
|                         printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
 | |
|                         ud->ok = false;
 | |
|                         return true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             double err = nmse(f1.data(), f2.data(), f1.size());
 | |
|             if (err > ud->max_err) {
 | |
|                 printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
 | |
|                 //for (int i = 0; i < (int) f1.size(); i++) {
 | |
|                 //    printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
 | |
|                 //}
 | |
|                 //printf("\n");
 | |
|                 //exit(1);
 | |
|                 ud->ok = false;
 | |
|             }
 | |
|             return true;
 | |
| 
 | |
|             GGML_UNUSED(index);
 | |
|         };
 | |
| 
 | |
|         const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
 | |
| 
 | |
|         if (!cmp_ok) {
 | |
|             printf("compare failed ");
 | |
|         }
 | |
| 
 | |
|         ggml_backend_buffer_free(buf);
 | |
| 
 | |
|         ggml_free(ctx);
 | |
| 
 | |
|         if (ud.ok && cmp_ok) {
 | |
|             printf("\033[1;32mOK\033[0m\n");
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         printf("\033[1;31mFAIL\033[0m\n");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     bool eval_perf(ggml_backend_t backend, const char * op_name) {
 | |
|         mode = MODE_PERF;
 | |
| 
 | |
|         static const size_t graph_nodes = 8192;
 | |
| 
 | |
|         ggml_init_params params = {
 | |
|             /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
 | |
|             /* .mem_base = */ NULL,
 | |
|             /* .no_alloc = */ true,
 | |
|         };
 | |
|         ggml_context * ctx = ggml_init(params);
 | |
|         GGML_ASSERT(ctx);
 | |
| 
 | |
|         ggml_tensor * out = build_graph(ctx);
 | |
| 
 | |
|         if (op_name != nullptr && op_desc(out) != op_name) {
 | |
|             //printf("  %s: skipping\n", op_desc(out).c_str());
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         int len = printf("  %s(%s): ", op_desc(out).c_str(), vars().c_str());
 | |
|         fflush(stdout);
 | |
| 
 | |
|         // check if backends support op
 | |
|         if (!ggml_backend_supports_op(backend, out)) {
 | |
|             printf("not supported\n");
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // align while also leaving some margin for variations in parameters
 | |
|         int align = 8;
 | |
|         int last = (len + align - 1) / align * align;
 | |
|         if (last - len < 5) {
 | |
|             last += align;
 | |
|         }
 | |
|         printf("%*s", last - len, "");
 | |
| 
 | |
|         // allocate
 | |
|         ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
 | |
|         if (buf == NULL) {
 | |
|             printf("failed to allocate tensors\n");
 | |
|             ggml_free(ctx);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // randomize tensors
 | |
|         initialize_tensors(ctx);
 | |
| 
 | |
|         // build graph
 | |
|         ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
 | |
|         ggml_build_forward_expand(gf, out);
 | |
| 
 | |
|         // warmup run
 | |
|         ggml_backend_graph_compute(backend, gf);
 | |
| 
 | |
|         // determine number of runs
 | |
|         int n_runs;
 | |
|         bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
 | |
|         if (op_flops(out) > 0) {
 | |
|             // based on flops
 | |
|             const uint64_t GFLOP = 1000 * 1000 * 1000;
 | |
|             const uint64_t target_flops_cpu =   8ULL * GFLOP;
 | |
|             const uint64_t target_flops_gpu = 100ULL * GFLOP;
 | |
|             uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
 | |
|             n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
 | |
|         } else {
 | |
|             // based on memory size
 | |
|             const size_t GB = 1ULL << 30;
 | |
|             const size_t target_size_cpu =  8 * GB;
 | |
|             const size_t target_size_gpu = 32 * GB;
 | |
|             size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
 | |
|             n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
 | |
|         }
 | |
| 
 | |
|         // duplicate the op
 | |
|         for (int i = 1; i < n_runs; i++) {
 | |
|             ggml_graph_add_node(gf, out);
 | |
|         }
 | |
| 
 | |
|         // calculate memory
 | |
|         size_t mem = n_runs * op_size(out);
 | |
|         auto tensor_op_size = [](ggml_tensor * t) {
 | |
|             size_t size = ggml_nbytes(t);
 | |
|             // add source tensors
 | |
|             for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|                 if (t->src[i] != NULL) {
 | |
|                     size += ggml_nbytes(t->src[i]);
 | |
|                 }
 | |
|             }
 | |
|             return size;
 | |
|         };
 | |
|         for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
 | |
|             if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
 | |
|                 continue;
 | |
|             }
 | |
|             mem += tensor_op_size(ggml_graph_node(gf, i));
 | |
|         }
 | |
| 
 | |
|         // run
 | |
|         int64_t total_time_us = 0;
 | |
|         int64_t total_mem = 0;
 | |
|         int total_runs = 0;
 | |
|         do {
 | |
|             int64_t start_time = ggml_time_us();
 | |
|             ggml_backend_graph_compute(backend, gf);
 | |
|             int64_t end_time = ggml_time_us();
 | |
| 
 | |
|             total_time_us += end_time - start_time;
 | |
|             total_mem += mem;
 | |
|             total_runs += n_runs;
 | |
|         } while (total_time_us < 1000*1000); // run for at least 1 second
 | |
| 
 | |
|         printf("    %8d runs - %8.2f us/run - ",
 | |
|             total_runs,
 | |
|             (double)total_time_us / total_runs);
 | |
| 
 | |
|         if (op_flops(out) > 0) {
 | |
|             double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
 | |
|             auto format_flops = [](double flops) -> std::string {
 | |
|                 char buf[256];
 | |
|                 if (flops >= 1e12) {
 | |
|                     snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
 | |
|                 } else if (flops >= 1e9) {
 | |
|                     snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
 | |
|                 } else if (flops >= 1e6) {
 | |
|                     snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
 | |
|                 } else {
 | |
|                     snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
 | |
|                 }
 | |
|                 return buf;
 | |
|             };
 | |
|             printf("%s/run - \033[1;34m%sS\033[0m",
 | |
|                 format_flops(op_flops(out)).c_str(),
 | |
|                 format_flops(flops_per_sec).c_str());
 | |
| 
 | |
|         } else {
 | |
|             printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
 | |
|                 op_size(out) / 1024,
 | |
|                 total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
 | |
|         }
 | |
|         printf("\n");
 | |
| 
 | |
|         ggml_backend_buffer_free(buf);
 | |
| 
 | |
|         ggml_free(ctx);
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     bool eval_grad(ggml_backend_t backend, const char * op_name) {
 | |
|         mode = MODE_GRAD;
 | |
|         const std::vector<float> expect = grad_expect();
 | |
| 
 | |
|         ggml_init_params params = {
 | |
|             /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
 | |
|             /* .mem_base = */ NULL,
 | |
|             /* .no_alloc = */ true,
 | |
|         };
 | |
|         ggml_context * ctx = ggml_init(params);
 | |
|         GGML_ASSERT(ctx);
 | |
| 
 | |
|         gf = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
 | |
|         gb = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
 | |
| 
 | |
|         ggml_tensor * out = build_graph(ctx);
 | |
| 
 | |
|         if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
 | |
|             //printf("  %s: skipping\n", op_desc(out).c_str());
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         printf("  %s(%s): ", op_desc(out).c_str(), vars().c_str());
 | |
|         fflush(stdout);
 | |
| 
 | |
|         if (out->type != GGML_TYPE_F32) {
 | |
|             ggml_free(ctx);
 | |
|             printf("not supported [%s->type != FP32]\n", out->name);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // check if the backend supports the ops
 | |
|         bool supported = true;
 | |
|         bool any_params = false;
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (!ggml_backend_supports_op(backend, t)) {
 | |
|                 printf("not supported [%s] ", ggml_backend_name(backend));
 | |
|                 supported = false;
 | |
|                 break;
 | |
|             }
 | |
|             if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
 | |
|                 any_params = true;
 | |
|                 if (t->type != GGML_TYPE_F32) {
 | |
|                     printf("not supported [%s->type != FP32] ", t->name);
 | |
|                     supported = false;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (!any_params) {
 | |
|             printf("not supported [%s] \n", op_name);
 | |
|             supported = false;
 | |
|         }
 | |
|         if (!supported) {
 | |
|             printf("\n");
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         int64_t ngrads = 0;
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->flags & GGML_TENSOR_FLAG_PARAM) {
 | |
|                 ngrads += ggml_nelements(t);
 | |
|             }
 | |
|         }
 | |
|         if (ngrads > grad_nmax()) {
 | |
|             printf("skipping large tensors for speed \n");
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         if (!ggml_is_scalar(out)) {
 | |
|             out = ggml_sum(ctx, out);
 | |
|             ggml_set_name(out, "sum_of_out");
 | |
|         }
 | |
|         ggml_set_loss(out);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, out);
 | |
|         ggml_graph_cpy(gf, gb);
 | |
|         ggml_build_backward_expand(ctx, ctx, gb, false);
 | |
|         if (expect.size() != 1 || expect[0] != 0.0f) {
 | |
|             GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
 | |
|             for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|                 GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (!ggml_backend_supports_op(backend, t)) {
 | |
|                 printf("not supported [%s] ", ggml_backend_name(backend));
 | |
|                 supported = false;
 | |
|                 break;
 | |
|             }
 | |
|             if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
 | |
|                 printf("not supported [%s->type != FP32] ", t->name);
 | |
|                 supported = false;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (!supported) {
 | |
|             printf("\n");
 | |
|             ggml_free(ctx);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // allocate
 | |
|         ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
 | |
|         if (buf == NULL) {
 | |
|             printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
 | |
|             ggml_free(ctx);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         initialize_tensors(ctx); // Randomizes all tensors (including gradients).
 | |
|         ggml_graph_reset(gb);    // Sets gradients to 1 if loss, 0 otherwise.
 | |
| 
 | |
|         ggml_backend_graph_compute(backend, gf);
 | |
|         ggml_backend_graph_compute(backend, gb);
 | |
| 
 | |
|         bool ok = true;
 | |
|         for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             const char * bn = ggml_backend_name(backend);
 | |
|             const int64_t ne = ggml_nelements(t);
 | |
| 
 | |
|             std::vector<float> ga;
 | |
|             struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
 | |
|             if (grad) {
 | |
|                 ga = tensor_to_float(grad);
 | |
|             } else {
 | |
|                 ga.resize(ne); // default value is 0.0f
 | |
|             }
 | |
| 
 | |
|             for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
 | |
|                 // check for nans
 | |
|                 if (!std::isfinite(ga[i])) {
 | |
|                     printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
 | |
|                     ok = false;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (!ok) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             std::vector<float> gn(ne); // gradient numeric
 | |
|             GGML_ASSERT(ga.size() == gn.size());
 | |
| 
 | |
|             std::vector<float> x0 = tensor_to_float(t); // original t data
 | |
|             GGML_ASSERT(ggml_is_scalar(out));
 | |
|             GGML_ASSERT(out->type == GGML_TYPE_F32);
 | |
| 
 | |
|             const float eps = grad_eps();
 | |
|             for (int64_t i = 0; i < ne; ++i) {
 | |
|                 const float xiu  = x0[i] + 1.0f*eps; // x, index i, up
 | |
|                 const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
 | |
|                 const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
 | |
|                 const float xid  = x0[i] - 1.0f*eps; // x, index i, down
 | |
| 
 | |
|                 float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
 | |
| 
 | |
|                 ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
 | |
|                 ggml_backend_graph_compute(backend, gf);
 | |
|                 ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
 | |
| 
 | |
|                 ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
 | |
|                 ggml_backend_graph_compute(backend, gf);
 | |
|                 ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
 | |
| 
 | |
|                 if (grad_precise()) {
 | |
|                     ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
 | |
|                     ggml_backend_graph_compute(backend, gf);
 | |
|                     ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
 | |
| 
 | |
|                     ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
 | |
|                     ggml_backend_graph_compute(backend, gf);
 | |
|                     ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
 | |
| 
 | |
|                     gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
 | |
|                 } else {
 | |
|                     gn[i] = (fu - fd) / (2.0f*eps);
 | |
|                 }
 | |
| 
 | |
|                 ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
 | |
|             }
 | |
| 
 | |
|             const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
 | |
|             if (err > max_maa_err()) {
 | |
|                 printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
 | |
|                 ok = false;
 | |
|                 break;
 | |
|             }
 | |
|             if (!ok) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!ok) {
 | |
|             printf("compare failed ");
 | |
|         }
 | |
| 
 | |
|         ggml_backend_buffer_free(buf);
 | |
| 
 | |
|         ggml_free(ctx);
 | |
| 
 | |
|         if (ok) {
 | |
|             printf("\033[1;32mOK\033[0m\n");
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         printf("\033[1;31mFAIL\033[0m\n");
 | |
|         return false;
 | |
|     }
 | |
| };
 | |
| 
 | |
| 
 | |
| // ###################################
 | |
| // ## Section 2: GGML Op Defintions ##
 | |
| // ###################################
 | |
| 
 | |
| 
 | |
| // The following is an example showing the bare minimum for creating a test for a GGML op.
 | |
| 
 | |
| // GGML_OP_EXAMPLE
 | |
| struct test_example : public test_case {
 | |
|     // Always define these 2 or variants thereof:
 | |
|     const ggml_type type; // The type of the input tensors.
 | |
|     const std::array<int64_t, 4> ne; // The shape of the input tensors.
 | |
|     // For some ops it's necessary to define multiple types or shapes for the inputs.
 | |
|     // Or they may need additional parameters.
 | |
| 
 | |
|     // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
 | |
|     // In most cases these are just the properties of the struct that you defined above.
 | |
|     // This is needed for info prints.
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     // Define a constructor for the struct.
 | |
|     // In most cases it will be sufficient to have the same arguments as the struct has properties
 | |
|     // and just use initializer lists.
 | |
|     test_example(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     // Define how a simple GGML compute graph can be constructed for the new GGML op.
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         // Step 1: create input tensors that don't depend on any other tensors:
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
 | |
| 
 | |
|         ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(b, "b");
 | |
| 
 | |
|         // Step 2: use the op that you want to test in the GGML compute graph.
 | |
|         ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         // Step 3: return the output tensor.
 | |
|         return out;
 | |
|     }
 | |
|     // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
 | |
|     // immediately after you create the tensors.
 | |
|     // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
 | |
| };
 | |
| 
 | |
| 
 | |
| // GGML_OP_UNARY
 | |
| struct test_unary : public test_case {
 | |
|     const ggml_unary_op op;
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     int v; // view (1 : non-contiguous a)
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne_a, v);
 | |
|     }
 | |
| 
 | |
|     test_unary(ggml_unary_op op,
 | |
|             ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
 | |
|             int v = 0)
 | |
|         : op(op), type(type), ne_a(ne_a), v(v) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
 | |
|             op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
 | |
| 
 | |
|         ggml_tensor * a;
 | |
|         if (v & 1) {
 | |
|             auto ne = ne_a; ne[0] *= 3;
 | |
|             a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|             if (grad_supported) {
 | |
|                 ggml_set_param(ctx, a);
 | |
|             }
 | |
|             ggml_set_name(a, "a");
 | |
| 
 | |
|             a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
 | |
|             ggml_set_name(a, "view_of_a");
 | |
|         } else {
 | |
|             a = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|             if (grad_supported) {
 | |
|                 ggml_set_param(ctx, a);
 | |
|             }
 | |
|             ggml_set_name(a, "a");
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * out = ggml_unary(ctx, a, op);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             // test extended range of values to check for NaNs in GELU
 | |
|             init_tensor_uniform(t, -150.f, 150.f);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 15.0f;
 | |
|     }
 | |
| 
 | |
|     std::vector<float> grad_expect() override {
 | |
|         if (op == GGML_UNARY_OP_ABS) {
 | |
|             return {-1.0f, 1.0f};
 | |
|         }
 | |
|         if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
 | |
|             return {0.0f};
 | |
|         }
 | |
|         if (op == GGML_UNARY_OP_RELU) {
 | |
|             return {0.0f, 1.0f};
 | |
|         }
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
| };
 | |
| 
 | |
| // GGML_OP_GET_ROWS
 | |
| struct test_get_rows : public test_case {
 | |
|     const ggml_type type;
 | |
|     const int n; // cols
 | |
|     const int m; // rows
 | |
|     const int r; // rows to get
 | |
|     const int b; // batch size
 | |
|     const bool v; // view (non-contiguous src1)
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR6(type, n, m, r, b, v);
 | |
|     }
 | |
| 
 | |
|     test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
 | |
|         : type(type), n(n), m(m), r(r), b(b), v(v) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
 | |
|         ggml_set_name(in, "in");
 | |
| 
 | |
|         ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
 | |
|         ggml_set_name(rows, "rows");
 | |
|         if (v) {
 | |
|             rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
 | |
|             ggml_set_name(rows, "view_of_rows");
 | |
|         }
 | |
| 
 | |
|         const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
 | |
|         if (grad_supported) {
 | |
|             ggml_set_param(ctx, in);
 | |
|             // rows is a constant input -> no gradients
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * out = ggml_get_rows(ctx, in, rows);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->type == GGML_TYPE_I32) {
 | |
|                 if (ggml_is_view_op(t->op)) { continue; }
 | |
|                 // rows
 | |
|                 std::vector<int> data(r*b);
 | |
|                 for (int i = 0; i < r*b; i++) {
 | |
|                     data[i] = rand() % m;
 | |
|                 }
 | |
|                 ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
 | |
|             } else {
 | |
|                 init_tensor_uniform(t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ARGMAX
 | |
| struct test_argmax : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_argmax(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 100, 1, 1})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_argmax(ctx, a);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         std::random_device rd;
 | |
|         std::default_random_engine rng(rd());
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->type == GGML_TYPE_F32) {
 | |
|                 // initialize with unique values to avoid ties
 | |
|                 for (int64_t r = 0; r < ggml_nrows(t); r++) {
 | |
|                     std::vector<float> data(t->ne[0]);
 | |
|                     for (int i = 0; i < t->ne[0]; i++) {
 | |
|                         data[i] = i;
 | |
|                     }
 | |
|                     std::shuffle(data.begin(), data.end(), rng);
 | |
|                     ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
 | |
|                 }
 | |
|             } else {
 | |
|                 init_tensor_uniform(t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 0.0;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_COUNT_EQUAL
 | |
| struct test_count_equal : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_count_equal(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {4, 500, 1, 1})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * a_argmax = ggml_argmax(ctx, a);
 | |
|         ggml_set_name(a_argmax, "a_argmax");
 | |
| 
 | |
|         ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(b, "b");
 | |
| 
 | |
|         ggml_tensor * b_argmax = ggml_argmax(ctx, a);
 | |
|         ggml_set_name(b_argmax, "b_argmax");
 | |
| 
 | |
|         ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 0.0;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_REPEAT
 | |
| struct test_repeat : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const std::array<int, 4> nr;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, nr);
 | |
|     }
 | |
| 
 | |
|     size_t op_size(ggml_tensor * t) override {
 | |
|         return ggml_nbytes(t) * 2;
 | |
|     }
 | |
| 
 | |
|     test_repeat(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3},
 | |
|             std::array<int, 4> nr = {2, 2, 2, 2})
 | |
|         : type(type), ne(ne), nr(nr) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
 | |
|         ggml_set_name(target, "target");
 | |
| 
 | |
|         ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, src);
 | |
|         ggml_set_name(src, "src");
 | |
| 
 | |
|         ggml_tensor * out = ggml_repeat(ctx, src, target);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_DUP
 | |
| struct test_dup : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const std::array<int64_t, 4> permute;
 | |
|     bool _use_permute;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         std::string v = VARS_TO_STR2(type, ne);
 | |
|         if (_use_permute) v += "," + VAR_TO_STR(permute);
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     test_dup(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 20, 1},
 | |
|             std::array<int64_t, 4> permute = {0, 0, 0, 0})
 | |
|         : type(type), ne(ne), permute(permute),
 | |
|             _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, src);
 | |
|         ggml_set_name(src, "src");
 | |
| 
 | |
|         if (_use_permute) {
 | |
|             src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
 | |
|             ggml_set_name(src, "src_permuted");
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * out = ggml_dup(ctx, src);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SET
 | |
| struct test_set : public test_case {
 | |
|     const ggml_type type_src;
 | |
|     const ggml_type type_dst;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const int dim;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR4(type_src, type_dst, ne, dim);
 | |
|     }
 | |
| 
 | |
|     size_t op_size(ggml_tensor * t) override {
 | |
|         return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
 | |
|     }
 | |
| 
 | |
|     test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
 | |
|         : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
 | |
|         ggml_set_param(ctx, src);
 | |
|         ggml_set_name(src, "src");
 | |
| 
 | |
|         auto ne_dst = ne;
 | |
|         for (int i = 0; i < dim; ++i) {
 | |
|             ne_dst[i] *= 2;
 | |
|         }
 | |
|         ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
 | |
|         ggml_set_param(ctx, dst);
 | |
|         ggml_set_name(dst, "dst");
 | |
| 
 | |
|         size_t offset = 0;
 | |
|         for (int i = 0; i < dim; ++i) {
 | |
|             offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
 | |
|         }
 | |
|         ggml_tensor * out = ggml_set(ctx, dst, src,
 | |
|             // The backward pass requires setting a contiguous region:
 | |
|             src->nb[1], src->nb[2], src->nb[3], offset);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_CPY
 | |
| struct test_cpy : public test_case {
 | |
|     const ggml_type type_src;
 | |
|     const ggml_type type_dst;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const std::array<int64_t, 4> permute;
 | |
|     bool _src_use_permute;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR4(type_src, type_dst, ne, permute);
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 1e-6;
 | |
|     }
 | |
| 
 | |
|     size_t op_size(ggml_tensor * t) override {
 | |
|         return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
 | |
|     }
 | |
| 
 | |
|     test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 1},
 | |
|             std::array<int64_t, 4> permute = {0, 0, 0, 0})
 | |
|         : type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
 | |
|           _src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
 | |
|         ggml_set_param(ctx, src);
 | |
|         ggml_set_name(src, "src");
 | |
| 
 | |
|         if (_src_use_permute) {
 | |
|             src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
 | |
|             ggml_set_name(src, "src_permuted");
 | |
|         }
 | |
| 
 | |
|         ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
 | |
|         ggml_set_name(dst, "dst");
 | |
| 
 | |
|         ggml_tensor * out = ggml_cpy(ctx, src, dst);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_CONT
 | |
| struct test_cont : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_cont(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 1})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, src);
 | |
|         ggml_set_name(src, "src");
 | |
| 
 | |
|         src = ggml_transpose(ctx, src);
 | |
|         ggml_set_name(src, "src_transposed");
 | |
| 
 | |
|         ggml_tensor * out = ggml_cont(ctx, src);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ADD
 | |
| // GGML_OP_MUL
 | |
| // GGML_OP_DIV
 | |
| struct test_bin_bcast : public test_case {
 | |
|     using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
 | |
|     op_t op;
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const std::array<int, 4> nr;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, nr);
 | |
|     }
 | |
| 
 | |
|     size_t op_size(ggml_tensor * t) override {
 | |
|         return ggml_nbytes(t) * 3;
 | |
|     }
 | |
| 
 | |
|     test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 1, 1},
 | |
|             std::array<int, 4> nr = {1, 2, 1, 1})
 | |
|         : op(op), type(type), ne(ne), nr(nr) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(b, "b");
 | |
| 
 | |
|         // The backward pass supports broadcasting only for GGML_ADD:
 | |
|         const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
 | |
|         if (grad_supported) {
 | |
|             ggml_set_param(ctx, a);
 | |
|             ggml_set_param(ctx, b);
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * out = op(ctx, a, b);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (op == ggml_mul || op == ggml_div) {
 | |
|                 // MUL and DIV have numerical issues around zero:
 | |
|                 init_tensor_uniform(t, 0.9f, 1.1f);
 | |
|             } else {
 | |
|                 init_tensor_uniform(t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return op == ggml_div;
 | |
|     }
 | |
| 
 | |
|     double max_maa_err() override {
 | |
|         return op == ggml_add ? 1e-4 : 1e-3;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ADD1
 | |
| struct test_add1 : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_add1(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
 | |
|         // ggml_set_param(ctx, b); // TODO: implement
 | |
|         ggml_set_name(b, "b");
 | |
| 
 | |
|         ggml_tensor * out = ggml_add1(ctx, a, b);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SCALE
 | |
| struct test_scale : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     float scale;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, scale);
 | |
|     }
 | |
| 
 | |
|     test_scale(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 10, 10},
 | |
|             float scale = 2.0f)
 | |
|         : type(type), ne(ne), scale(scale) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_scale(ctx, a, scale);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_NORM
 | |
| struct test_norm : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     float eps;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, eps);
 | |
|     }
 | |
| 
 | |
|     test_norm(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {64, 5, 4, 3},
 | |
|             float eps = 1e-6f)
 | |
|         : type(type), ne(ne), eps(eps) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_norm(ctx, a, eps);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_RMS_NORM
 | |
| struct test_rms_norm : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     float eps;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, eps);
 | |
|     }
 | |
| 
 | |
|     test_rms_norm(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {64, 5, 4, 3},
 | |
|             float eps = 1e-6f)
 | |
|         : type(type), ne(ne), eps(eps) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SSM_CONV
 | |
| struct test_ssm_conv : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     const std::array<int64_t, 4> ne_b;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne_a, ne_b);
 | |
|     }
 | |
| 
 | |
|     test_ssm_conv(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
 | |
|             std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
 | |
|         : type(type), ne_a(ne_a), ne_b(ne_b) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a   = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|         ggml_tensor * b   = ggml_new_tensor(ctx, type, 4, ne_b.data());
 | |
|         ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SSM_SCAN
 | |
| struct test_ssm_scan : public test_case {
 | |
|     const ggml_type type;
 | |
| 
 | |
|     const int64_t d_state;
 | |
|     const int64_t d_inner;
 | |
|     const int64_t n_seq_tokens;
 | |
|     const int64_t n_seqs;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
 | |
|     }
 | |
| 
 | |
|     test_ssm_scan(ggml_type type = GGML_TYPE_F32,
 | |
|             int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
 | |
|         : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * s   = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner,      n_seqs, 1 }.data());
 | |
|         ggml_tensor * x   = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
 | |
|         ggml_tensor * dt  = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
 | |
|         ggml_tensor * A   = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner,      1     , 1 }.data());
 | |
|         ggml_tensor * B   = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
 | |
|         ggml_tensor * C   = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
 | |
|         ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_RWKV_WKV6
 | |
| struct test_rwkv_wkv6 : public test_case {
 | |
|     const ggml_type type;
 | |
| 
 | |
|     const int64_t head_count;
 | |
|     const int64_t head_size;
 | |
|     const int64_t n_seq_tokens;
 | |
|     const int64_t n_seqs;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
 | |
|     }
 | |
| 
 | |
|     test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
 | |
|             int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
 | |
|         : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         const int64_t n_tokens = n_seq_tokens * n_seqs;
 | |
|         ggml_tensor * r   = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data());
 | |
|         ggml_tensor * k   = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ head_size, 1, head_count, n_tokens }.data());
 | |
|         ggml_tensor * v   = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data());
 | |
|         ggml_tensor * tf  = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
 | |
|         ggml_tensor * td  = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data());
 | |
|         ggml_tensor * s   = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
 | |
|         ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_MUL_MAT
 | |
| struct test_mul_mat : public test_case {
 | |
|     const ggml_type type_a;
 | |
|     const ggml_type type_b;
 | |
|     const int64_t m;
 | |
|     const int64_t n;
 | |
|     const int64_t k;
 | |
|     const std::array<int64_t, 2> bs;  // dims 3 and 4
 | |
|     const std::array<int64_t, 2> nr;  // repeat in dims 3 and 4
 | |
|     const std::array<int64_t, 4> per; // permutation of dimensions
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 5e-4;
 | |
|     }
 | |
| 
 | |
|     uint64_t op_flops(ggml_tensor * t) override {
 | |
|         GGML_UNUSED(t);
 | |
|         return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
 | |
|     }
 | |
| 
 | |
|     test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
 | |
|             int64_t m = 32, int64_t n = 32, int64_t k = 32,
 | |
|             std::array<int64_t, 2> bs = {10, 10},
 | |
|             std::array<int64_t, 2> nr = {2, 2},
 | |
|             std::array<int64_t, 4> per = {0, 1, 2, 3})
 | |
|         : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         // C^T = A * B^T: (k, m) * (k, n) => (m, n)
 | |
|         ggml_tensor * a;
 | |
|         ggml_tensor * b;
 | |
| 
 | |
|         const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
 | |
|         if (npermuted > 0) {
 | |
|             GGML_ASSERT(npermuted == 2);
 | |
|             GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
 | |
|             GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
 | |
| 
 | |
|             // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
 | |
|             const int64_t ne_a[4] = {k, m, bs[0],       bs[1]};
 | |
|             const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
 | |
| 
 | |
|             a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
 | |
|             b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
 | |
|             ggml_set_param(ctx, a);
 | |
|             ggml_set_param(ctx, b);
 | |
|             ggml_set_name(a, "a");
 | |
|             ggml_set_name(b, "b");
 | |
| 
 | |
|             a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
 | |
|             b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
 | |
|             ggml_set_name(a, "a_permuted");
 | |
|             ggml_set_name(b, "b_permuted");
 | |
|         } else {
 | |
|             a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0],       bs[1]);
 | |
|             b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
 | |
|             ggml_set_param(ctx, a);
 | |
|             ggml_set_param(ctx, b);
 | |
|             ggml_set_name(a, "a");
 | |
|             ggml_set_name(b, "b");
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * out = ggml_mul_mat(ctx, a, b);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_MUL_MAT_ID
 | |
| struct test_mul_mat_id : public test_case {
 | |
|     const ggml_type type_a;
 | |
|     const ggml_type type_b;
 | |
|     const int n_mats;
 | |
|     const int n_used;
 | |
|     const bool b; // brodcast b matrix
 | |
|     const int64_t m;
 | |
|     const int64_t n;
 | |
|     const int64_t k;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 5e-4;
 | |
|     }
 | |
| 
 | |
|     uint64_t op_flops(ggml_tensor * t) override {
 | |
|         GGML_UNUSED(t);
 | |
|         return 2 * m * k * n * n_used;
 | |
|     }
 | |
| 
 | |
|     test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
 | |
|             int n_mats = 8, int n_used = 2, bool b = false,
 | |
|             int64_t m = 32, int64_t n = 32, int64_t k = 32)
 | |
|         : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
 | |
|             m(m), n(n), k(k) {
 | |
|             GGML_ASSERT(n_used <= n_mats);
 | |
|         }
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         // C^T = A * B^T: (k, m) * (k, n) => (m, n)
 | |
|         ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
 | |
|         ggml_set_name(as, "as");
 | |
| 
 | |
|         ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
 | |
|         ggml_set_name(ids, "ids");
 | |
|         if (n_used != n_mats) {
 | |
|             ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
 | |
|             ggml_set_name(ids, "view_of_ids");
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
 | |
|         ggml_set_name(b, "b");
 | |
| 
 | |
|         ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         std::random_device rd;
 | |
|         std::default_random_engine rng(rd());
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->type == GGML_TYPE_I32) {
 | |
|                 if (ggml_is_view_op(t->op)) { continue; }
 | |
|                 // ids
 | |
|                 for (int64_t r = 0; r < ggml_nrows(t); r++) {
 | |
|                     std::vector<int32_t> data(t->ne[0]);
 | |
|                     for (int i = 0; i < t->ne[0]; i++) {
 | |
|                         data[i] = i % n_mats;
 | |
|                     }
 | |
|                     std::shuffle(data.begin(), data.end(), rng);
 | |
|                     ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
 | |
|                 }
 | |
|             } else {
 | |
|                 init_tensor_uniform(t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_OUT_PROD
 | |
| struct test_out_prod : public test_case {
 | |
|     const ggml_type type_a;
 | |
|     const ggml_type type_b;
 | |
|     const int64_t m;
 | |
|     const int64_t n;
 | |
|     const int64_t k;
 | |
|     const std::array<int64_t, 2> bs; // dims 3 and 4
 | |
|     const bool trans_b;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR7(type_a, type_b, m, n, k, bs, trans_b);
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 5e-4;
 | |
|     }
 | |
| 
 | |
|     test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
 | |
|             int64_t m = 32, int64_t n = 32, int64_t k = 32,
 | |
|             std::array<int64_t, 2> bs = {10, 10},
 | |
|             bool trans_b = false)
 | |
|         : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), trans_b(trans_b) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * b;
 | |
|         if (trans_b) {
 | |
|             b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0], bs[1]);
 | |
|             b = ggml_transpose(ctx, b);
 | |
|         } else {
 | |
|             b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0], bs[1]);
 | |
|         }
 | |
|         ggml_set_name(b, "b");
 | |
| 
 | |
|         ggml_tensor * out = ggml_out_prod(ctx, a, b);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SQR
 | |
| struct test_sqr : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_sqr(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_sqr(ctx, a);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SQRT
 | |
| struct test_sqrt : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_sqrt(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 3, 3, 2})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_sqrt(ctx, a);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         // fill with positive values
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             init_tensor_uniform(t, 50.0f, 100.0f);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 20.0f;
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_LOG
 | |
| struct test_log : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_log(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_log(ctx, a);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
 | |
|             init_tensor_uniform(t, 0.9f, 1.1f);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SIN
 | |
| struct test_sin : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_sin(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 2, 2, 2})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_sin(ctx, a);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     double max_maa_err() override {
 | |
|         return 1e-3;
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 0.2f;
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_COS
 | |
| struct test_cos : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_cos(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 2, 2, 2})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_cos(ctx, a);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     double max_maa_err() override {
 | |
|         return 1e-3;
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 0.2f;
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_CLAMP
 | |
| struct test_clamp : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     float min;
 | |
|     float max;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR4(type, ne, min, max);
 | |
|     }
 | |
| 
 | |
|     test_clamp(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3},
 | |
|             float min = -0.5f, float max = 0.5f)
 | |
|         : type(type), ne(ne), min(min), max(max) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_clamp(ctx, a, min, max);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 1e-2f;
 | |
|     }
 | |
| 
 | |
|     std::vector<float> grad_expect() override {
 | |
|         return {0.0f, 1.0f};
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_DIAG_MASK_INF
 | |
| struct test_diag_mask_inf : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const int n_past;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, n_past);
 | |
|     }
 | |
| 
 | |
|     test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 10, 3, 2},
 | |
|             int n_past = 5)
 | |
|         : type(type), ne(ne), n_past(n_past) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SOFT_MAX
 | |
| struct test_soft_max : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const bool mask;
 | |
|     const float scale;
 | |
|     const float max_bias;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR5(type, ne, mask, scale, max_bias);
 | |
|     }
 | |
| 
 | |
|     // the 1024 test with bias occasionally fails:
 | |
|     // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
 | |
|     virtual double max_nmse_err() override {
 | |
|         return 1e-6;
 | |
|     }
 | |
| 
 | |
|     test_soft_max(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3},
 | |
|             bool mask = false,
 | |
|             float scale = 1.0f,
 | |
|             float max_bias = 0.0f)
 | |
|         : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * mask = nullptr;
 | |
|         if (this->mask) {
 | |
|             mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
 | |
|             ggml_set_name(mask, "mask");
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| 
 | |
| // GGML_OP_ROPE
 | |
| struct test_rope : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     int n_dims;
 | |
|     int mode;
 | |
|     int n_ctx; // used to generate positions
 | |
|     float fs; // freq_scale
 | |
|     float ef; // ext_factor
 | |
|     float af; // attn_factor
 | |
|     bool ff;
 | |
|     int v; // view (1 : non-contiguous a)
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
 | |
|     }
 | |
| 
 | |
|     test_rope(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
 | |
|             int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f, float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0)
 | |
|         : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a;
 | |
|         if (v & 1) {
 | |
|             auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
 | |
|             a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|             ggml_set_param(ctx, a);
 | |
|             ggml_set_name(a, "a");
 | |
| 
 | |
|             a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
 | |
|             ggml_set_name(a, "view_of_a");
 | |
|         } else {
 | |
|             a = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|             ggml_set_param(ctx, a);
 | |
|             ggml_set_name(a, "a");
 | |
|         }
 | |
| 
 | |
|         const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
 | |
|         const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
 | |
| 
 | |
|         ggml_tensor * pos;
 | |
|         if (is_mrope || is_vision) {
 | |
|             pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
 | |
|         } else {
 | |
|             pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
 | |
|         }
 | |
|         ggml_set_name(pos, "pos");
 | |
| 
 | |
|         ggml_tensor * freq = nullptr;
 | |
|         if (ff) {
 | |
|             freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
 | |
|             ggml_set_name(freq, "freq");
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * out;
 | |
|         if (is_mrope) {
 | |
|             if (is_vision) {
 | |
|                 GGML_ASSERT(n_dims/4 > 0);
 | |
|                 int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
 | |
|                 out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
 | |
|             } else {
 | |
|                 GGML_ASSERT(n_dims/3 > 0);
 | |
|                 int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
 | |
|                 out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
 | |
|             }
 | |
|         } else {
 | |
|             out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
 | |
|         }
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->type == GGML_TYPE_I32) {
 | |
|                 // pos
 | |
|                 const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
 | |
|                 std::vector<int> data(num_pos_ids);
 | |
|                 for (int i = 0; i < num_pos_ids; i++) {
 | |
|                     data[i] = rand() % n_ctx;
 | |
|                 }
 | |
|                 ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
 | |
|             } else {
 | |
|                 if (t->ne[0] == n_dims/2) {
 | |
|                     // frequency factors in the range [0.9f, 1.1f]
 | |
|                     init_tensor_uniform(t, 0.9f, 1.1f);
 | |
|                 } else {
 | |
|                     init_tensor_uniform(t);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     double max_maa_err() override {
 | |
|         return 1e-3;
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_POOL2D
 | |
| struct test_pool2d : public test_case {
 | |
|     enum ggml_op_pool pool_type;
 | |
|     const ggml_type type_input;
 | |
|     const std::array<int64_t, 4> ne_input;
 | |
|     // kernel size
 | |
|     const int k0;
 | |
|     const int k1;
 | |
|     // stride
 | |
|     const int s0;
 | |
|     const int s1;
 | |
|     // padding
 | |
|     const int p0;
 | |
|     const int p1;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
 | |
|     }
 | |
| 
 | |
|     test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
 | |
|             ggml_type type_input = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
 | |
|             int k0 = 3, int k1 = 3,
 | |
|             int s0 = 1, int s1 = 1,
 | |
|             int p0 = 1, int p1 = 1)
 | |
|         : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
 | |
|         ggml_set_param(ctx, input);
 | |
|         ggml_set_name(input, "input");
 | |
| 
 | |
|         ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_CONV_TRANSPOSE_1D
 | |
| struct test_conv_transpose_1d : public test_case {
 | |
|     const std::array<int64_t, 4> ne_input;
 | |
|     const std::array<int64_t, 4> ne_kernel;
 | |
| 
 | |
|     const int s0; // stride
 | |
|     const int p0; // padding
 | |
|     const int d0; // dilation
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
 | |
|     }
 | |
| 
 | |
|     test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
 | |
|                            std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
 | |
|                            int s0 = 1, int p0 = 0, int d0 = 1)
 | |
|         : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
 | |
|         ggml_set_name(input, "input");
 | |
| 
 | |
|         ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
 | |
|         ggml_set_name(kernel, "kernel");
 | |
| 
 | |
|         ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_IM2COL
 | |
| struct test_im2col : public test_case {
 | |
|     const ggml_type type_input;
 | |
|     const ggml_type type_kernel;
 | |
|     const ggml_type dst_type;
 | |
|     const std::array<int64_t, 4> ne_input;
 | |
|     const std::array<int64_t, 4> ne_kernel;
 | |
|     // stride
 | |
|     const int s0;
 | |
|     const int s1;
 | |
|     // padding
 | |
|     const int p0;
 | |
|     const int p1;
 | |
|     // dilation
 | |
|     const int d0;
 | |
|     const int d1;
 | |
|     // mode
 | |
|     const bool is_2D;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
 | |
|     }
 | |
| 
 | |
|     test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
 | |
|             std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
 | |
|             int s0 = 1, int s1 = 1,
 | |
|             int p0 = 1, int p1 = 1,
 | |
|             int d0 = 1, int d1 = 1,
 | |
|             bool is_2D = true)
 | |
|         : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
 | |
|         ggml_set_param(ctx, input);
 | |
|         ggml_set_name(input, "input");
 | |
| 
 | |
|         ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
 | |
|         ggml_set_name(kernel, "kernel");
 | |
| 
 | |
|         ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_CONCAT
 | |
| struct test_concat : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     const int64_t ne_b_d;
 | |
|     const int dim;
 | |
|     const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
 | |
|     }
 | |
| 
 | |
|     test_concat(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
 | |
|             int64_t ne_b_d = 5,
 | |
|             int dim = 2, int v = 0)
 | |
|         : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         auto ne_b = ne_a;
 | |
|         ne_b[dim] = ne_b_d;
 | |
|         ggml_tensor * a;
 | |
|         if (v & 1) {
 | |
|             auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
 | |
|             a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|             ggml_set_name(a, "a");
 | |
| 
 | |
|             a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
 | |
|             ggml_set_name(a, "view_of_a");
 | |
|         } else {
 | |
|             a = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|             ggml_set_name(a, "a");
 | |
|         }
 | |
|         ggml_tensor * b;
 | |
|         if (v & 2) {
 | |
|             auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
 | |
|             b = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|             ggml_set_name(b, "b");
 | |
| 
 | |
|             b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
 | |
|             ggml_set_name(b, "view_of_b");
 | |
|         } else {
 | |
|             b = ggml_new_tensor(ctx, type, 4, ne_b.data());
 | |
|             ggml_set_name(b, "b");
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * out = ggml_concat(ctx, a, b, dim);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ARGSORT
 | |
| struct test_argsort : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     ggml_sort_order order;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, order);
 | |
|     }
 | |
| 
 | |
|     test_argsort(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {16, 10, 10, 10},
 | |
|             ggml_sort_order order = GGML_SORT_ORDER_ASC)
 | |
|         : type(type), ne(ne), order(order) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_argsort(ctx, a, order);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         std::random_device rd;
 | |
|         std::default_random_engine rng(rd());
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->type == GGML_TYPE_I32) {
 | |
|                 // indices
 | |
|                 std::vector<int> data(ggml_nelements(t));
 | |
|                 for (int i = 0; i < ggml_nelements(t); i++) {
 | |
|                     data[i] = rand();
 | |
|                 }
 | |
|                 std::shuffle(data.begin(), data.end(), rng);
 | |
|                 ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
 | |
|             } else if (t->type == GGML_TYPE_F32) {
 | |
|                 // initialize with unique values to avoid ties
 | |
|                 for (int64_t r = 0; r < ggml_nrows(t); r++) {
 | |
|                     std::vector<float> data(t->ne[0]);
 | |
|                     for (int i = 0; i < t->ne[0]; i++) {
 | |
|                         data[i] = i;
 | |
|                     }
 | |
|                     std::shuffle(data.begin(), data.end(), rng);
 | |
|                     ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
 | |
|                 }
 | |
|             } else {
 | |
|                 GGML_ABORT("fatal error");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SUM
 | |
| struct test_sum : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_sum(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_sum(ctx, a);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_SUM_ROWS
 | |
| struct test_sum_rows : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_sum_rows(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_sum_rows(ctx, a);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_MEAN
 | |
| struct test_mean : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_mean(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_mean(ctx, a);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_UPSCALE
 | |
| struct test_upscale : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const int32_t scale_factor;
 | |
|     const bool transpose;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR4(type, ne, scale_factor, transpose);
 | |
|     }
 | |
| 
 | |
|     test_upscale(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {512, 512, 3, 1},
 | |
|             int32_t scale_factor = 2, bool transpose = false)
 | |
|         : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         if (transpose) {
 | |
|             a = ggml_transpose(ctx, a);
 | |
|             ggml_set_name(a, "a_transposed");
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_UPSCALE (ext)
 | |
| struct test_upscale_ext : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const std::array<int64_t, 4> ne_tgt;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, ne_tgt);
 | |
|     }
 | |
| 
 | |
|     test_upscale_ext(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne     = {2, 5,  7, 11},
 | |
|             std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
 | |
|         : type(type), ne(ne), ne_tgt(ne_tgt) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_GROUP_NORM
 | |
| struct test_group_norm : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
|     const int32_t num_groups;
 | |
|     const float eps;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne, num_groups);
 | |
|     }
 | |
| 
 | |
|     test_group_norm(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {64, 64, 320, 1},
 | |
|             int32_t num_groups = 32,
 | |
|             float eps = 1e-6f)
 | |
|         : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ACC
 | |
| struct test_acc : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     const std::array<int64_t, 4> ne_b;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne_a, ne_b);
 | |
|     }
 | |
| 
 | |
|     test_acc(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
 | |
|             std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
 | |
|         : type(type), ne_a(ne_a), ne_b(ne_b) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|         ggml_set_param(ctx, a);
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
 | |
|         ggml_set_param(ctx, b);
 | |
|         ggml_set_name(b, "b");
 | |
| 
 | |
|         ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_PAD
 | |
| struct test_pad : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     const int pad_0;
 | |
|     const int pad_1;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
 | |
|     }
 | |
| 
 | |
|     test_pad(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
 | |
|             int pad_0 = 1, int pad_1 = 1)
 | |
|         : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1)  {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_PAD_REFLECT_1D
 | |
| struct test_pad_reflect_1d : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     const int pad_0;
 | |
|     const int pad_1;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
 | |
|     }
 | |
| 
 | |
|     test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
 | |
|             int pad_0 = 10, int pad_1 = 9)
 | |
|         : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1)  {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_ARANGE
 | |
| struct test_arange : public test_case {
 | |
|     const ggml_type type;
 | |
|     const float start;
 | |
|     const float stop;
 | |
|     const float step;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR4(type, start, stop, step);
 | |
|     }
 | |
| 
 | |
|     test_arange(ggml_type type = GGML_TYPE_F32,
 | |
|             float start = 0.f, float stop = 10.f, float step = 1.f)
 | |
|         : type(type), start(start), stop(stop), step(step)  {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * out = ggml_arange(ctx, start, stop, step);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_TIMESTEP_EMBEDDING
 | |
| struct test_timestep_embedding : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     const int dim;
 | |
|     const int max_period;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR4(type, ne_a, dim, max_period);
 | |
|     }
 | |
| 
 | |
|     test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
 | |
|             int dim = 320, int max_period=10000)
 | |
|         : type(type), ne_a(ne_a), dim(dim), max_period(max_period)  {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_LEAKY_RELU
 | |
| struct test_leaky_relu : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne_a;
 | |
|     const float negative_slope;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR3(type, ne_a, negative_slope);
 | |
|     }
 | |
| 
 | |
|     test_leaky_relu(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
 | |
|             float negative_slope = 0.1f)
 | |
|         : type(type), ne_a(ne_a), negative_slope(negative_slope)  {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_FLASH_ATTN_EXT
 | |
| struct test_flash_attn_ext : public test_case {
 | |
|     const int64_t hs; // head size
 | |
|     const int64_t nh; // num heads
 | |
|     const int64_t kv; // kv size
 | |
|     const int64_t nb; // batch size
 | |
| 
 | |
|     const bool mask; // use mask
 | |
| 
 | |
|     const float max_bias; // ALiBi
 | |
|     const float logit_softcap; // Gemma 2
 | |
| 
 | |
|     const ggml_type type_KV;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR8(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV);
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 5e-4;
 | |
|     }
 | |
| 
 | |
|     uint64_t op_flops(ggml_tensor * t) override {
 | |
|         GGML_UNUSED(t);
 | |
|         // Just counting matmul costs:
 | |
|         // Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
 | |
|         return 2 * 2 * nh * nb * hs * kv;
 | |
|     }
 | |
| 
 | |
|     test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8,
 | |
|                         bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
 | |
|         : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
 | |
| 
 | |
|         ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs_padded, nb, nh, 1);
 | |
|         ggml_set_name(q, "q");
 | |
| 
 | |
|         ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV,       hs_padded, kv, nh, 1);
 | |
|         ggml_set_name(k, "k");
 | |
| 
 | |
|         ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV,       hs_padded, kv, nh, 1);
 | |
|         ggml_set_name(v, "v");
 | |
| 
 | |
|         ggml_tensor * m = nullptr;
 | |
|         if (mask) {
 | |
|             m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
 | |
|             ggml_set_name(m, "m");
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_CROSS_ENTROPY_LOSS
 | |
| struct test_cross_entropy_loss : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         ggml_set_param(ctx, logits);
 | |
|         ggml_set_name(logits, "logits");
 | |
| 
 | |
|         ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
 | |
|         // The labels are assumed to be constant -> no gradients.
 | |
|         ggml_set_name(labels, "labels");
 | |
| 
 | |
|         // Ensure labels add up to 1:
 | |
|         labels = ggml_soft_max(ctx, labels);
 | |
|         ggml_set_name(labels, "labels_normalized");
 | |
| 
 | |
|         ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             init_tensor_uniform(t, -100.0f, 100.0f);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     float grad_eps() override {
 | |
|         return 1.0f;
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // GGML_OP_OPT_STEP_ADAMW
 | |
| struct test_opt_step_adamw : public test_case {
 | |
|     const ggml_type type;
 | |
|     const std::array<int64_t, 4> ne;
 | |
| 
 | |
|     std::string vars() override {
 | |
|         return VARS_TO_STR2(type, ne);
 | |
|     }
 | |
| 
 | |
|     test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
 | |
|             std::array<int64_t, 4> ne = {10, 5, 4, 3})
 | |
|         : type(type), ne(ne) {}
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
 | |
|         ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
 | |
|         ggml_set_name(a, "a");
 | |
| 
 | |
|         ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
 | |
|         ggml_set_name(grad, "grad");
 | |
| 
 | |
|         ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
 | |
|         ggml_set_name(grad_m, "grad_m");
 | |
| 
 | |
|         ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
 | |
|         ggml_set_name(grad_v, "grad_v");
 | |
| 
 | |
|         ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
 | |
|         ggml_set_name(adamw_params, "adamw_params");
 | |
| 
 | |
|         ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
 | |
|         ggml_set_name(out, "out");
 | |
| 
 | |
|         return out;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool grad_precise() override {
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| enum llm_norm_type {
 | |
|     LLM_NORM,
 | |
|     LLM_NORM_RMS,
 | |
| };
 | |
| 
 | |
| struct llama_hparams {
 | |
|     uint32_t n_vocab;
 | |
|     uint32_t n_embd;
 | |
|     uint32_t n_head;
 | |
|     uint32_t n_head_kv;
 | |
|     static constexpr uint32_t n_layer = 1;
 | |
|     uint32_t n_rot;
 | |
|     uint32_t n_embd_head; // dimension of values (d_v)
 | |
|     uint32_t n_ff;
 | |
| 
 | |
|     float f_norm_eps;
 | |
|     float f_norm_rms_eps;
 | |
| 
 | |
|     // cparams
 | |
|     static constexpr uint32_t n_ctx = 512; // user-specified context size
 | |
|     static constexpr uint32_t n_ctx_orig = n_ctx;
 | |
| 
 | |
|     // batch
 | |
|     int32_t n_tokens;
 | |
| 
 | |
|     // llm_build_context
 | |
|     static constexpr int32_t n_kv    = 32; // size of KV cache to consider (n_kv <= n_ctx
 | |
|     static constexpr int32_t kv_head = 1;  // index of where we store new KV data in the cache
 | |
| 
 | |
|     uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
 | |
|         return n_embd_head * n_head_kv;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // LLM base class
 | |
| struct test_llm : public test_case {
 | |
|     llama_hparams hp;
 | |
| 
 | |
| protected:
 | |
|     test_llm(llama_hparams hp)
 | |
|         : hp(std::move(hp)) {
 | |
|     }
 | |
| 
 | |
| public:
 | |
|     struct ggml_tensor * llm_build_norm(
 | |
|             struct ggml_context * ctx,
 | |
|              struct ggml_tensor * cur,
 | |
|              struct ggml_tensor * mw,
 | |
|              struct ggml_tensor * mb,
 | |
|                   llm_norm_type   type) {
 | |
|         switch (type) {
 | |
|             case LLM_NORM:     cur = ggml_norm    (ctx, cur, hp.f_norm_eps); break;
 | |
|             case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
 | |
|         }
 | |
|         cur = ggml_mul(ctx, cur, mw);
 | |
|         if (mb) {
 | |
|             cur = ggml_add(ctx, cur, mb);
 | |
|         }
 | |
|         return cur;
 | |
|     }
 | |
| 
 | |
|     void llm_build_kv_store(
 | |
|             struct ggml_context * ctx,
 | |
|              struct ggml_tensor * k_l,
 | |
|              struct ggml_tensor * v_l,
 | |
|              struct ggml_tensor * k_cur,
 | |
|              struct ggml_tensor * v_cur) {
 | |
|         // compute the transposed [n_tokens, n_embd] V matrix
 | |
|         struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
 | |
| 
 | |
|         struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
 | |
|                 (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
 | |
| 
 | |
|         struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
 | |
|                 (  hp.n_ctx)*ggml_element_size(v_l),
 | |
|                 (hp.kv_head)*ggml_element_size(v_l));
 | |
| 
 | |
|         // important: storing RoPE-ed version of K in the KV cache!
 | |
|         ggml_cpy(ctx, k_cur,   k_cache_view);
 | |
|         ggml_cpy(ctx, v_cur_t, v_cache_view);
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * llm_build_kqv(
 | |
|             struct ggml_context * ctx,
 | |
|              struct ggml_tensor * k_l,
 | |
|              struct ggml_tensor * v_l,
 | |
|              struct ggml_tensor * q_cur,
 | |
|              struct ggml_tensor * kq_mask,
 | |
|                         float     kq_scale) {
 | |
|         struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
 | |
| 
 | |
|         struct ggml_tensor * k =
 | |
|             ggml_view_3d(ctx, k_l,
 | |
|                     hp.n_embd_head, hp.n_kv, hp.n_head_kv,
 | |
|                     ggml_row_size(k_l->type, hp.n_embd_gqa()),
 | |
|                     ggml_row_size(k_l->type, hp.n_embd_head),
 | |
|                     0);
 | |
| 
 | |
|         struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
 | |
| 
 | |
|         kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
 | |
| 
 | |
|         // split cached v into n_head heads
 | |
|         struct ggml_tensor * v =
 | |
|             ggml_view_3d(ctx, v_l,
 | |
|                     hp.n_kv, hp.n_embd_head, hp.n_head_kv,
 | |
|                     ggml_element_size(v_l)*hp.n_ctx,
 | |
|                     ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
 | |
|                     0);
 | |
| 
 | |
|         struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
 | |
| 
 | |
|         struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
 | |
| 
 | |
|         struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
 | |
| 
 | |
|         struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
 | |
|         cur = ggml_mul_mat(ctx, wo, cur);
 | |
| 
 | |
|         return cur;
 | |
|     }
 | |
| 
 | |
|     void initialize_tensors(ggml_context * ctx) override {
 | |
|         for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|             if (t->type == GGML_TYPE_I32) {
 | |
|                 // pos
 | |
|                 std::vector<int> data(hp.n_tokens);
 | |
|                 for (int i = 0; i < hp.n_tokens; i++) {
 | |
|                     data[i] = rand() % hp.n_ctx;
 | |
|                 }
 | |
|                 ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
 | |
|             } else {
 | |
|                 init_tensor_uniform(t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // Llama
 | |
| struct test_llama : public test_llm {
 | |
|     static constexpr float freq_base = 10000.0f;
 | |
|     static constexpr float freq_scale = 1.0f;
 | |
|     static constexpr float ext_factor = 0.0f;
 | |
|     static constexpr float attn_factor = 1.0f;
 | |
|     static constexpr float beta_fast = 32.0f;
 | |
|     static constexpr float beta_slow = 1.0f;
 | |
| 
 | |
|     std::string op_desc(ggml_tensor * t) override {
 | |
|         GGML_UNUSED(t);
 | |
|         return "LLAMA";
 | |
|     }
 | |
| 
 | |
|     std::string vars() override {
 | |
|         auto n_tokens = hp.n_tokens;
 | |
|         return VARS_TO_STR1(n_tokens);
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 2e-3;
 | |
|     }
 | |
| 
 | |
|     test_llama(int n_tokens = 1)
 | |
|         : test_llm({
 | |
|             /*n_vocab        =*/ 32000,
 | |
|             /*n_embd         =*/ 3200,
 | |
|             /*n_head         =*/ 32,
 | |
|             /*n_head_kv      =*/ 32,
 | |
|             /*n_rot          =*/ 100,
 | |
|             /*n_embd_head    =*/ 100,
 | |
|             /*n_ff           =*/ 8640,
 | |
|             /*f_norm_eps     =*/ 0.f,
 | |
|             /*f_norm_rms_eps =*/ 1e-5f,
 | |
|             /*n_tokens       =*/ n_tokens,
 | |
|         }) {
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
 | |
| 
 | |
|         ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
 | |
|         ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
 | |
| 
 | |
|         for (uint32_t il = 0; il < hp.n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
 | |
|             cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
 | |
|                 ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
 | |
|                 ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
 | |
| 
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
 | |
| 
 | |
|                 Qcur = ggml_rope_ext(
 | |
|                     ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head,    hp.n_tokens), inp_pos, nullptr,
 | |
|                     hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
| 
 | |
|                 Kcur = ggml_rope_ext(
 | |
|                     ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
 | |
|                     hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
| 
 | |
|                 llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
 | |
| 
 | |
|                 cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
 | |
| 
 | |
|             // feed-forward network
 | |
|             ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
 | |
|             cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
 | |
| 
 | |
|             ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
 | |
|             ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff,   hp.n_embd);
 | |
|             ggml_tensor * ffn_up   = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
 | |
|             struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
 | |
|             cur = ggml_mul_mat(ctx, ffn_gate, cur);
 | |
|             cur = ggml_silu(ctx, cur);
 | |
|             cur = ggml_mul(ctx, cur, tmp);
 | |
|             cur = ggml_mul_mat(ctx, ffn_down, cur);
 | |
| 
 | |
|             cur = ggml_add(ctx, cur, ffn_inp);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
 | |
|         cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
 | |
| 
 | |
|         // lm_head
 | |
|         ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
 | |
|         cur = ggml_mul_mat(ctx, output, cur);
 | |
| 
 | |
|         return cur;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // Falcon
 | |
| struct test_falcon : public test_llm {
 | |
|     static constexpr float freq_base = 10000.0f;
 | |
|     static constexpr float freq_scale = 1.0f;
 | |
|     static constexpr float ext_factor = 0.0f;
 | |
|     static constexpr float attn_factor = 1.0f;
 | |
|     static constexpr float beta_fast = 32.0f;
 | |
|     static constexpr float beta_slow = 1.0f;
 | |
| 
 | |
|     std::string op_desc(ggml_tensor * t) override {
 | |
|         GGML_UNUSED(t);
 | |
|         return "FALCON";
 | |
|     }
 | |
| 
 | |
|     std::string vars() override {
 | |
|         auto n_tokens = hp.n_tokens;
 | |
|         return VARS_TO_STR1(n_tokens);
 | |
|     }
 | |
| 
 | |
|     double max_nmse_err() override {
 | |
|         return 2e-3;
 | |
|     }
 | |
| 
 | |
|     test_falcon(int n_tokens = 1)
 | |
|         : test_llm({
 | |
|             /*n_vocab        =*/ 32000,
 | |
|             /*n_embd         =*/ 3200,
 | |
|             /*n_head         =*/ 50,
 | |
|             /*n_head_kv      =*/ 1,
 | |
|             /*n_rot          =*/ 64,
 | |
|             /*n_embd_head    =*/ 64,
 | |
|             /*n_ff           =*/ 8640,
 | |
|             /*f_norm_eps     =*/ 1e-5f,
 | |
|             /*f_norm_rms_eps =*/ 0.f,
 | |
|             /*n_tokens       =*/ n_tokens,
 | |
|         }) {
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * build_graph(ggml_context * ctx) override {
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
 | |
| 
 | |
|         ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
 | |
|         ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
 | |
| 
 | |
|         for (uint32_t il = 0; il < hp.n_layer; ++il) {
 | |
|             // norm
 | |
|             ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
 | |
|             ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
 | |
|             ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 cur = attn_norm;
 | |
| 
 | |
|                 ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
 | |
| 
 | |
|                 cur = ggml_mul_mat(ctx, wqkv, cur);
 | |
| 
 | |
|                 struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd,     hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
 | |
|                 struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head,    hp.n_tokens);
 | |
|                 Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
 | |
| 
 | |
|                 // using mode = 2 for neox mode
 | |
|                 Qcur = ggml_rope_ext(
 | |
|                     ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
| 
 | |
|                 Kcur = ggml_rope_ext(
 | |
|                     ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
| 
 | |
|                 llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
 | |
| 
 | |
|                 cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = cur;
 | |
| 
 | |
|             // feed forward
 | |
|             {
 | |
|                 ggml_tensor * ffn_up   = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
 | |
|                 ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
 | |
|                 cur = attn_norm;
 | |
|                 cur = ggml_mul_mat(ctx, ffn_up, cur);
 | |
|                 cur = ggml_gelu(ctx, cur);
 | |
|                 cur = ggml_mul_mat(ctx, ffn_down, cur);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx, cur, ffn_inp);
 | |
| 
 | |
|             cur = ggml_add(ctx, cur, inpL);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         ggml_tensor * output_norm   = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
 | |
|         ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
 | |
|         cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
 | |
| 
 | |
|         // lm_head
 | |
|         ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
 | |
|         cur = ggml_mul_mat(ctx, output, cur);
 | |
| 
 | |
|         return cur;
 | |
|     }
 | |
| };
 | |
| 
 | |
| 
 | |
| // ###########################################
 | |
| // ## Section 3: GGML Op Test Instantiation ##
 | |
| // ###########################################
 | |
| static const ggml_type all_types[] = {
 | |
|     GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
 | |
|     GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
 | |
|     GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
 | |
|     GGML_TYPE_Q8_0,
 | |
|     GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
 | |
|     GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
 | |
|     GGML_TYPE_Q6_K,
 | |
|     // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
 | |
|     GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
 | |
|     GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
 | |
|     GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
 | |
| };
 | |
| 
 | |
| static const ggml_type base_types[] = {
 | |
|     GGML_TYPE_F32, GGML_TYPE_F16,
 | |
|     GGML_TYPE_Q8_0, // for I8MM tests
 | |
|     GGML_TYPE_Q4_0,
 | |
|     GGML_TYPE_Q4_1, // for I8MM tests
 | |
|     GGML_TYPE_Q4_K,
 | |
|     GGML_TYPE_IQ2_XXS
 | |
| };
 | |
| 
 | |
| static const ggml_type other_types[] = {
 | |
|     GGML_TYPE_Q4_1,
 | |
|     GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
 | |
|     GGML_TYPE_Q8_0,
 | |
|     GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
 | |
|     GGML_TYPE_Q5_K,
 | |
|     GGML_TYPE_Q6_K,
 | |
|     // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
 | |
|     GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
 | |
|     GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
 | |
|     GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
 | |
|     GGML_TYPE_BF16,
 | |
| };
 | |
| 
 | |
| // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
 | |
| static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
 | |
|     std::vector<std::unique_ptr<test_case>> test_cases;
 | |
|     std::default_random_engine rng(0);
 | |
| 
 | |
|     // unary ops
 | |
|     for (int v : {0, 1}) {
 | |
|         for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
 | |
|             test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 128, 2, 2, 2 }, v));
 | |
|             test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 5, 7, 11, 13 }, v));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
 | |
|     for (ggml_type type : all_types) {
 | |
|         for (int b : {1, 7}) {
 | |
|             for (bool v : {false, true}) {
 | |
|                 test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     for (int b : {1, 7}) {
 | |
|         for (bool v : {false, true}) {
 | |
|             test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ggml_type type_input : {GGML_TYPE_F32}) {
 | |
|         for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
 | |
|             for (int k0 : {1, 3}) {
 | |
|                 for (int k1 : {1, 3}) {
 | |
|                     for (int s0 : {1, 2}) {
 | |
|                         for (int s1 : {1, 2}) {
 | |
|                             for (int p0 : {0, 1}) {
 | |
|                                 for (int p1 : {0, 1}) {
 | |
|                                     test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // im2col 1D
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
 | |
|     for (int s0 : {1, 3}) {
 | |
|         for (int p0 : {0, 3}) {
 | |
|             for (int d0 : {1, 3}) {
 | |
|                 test_cases.emplace_back(new test_im2col(
 | |
|                     GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
 | |
|                     s0, 0, p0, 0, d0, 0, false));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // im2col 2D
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
 | |
|     for (int s0 : {1, 3}) {
 | |
|         for (int s1 : {1, 3}) {
 | |
|             for (int p0 : {0, 3}) {
 | |
|                 for (int p1 : {0, 3}) {
 | |
|                     for (int d0 : {1, 3}) {
 | |
|                         for (int d1 : {1, 3}) {
 | |
|                             test_cases.emplace_back(new test_im2col(
 | |
|                                 GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
 | |
|                                 s0, s1, p0, p1, d0, d1, true));
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // extra tests for im2col 2D
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
 | |
|     test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
 | |
| 
 | |
|     // sycl backend will limit task global_range < MAX_INT
 | |
|     // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
 | |
|     // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
 | |
|     // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
 | |
|     // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
 | |
|     // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
 | |
| 
 | |
|     test_cases.emplace_back(new test_conv_transpose_1d());
 | |
|     test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
 | |
|     test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
 | |
|     test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
 | |
|     test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
 | |
|     test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
 | |
|     test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
 | |
|     test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
 | |
| 
 | |
|     test_cases.emplace_back(new test_count_equal());
 | |
| 
 | |
|     test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32,    1, 1, 1}));
 | |
|     test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100,  10, 1, 1}));
 | |
|     test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
 | |
|     test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
 | |
|     test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
 | |
|     test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438,  3, 1, 1}));
 | |
| 
 | |
|     for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
 | |
|         test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
 | |
|         test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
 | |
|         test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
 | |
|         test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
 | |
|         test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
 | |
|         test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
 | |
|         test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
 | |
|     test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
 | |
|     test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
 | |
|     test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
 | |
|     test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
 | |
|     test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
 | |
|     test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
 | |
|     test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
 | |
|     test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10,  8, 3, 1}, {0, 2, 1, 3}));
 | |
|     test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10,  8, 3, 1}, {1, 2, 0, 3}));
 | |
| 
 | |
|     for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
 | |
|         test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
 | |
|     }
 | |
| 
 | |
|     for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
 | |
|         test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
 | |
|     }
 | |
| 
 | |
|     for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
 | |
|         for (ggml_type type_dst : all_types) {
 | |
|             test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
 | |
|             test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
 | |
|         }
 | |
|     }
 | |
|     for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
 | |
|         for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
 | |
|             test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_cont());
 | |
|     test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
 | |
|     test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
 | |
|     test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
 | |
|     test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
 | |
|     test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
 | |
|     test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
 | |
|     test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
 | |
|     test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
 | |
|     test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
 | |
| 
 | |
|     auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
 | |
|         for (auto op : {ggml_add, ggml_mul, ggml_div}) {
 | |
|             test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 1, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 2});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 2, 2, 2});
 | |
| 
 | |
|     // stable diffusion
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
 | |
|     add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
 | |
|     //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
 | |
|     //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
 | |
| 
 | |
|     test_cases.emplace_back(new test_add1());
 | |
|     test_cases.emplace_back(new test_scale());
 | |
| 
 | |
|     for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
 | |
|         test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
 | |
|         test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
 | |
|     test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
 | |
|     test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
 | |
| 
 | |
|     test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
 | |
| 
 | |
|     test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
 | |
|     test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
 | |
|     test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
 | |
|     test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
 | |
| 
 | |
|     for (int i = 1; i < 9; ++i) {
 | |
|         test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16,    GGML_TYPE_F32, 16,  i, 256, { 1,  1}, {1, 1}));
 | |
|         test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0,   GGML_TYPE_F32, 16,  i, 256, { 1,  1}, {1, 1}));
 | |
|         test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_1,   GGML_TYPE_F32, 16,  i, 256, { 1,  1}, {1, 1}));
 | |
|         test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_0,   GGML_TYPE_F32, 16,  i, 256, { 1,  1}, {1, 1}));
 | |
|         test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_1,   GGML_TYPE_F32, 16,  i, 256, { 1,  1}, {1, 1}));
 | |
|         test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0,   GGML_TYPE_F32, 16,  i, 256, { 1,  1}, {1, 1}));
 | |
|         test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_K,   GGML_TYPE_F32, 16,  i, 256, { 1,  1}, {1, 1}));
 | |
|         test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_K,   GGML_TYPE_F32, 16,  i, 256, { 1,  1}, {1, 1}));
 | |
|         test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q6_K,   GGML_TYPE_F32, 16,  i, 256, { 1,  1}, {1, 1}));
 | |
|         test_cases.emplace_back(new test_mul_mat(GGML_TYPE_IQ4_NL, GGML_TYPE_F32, 16,  i, 256, { 1,  1}, {1, 1}));
 | |
|     }
 | |
| 
 | |
| #if 1
 | |
|     for (ggml_type type_a : base_types) {
 | |
|         for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
 | |
|             // test cases without permutation
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  1, 256, { 1,  1}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  1, 256, {10,  1}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  1, 256, {10,  1}, {2, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  1, 256, {10, 10}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  1, 256, {10, 10}, {2, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  1, 256, {10, 10}, {1, 2}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  1, 256, {10, 10}, {2, 2}));
 | |
| 
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1,  1}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10,  1}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10,  1}, {2, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
 | |
| 
 | |
|             // test cases with permutation
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
 | |
| 
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16,  8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
 | |
| 
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
 | |
|         }
 | |
|     }
 | |
|     for (ggml_type type_a : other_types) {
 | |
|         for (ggml_type type_b : {GGML_TYPE_F32}) {
 | |
|             if (ggml_blck_size(type_a) != 256) {
 | |
|                 test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1,  1}, {1, 1}));
 | |
|             }
 | |
|             test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1,  1}, {1, 1}));
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     // m = a rows
 | |
|     // n = b rows
 | |
|     // k = cols
 | |
|     std::uniform_int_distribution<> dist_m(1, 128);
 | |
|     std::uniform_int_distribution<> dist_n(16, 128);
 | |
|     std::uniform_int_distribution<> dist_k(1, 16);
 | |
|     for (int i = 0; i < 1000; i++) {
 | |
|         for (ggml_type type_a : all_types) {
 | |
|             for (ggml_type type_b : {GGML_TYPE_F32}) {
 | |
|                 int m = dist_m(rng);
 | |
|                 int n = dist_n(rng);
 | |
|                 int k = dist_k(rng) * ggml_blck_size(type_a);
 | |
|                 test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1,  1}, {1, 1}));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32,  64, 2,  128, { 8,  1}, {1, 1}));
 | |
|     test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32,  83, 2,  128, { 8,  1}, {4, 1}));
 | |
|     test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32,  64, 2,   64, { 8,  1}, {4, 1}));
 | |
|     test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32,  83, 2,   64, { 8,  1}, {4, 1}));
 | |
|     test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32,  64, 45, 128, { 8,  1}, {4, 1}));
 | |
|     test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45,  64, { 8,  1}, {4, 1}));
 | |
| 
 | |
|     // sycl backend will limit task global_range < MAX_INT
 | |
|     // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
 | |
|     // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
 | |
|     // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
 | |
|     // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
 | |
| 
 | |
|     for (ggml_type type_a : base_types) {
 | |
|         for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
 | |
|             for (int n_mats : {4, 8}) {
 | |
|                 for (int n_used : {1, 2, 4}) {
 | |
|                     for (bool b : {false, true}) {
 | |
|                         for (int n : {1, 32}) {
 | |
|                             int m = 512;
 | |
|                             int k = 256;
 | |
|                             test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ggml_type type_a : other_types) {
 | |
|         for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
 | |
|             for (int n_mats : {4}) {
 | |
|                 for (int n_used : {2}) {
 | |
|                     for (bool b : {false}) {
 | |
|                         for (int n : {1, 32}) {
 | |
|                             int m = 512;
 | |
|                             int k = 256;
 | |
|                             test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ggml_type type_a : base_types) {
 | |
|         for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, { 1,  1}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10,  1}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10,  1}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
 | |
| 
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, { 1,  1}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, { 1,  1}, true));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10,  1}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10,  1}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
 | |
|             test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_sqr());
 | |
|     test_cases.emplace_back(new test_sqrt());
 | |
|     test_cases.emplace_back(new test_log());
 | |
|     test_cases.emplace_back(new test_sin());
 | |
|     test_cases.emplace_back(new test_cos());
 | |
|     test_cases.emplace_back(new test_clamp());
 | |
| 
 | |
|     test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
 | |
|     test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
 | |
|     test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
 | |
| 
 | |
| #if 0
 | |
|     std::uniform_int_distribution<> dist_ne1(1, 50);
 | |
|     int exponent = 1;
 | |
|     while (exponent < (1 << 17)) {
 | |
|         std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
 | |
| 
 | |
|         for (int n = 0; n < 10; ++n) {
 | |
|             int64_t ne0 = dist_ne0(rng);
 | |
|             int64_t ne1 = dist_ne1(rng);
 | |
|             test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
 | |
|         }
 | |
| 
 | |
|         exponent <<= 1;
 | |
|     }
 | |
| #endif
 | |
|     for (bool mask : {false, true}) {
 | |
|         for (float max_bias : {0.0f, 8.0f}) {
 | |
|             if (!mask && max_bias > 0.0f) continue;
 | |
|             for (float scale : {1.0f, 0.1f}) {
 | |
|                 for (int64_t ne0 : {16, 1024}) {
 | |
|                     for (int64_t ne1 : {16, 1024}) {
 | |
|                         test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0,   ne1,   1, 1}, mask, scale, max_bias));
 | |
|                         test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f));
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true,  0.1f, 0.0f));
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true,  0.1f, 8.0f));
 | |
| 
 | |
|     {
 | |
|         bool all = true;
 | |
| 
 | |
|         for (float v : { 0, 1 }) {
 | |
|             for (float fs : { 1.0f, 1.4245f }) {
 | |
|                 for (float ef : { 0.0f, 0.7465f }) {
 | |
|                     for (float af : { 1.0f, 1.4245f }) {
 | |
|                         for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
 | |
|                             for (bool ff : {false, true}) { // freq_factors
 | |
|                                 test_cases.emplace_back(new test_rope(type, {128,  32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 7B
 | |
| 
 | |
|                                 if (all) {
 | |
|                                     test_cases.emplace_back(new test_rope(type, {128,  40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 13B
 | |
|                                     test_cases.emplace_back(new test_rope(type, {128,  52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 30B
 | |
|                                     test_cases.emplace_back(new test_rope(type, {128,  64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 65B
 | |
|                                 }
 | |
| 
 | |
|                                 if (all) {
 | |
|                                     test_cases.emplace_back(new test_rope(type, { 64,   1, 2, 1},  64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
 | |
|                                     test_cases.emplace_back(new test_rope(type, { 64,  71, 2, 1},  64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
 | |
|                                     test_cases.emplace_back(new test_rope(type, { 64,   8, 2, 1},  64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
 | |
|                                     test_cases.emplace_back(new test_rope(type, { 80,  32, 2, 1},  20, 2, 512, fs, ef, af, ff, v)); // neox (stablelm)
 | |
|                                     test_cases.emplace_back(new test_rope(type, { 80,  32, 2, 1},  32, 2, 512, fs, ef, af, ff, v)); // neox (phi-2)
 | |
|                                 }
 | |
| 
 | |
|                                 if (all) {
 | |
|                                     test_cases.emplace_back(new test_rope(type, {128,  12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE,  512, fs, ef, af, ff, v)); // rope_multi,m-rope (qwen2vl 2B)
 | |
|                                     test_cases.emplace_back(new test_rope(type, {128,  28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE,  512, fs, ef, af, ff, v)); // rope_multi,m-rope (qwen2vl 7B)
 | |
|                                     test_cases.emplace_back(new test_rope(type, { 80,  16, 2, 1},  80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v)); // rope_multi,m-rope (qwen2vl ViT)
 | |
|                                 }
 | |
| 
 | |
|                                 test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1},  64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         all = false;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int v : { 0, 1, 2, 3 }) {
 | |
|         for (int dim : { 0, 1, 2, 3, }) {
 | |
|             test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
 | |
|             test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
 | |
|         test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
 | |
|         test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
 | |
|         test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_sum());
 | |
|     test_cases.emplace_back(new test_sum_rows());
 | |
|     test_cases.emplace_back(new test_mean());
 | |
|     test_cases.emplace_back(new test_upscale());
 | |
|     test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
 | |
|     test_cases.emplace_back(new test_upscale_ext());
 | |
|     test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
 | |
|     test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
 | |
|     test_cases.emplace_back(new test_acc());
 | |
|     test_cases.emplace_back(new test_pad());
 | |
|     test_cases.emplace_back(new test_pad_reflect_1d());
 | |
|     test_cases.emplace_back(new test_arange());
 | |
|     test_cases.emplace_back(new test_timestep_embedding());
 | |
|     test_cases.emplace_back(new test_leaky_relu());
 | |
| 
 | |
|     for (int hs : { 64, 80, 128, 256, }) {
 | |
|         for (bool mask : { true, false } ) {
 | |
|             for (float max_bias : { 0.0f, 8.0f }) {
 | |
|                 if (!mask && max_bias > 0.0f) continue;
 | |
|                 for (float logit_softcap : {0.0f, 10.0f}) {
 | |
|                     if (hs != 128 && logit_softcap != 0.0f) continue;
 | |
|                     for (int nh : { 32, }) {
 | |
|                         for (int kv : { 512, 1024, }) {
 | |
|                             for (int nb : { 1, 3, 32, 35, }) {
 | |
|                                 for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
 | |
|                                     test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV));
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     test_cases.emplace_back(new test_cross_entropy_loss());
 | |
|     test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
 | |
| 
 | |
|     // these tests are disabled to save execution time, but they can be handy for debugging
 | |
| #if 0
 | |
|     test_cases.emplace_back(new test_llama(1));
 | |
|     test_cases.emplace_back(new test_llama(2));
 | |
|     test_cases.emplace_back(new test_falcon(1));
 | |
|     test_cases.emplace_back(new test_falcon(2));
 | |
| #endif
 | |
| 
 | |
|     return test_cases;
 | |
| }
 | |
| 
 | |
| // Test cases for performance evaluation: should be representative of real-world use cases
 | |
| static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
 | |
|     std::vector<std::unique_ptr<test_case>> test_cases;
 | |
| 
 | |
|     test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1,   1, 1, 1}));
 | |
|     test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
 | |
| 
 | |
|     test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
 | |
|     test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
 | |
|     test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
 | |
| 
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, 1.0f, 0.0f));
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, 1.0f, 0.0f));
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, 1.0f, 0.0f));
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, 1.0f, 0.0f));
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, 1.0f, 0.0f));
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, 1.0f, 0.0f));
 | |
|     test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, 1.0f, 0.0f));
 | |
| 
 | |
|     test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
 | |
|     test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
 | |
|     test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
 | |
| 
 | |
|     for (int bs : {1, 512}) {
 | |
|         for (ggml_type type_a : all_types) {
 | |
|             for (ggml_type type_b : {GGML_TYPE_F32}) {
 | |
|                 test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1,  1}, {1, 1}));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return test_cases;
 | |
| }
 | |
| 
 | |
| static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
 | |
|     if (mode == MODE_TEST) {
 | |
|         auto test_cases = make_test_cases_eval();
 | |
|         ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
 | |
|         if (backend_cpu == NULL) {
 | |
|             printf("  Failed to initialize CPU backend\n");
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         size_t n_ok = 0;
 | |
|         for (auto & test : test_cases) {
 | |
|             if (test->eval(backend, backend_cpu, op_name)) {
 | |
|                 n_ok++;
 | |
|             }
 | |
|         }
 | |
|         printf("  %zu/%zu tests passed\n", n_ok, test_cases.size());
 | |
| 
 | |
|         ggml_backend_free(backend_cpu);
 | |
| 
 | |
|         return n_ok == test_cases.size();
 | |
|     }
 | |
| 
 | |
|     if (mode == MODE_GRAD) {
 | |
|         auto test_cases = make_test_cases_eval();
 | |
|         size_t n_ok = 0;
 | |
|         for (auto & test : test_cases) {
 | |
|             if (test->eval_grad(backend, op_name)) {
 | |
|                 n_ok++;
 | |
|             }
 | |
|         }
 | |
|         printf("  %zu/%zu tests passed\n", n_ok, test_cases.size());
 | |
| 
 | |
|         return n_ok == test_cases.size();
 | |
|     }
 | |
| 
 | |
|     if (mode == MODE_PERF) {
 | |
|         auto test_cases = make_test_cases_perf();
 | |
|         for (auto & test : test_cases) {
 | |
|             test->eval_perf(backend, op_name);
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     GGML_ABORT("fatal error");
 | |
| }
 | |
| 
 | |
| static void usage(char ** argv) {
 | |
|     printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
 | |
|     printf("    valid modes:\n");
 | |
|     printf("      - test (default, compare with CPU backend for correctness)\n");
 | |
|     printf("      - grad (compare gradients from backpropagation with method of finite differences)\n");
 | |
|     printf("      - perf (performance evaluation)\n");
 | |
|     printf("    op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     test_mode mode = MODE_TEST;
 | |
|     const char * op_name_filter = NULL;
 | |
|     const char * backend_filter = NULL;
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         if (strcmp(argv[i], "test") == 0) {
 | |
|             mode = MODE_TEST;
 | |
|         } else if (strcmp(argv[i], "perf") == 0) {
 | |
|             mode = MODE_PERF;
 | |
|         } else if (strcmp(argv[i], "grad") == 0) {
 | |
|             mode = MODE_GRAD;
 | |
|         } else if (strcmp(argv[i], "-o") == 0) {
 | |
|             if (i + 1 < argc) {
 | |
|                 op_name_filter = argv[++i];
 | |
|             } else {
 | |
|                 usage(argv);
 | |
|                 return 1;
 | |
|             }
 | |
|         } else if (strcmp(argv[i], "-b") == 0) {
 | |
|             if (i + 1 < argc) {
 | |
|                 backend_filter = argv[++i];
 | |
|             } else {
 | |
|                 usage(argv);
 | |
|                 return 1;
 | |
|             }
 | |
|         } else {
 | |
|             usage(argv);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // load and enumerate backends
 | |
|     ggml_backend_load_all();
 | |
| 
 | |
|     printf("Testing %zu devices\n\n", ggml_backend_dev_count());
 | |
| 
 | |
|     size_t n_ok = 0;
 | |
| 
 | |
|     for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
 | |
|         ggml_backend_dev_t dev = ggml_backend_dev_get(i);
 | |
| 
 | |
|         printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
 | |
| 
 | |
|         if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
 | |
|             printf("  Skipping\n");
 | |
|             n_ok++;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
 | |
|             printf("  Skipping CPU backend\n");
 | |
|             n_ok++;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
 | |
|         GGML_ASSERT(backend != NULL);
 | |
| 
 | |
|         ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
 | |
|         auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
 | |
|         if (ggml_backend_set_n_threads_fn) {
 | |
|             // TODO: better value for n_threads
 | |
|             ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
 | |
|         }
 | |
| 
 | |
|         printf("  Device description: %s\n", ggml_backend_dev_description(dev));
 | |
|         size_t free, total; // NOLINT
 | |
|         ggml_backend_dev_memory(dev, &free, &total);
 | |
|         printf("  Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
 | |
|         printf("\n");
 | |
| 
 | |
|         bool ok = test_backend(backend, mode, op_name_filter);
 | |
| 
 | |
|         printf("  Backend %s: ", ggml_backend_name(backend));
 | |
|         if (ok) {
 | |
|             printf("\033[1;32mOK\033[0m\n");
 | |
|             n_ok++;
 | |
|         } else {
 | |
|             printf("\033[1;31mFAIL\033[0m\n");
 | |
|         }
 | |
| 
 | |
|         printf("\n");
 | |
| 
 | |
|         ggml_backend_free(backend);
 | |
|     }
 | |
| 
 | |
|     ggml_quantize_free();
 | |
| 
 | |
|     printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
 | |
| 
 | |
|     if (n_ok != ggml_backend_dev_count()) {
 | |
|         printf("\033[1;31mFAIL\033[0m\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     printf("\033[1;32mOK\033[0m\n");
 | |
|     return 0;
 | |
| }
 |