* common : Changed tuple to struct (TODO fix) Use struct `llama_init_result` to replace the previous std::tuple<struct llama_model *, struct llama_context *> * delete llama_init_default_params() * delete the extra whitespace
		
			
				
	
	
		
			486 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			486 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| struct ngram_data {
 | |
|     bool active = false;
 | |
| 
 | |
|     llama_seq_id seq_id = -1;
 | |
| 
 | |
|     std::vector<int> i_batch;
 | |
| 
 | |
|     std::vector<llama_token> tokens;
 | |
| };
 | |
| 
 | |
| // n-gram container
 | |
| struct ngram_container {
 | |
|     ngram_container(int n_vocab, int N, int G) {
 | |
|         cnt.resize(n_vocab);
 | |
|         head.resize(n_vocab);
 | |
|         tokens.resize(n_vocab * G * (N - 1));
 | |
|     }
 | |
| 
 | |
|     int n_total = 0;
 | |
| 
 | |
|     std::vector<int> cnt;
 | |
|     std::vector<int> head;
 | |
| 
 | |
|     // [n_vocab][G][N - 1]
 | |
|     // for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1
 | |
|     std::vector<llama_token> tokens;
 | |
| };
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (!gpt_params_parse(argc, argv, params)) {
 | |
|         gpt_params_print_usage(argc, argv, params);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const int W = 15; // lookahead window
 | |
|     const int N = 5;  // n-gram size
 | |
|     const int G = 15; // max verification n-grams
 | |
| 
 | |
|     const bool dump_kv_cache = params.dump_kv_cache;
 | |
| 
 | |
| #ifndef LOG_DISABLE_LOGS
 | |
|     log_set_target(log_filename_generator("lookahead", "log"));
 | |
|     LOG_TEE("Log start\n");
 | |
|     log_dump_cmdline(argc, argv);
 | |
| #endif // LOG_DISABLE_LOGS
 | |
| 
 | |
|     // init llama.cpp
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     // load the target model
 | |
|     llama_init_result llama_init = llama_init_from_gpt_params(params);
 | |
| 
 | |
|     llama_model * model = llama_init.model;
 | |
|     llama_context * ctx = llama_init.context;
 | |
| 
 | |
|     // Tokenize the prompt
 | |
|     std::vector<llama_token> inp;
 | |
|     std::vector<llama_token> all;
 | |
| 
 | |
|     inp = ::llama_tokenize(ctx, params.prompt, true, true);
 | |
|     all = inp;
 | |
| 
 | |
|     const int max_context_size     = llama_n_ctx(ctx);
 | |
|     const int max_tokens_list_size = max_context_size - 4;
 | |
| 
 | |
|     if ((int) inp.size() > max_tokens_list_size) {
 | |
|         fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     for (auto id : inp) {
 | |
|         fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
 | |
|     }
 | |
| 
 | |
|     fflush(stderr);
 | |
| 
 | |
|     const int n_input = inp.size();
 | |
| 
 | |
|     const auto t_enc_start = ggml_time_us();
 | |
| 
 | |
|     // eval the prompt
 | |
|     llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0,           0));
 | |
|     llama_decode(ctx, llama_batch_get_one(&inp.back(),           1, n_input - 1, 0));
 | |
| 
 | |
|     for (int s = 1; s < W + G + 1; ++s) {
 | |
|         llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
 | |
|     }
 | |
| 
 | |
|     const auto t_enc_end = ggml_time_us();
 | |
| 
 | |
|     int n_predict = 0;
 | |
|     int n_accept  = 0;
 | |
| 
 | |
|     int n_past = inp.size();
 | |
| 
 | |
|     llama_token id = 0;
 | |
| 
 | |
|     // used to determine end of generation
 | |
|     bool has_eos = false;
 | |
| 
 | |
|     // for each decoded batch, we have at most W + G + 1 distinct sequences:
 | |
|     // seq_id == 0           : the current input token
 | |
|     // seq_id [1, W]         : tokens from the past N - 1 Jacobi iterations
 | |
|     // seq_id [W + 1, W + G] : verification n-grams
 | |
|     llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
 | |
| 
 | |
|     // target model sampling context
 | |
|     struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
 | |
| 
 | |
|     // verification n-grams
 | |
|     std::vector<ngram_data> ngrams_cur(G);
 | |
| 
 | |
|     // tokens for the past N - 1 Jacobi iterations
 | |
|     std::vector<llama_token> tokens_j_prev(W);
 | |
|     std::vector<std::vector<llama_token>> tokens_j(N - 1);
 | |
|     for (int j = 0; j < N - 1; j++) {
 | |
|         tokens_j[j].resize(W);
 | |
| 
 | |
|         for (int i = 0; i < W; i++) {
 | |
|             // there are different ways to init these tokens
 | |
|             if (0) {
 | |
|                 // initialize randomly from the prompt tokens
 | |
|                 tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
 | |
|             } else {
 | |
|                 // initialize with a sequence of increasing numbers
 | |
|                 tokens_j[j][i] = 100 + i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::vector<llama_seq_id> seq_id_look;
 | |
| 
 | |
|     // the input token belongs both to all sequences
 | |
|     std::vector<llama_seq_id> seq_id_all(W + G + 1);
 | |
|     for (int i = 0; i < W + G + 1; i++) {
 | |
|         seq_id_all[i] = i;
 | |
|     }
 | |
| 
 | |
|     // here we keep adding new n-grams as we go
 | |
|     ngram_container ngrams_observed(llama_n_vocab(model), N, G);
 | |
| 
 | |
|     // debug
 | |
|     struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
 | |
| 
 | |
|     const auto t_dec_start = ggml_time_us();
 | |
| 
 | |
|     // sample first token
 | |
|     {
 | |
|         id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
 | |
| 
 | |
|         llama_sampling_accept(ctx_sampling, ctx, id, true);
 | |
| 
 | |
|         {
 | |
|             const std::string token_str = llama_token_to_piece(ctx, id);
 | |
| 
 | |
|             printf("%s", token_str.c_str());
 | |
|             fflush(stdout);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (true) {
 | |
|         // debug
 | |
|         if (dump_kv_cache) {
 | |
|             llama_kv_cache_view_update(ctx, &kvc_view);
 | |
|             llama_kv_cache_dump_view_seqs(kvc_view, 40);
 | |
|         }
 | |
| 
 | |
|         // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
 | |
|         //
 | |
|         // Example for W = 5, N = 4, G = 2:
 | |
|         // (I = input, L = lookahead, V = verification)
 | |
|         //
 | |
|         // Batch:  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
 | |
|         // T:        -2 -2 -2 -2 -1 -1 -1 -1 -1  0  0  0  0  0  0
 | |
|         // Info:   I  L  L  L  L  L  L  L  L  L  L  L  L  L  L  V  V  V  V  V  V
 | |
|         // Pos:    0  1  2  3  4  1  2  3  4  5  2  3  4  5  6  1  2  3  1  2  3   (+ n_past)
 | |
|         // Logits: 1  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1
 | |
|         // ---------------------------------------------------------------------
 | |
|         // Seq:    0
 | |
|         //         1              1              1
 | |
|         //         2  2              2              2
 | |
|         //         3  3  3              3              3
 | |
|         //         4  4  4  4              4              4
 | |
|         //         5  5  5  5  5              5              5
 | |
|         //         6                                            6  6  6
 | |
|         //         7                                                     7  7  7
 | |
|         // ---------------------------------------------------------------------
 | |
|         //                                       |  |  |  |  |  |  |  |  |  |  |
 | |
|         //                                       V  V  V  V  V  |  |  |  |  |  |
 | |
|         //                                         j_tokens     |  |  |  |  |  |
 | |
|         //                                                      V  V  V  V  V  V
 | |
|         //                                                             id
 | |
|         {
 | |
|             llama_batch_clear(batch);
 | |
| 
 | |
|             // current token - first token of the first level
 | |
|             llama_batch_add(batch, id, n_past, seq_id_all, true);
 | |
| 
 | |
|             // verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
 | |
|             {
 | |
|                 const int g_cur = ngrams_observed.cnt[id];
 | |
| 
 | |
|                 ngrams_cur.resize(g_cur);
 | |
|                 for (int g = 0; g < g_cur; g++) {
 | |
|                     ngrams_cur[g].active = true;
 | |
|                     ngrams_cur[g].tokens.resize(N);
 | |
|                     ngrams_cur[g].i_batch.resize(N);
 | |
|                     ngrams_cur[g].seq_id = W + 1 + g;
 | |
|                     ngrams_cur[g].i_batch[0] = 0;
 | |
|                     ngrams_cur[g].tokens [0] = id;
 | |
|                 }
 | |
| 
 | |
|                 for (int j = 0; j < N - 1; j++) {
 | |
|                     for (int g = 0; g < g_cur; g++) {
 | |
|                         const int idx = id*(N - 1)*G + g*(N - 1);
 | |
| 
 | |
|                         const llama_token t = ngrams_observed.tokens[idx + j];
 | |
| 
 | |
|                         ngrams_cur[g].tokens [j + 1] = t;
 | |
|                         ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
 | |
| 
 | |
|                         llama_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // fill the remaining W - 1 tokens for the first level
 | |
|             for (int i = 1; i < W; i++) {
 | |
|                 seq_id_look.resize(W - i);
 | |
|                 for (int j = 0; j < W - i; j++) {
 | |
|                     seq_id_look[j] = i + j + 1;
 | |
|                 }
 | |
| 
 | |
|                 llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
 | |
|             }
 | |
| 
 | |
|             // fill the rest of the levels
 | |
|             for (int j = 1; j < N - 1; j++) {
 | |
|                 for (int i = 0; i < W; i++) {
 | |
|                     llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (llama_decode(ctx, batch) != 0) {
 | |
|             fprintf(stderr, "\n\n%s: error: llama_decode failed - increase KV cache size\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         int seq_id_best = 0;
 | |
| 
 | |
|         for (int v = 0; v < N; ++v) {
 | |
|             int i_batch = 0;
 | |
| 
 | |
|             // if no active ngrams are left, it means the sampled token does not pass the verification
 | |
|             if (v > 0) {
 | |
|                 for (int g = 0; g < (int) ngrams_cur.size(); g++) {
 | |
|                     if (ngrams_cur[g].active) {
 | |
|                         i_batch = ngrams_cur[g].i_batch[v];
 | |
|                         seq_id_best = ngrams_cur[g].seq_id;
 | |
| 
 | |
|                         ++n_accept;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // no more matches -> create a new batch
 | |
|                 if (i_batch == 0) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // sample the next token
 | |
|             id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch);
 | |
| 
 | |
|             llama_sampling_accept(ctx_sampling, ctx, id, true);
 | |
| 
 | |
|             // print
 | |
|             {
 | |
|                 const std::string token_str = llama_token_to_piece(ctx, id);
 | |
| 
 | |
|                 if (v == 0) {
 | |
|                     printf("%s", token_str.c_str());
 | |
|                 } else {
 | |
|                     // print light cyan
 | |
|                     printf("\033[0;96m%s\033[0m", token_str.c_str());
 | |
|                 }
 | |
|                 fflush(stdout);
 | |
| 
 | |
|                 if (llama_token_is_eog(model, id)) {
 | |
|                     has_eos = true;
 | |
|                 }
 | |
| 
 | |
|                 all.push_back(id);
 | |
|             }
 | |
| 
 | |
|             ++n_predict;
 | |
|             ++n_past;
 | |
| 
 | |
|             if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // verify across active n-grams
 | |
|             for (int g = 0; g < (int) ngrams_cur.size(); g++) {
 | |
|                 if (ngrams_cur[g].active) {
 | |
|                     if (v == N - 1) {
 | |
|                         ngrams_cur[g].active = false;
 | |
|                     } else {
 | |
|                         if (id != ngrams_cur[g].tokens[v + 1]) {
 | |
|                             ngrams_cur[g].active = false;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // print known n-grams starting with token id (debug)
 | |
|             if (0 && v == 0) {
 | |
|                 if (ngrams_observed.cnt[id] > 0) {
 | |
|                     printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
 | |
|                 }
 | |
| 
 | |
|                 for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
 | |
|                     printf("   - ngram %2d: ", i);
 | |
| 
 | |
|                     const int idx = id*(N - 1)*G + i*(N - 1);
 | |
| 
 | |
|                     for (int j = 0; j < N - 1; j++) {
 | |
|                         const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
 | |
| 
 | |
|                         printf("%s", token_str.c_str());
 | |
|                     }
 | |
| 
 | |
|                     printf("\n");
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // update lookahead tokens
 | |
|             {
 | |
|                 for (int i = 0; i < W; i++) {
 | |
|                     tokens_j_prev[i] = tokens_j[0][i];
 | |
|                 }
 | |
| 
 | |
|                 for (int j = 0; j < N - 2; j++) {
 | |
|                     tokens_j[j] = tokens_j[j + 1];
 | |
|                 }
 | |
| 
 | |
|                 if (v == 0) {
 | |
|                     // sample from the last level
 | |
|                     for (int i = 0; i < W; i++) {
 | |
|                         tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
 | |
|                     }
 | |
|                 } else {
 | |
|                     for (int i = 0; i < W; i++) {
 | |
|                         // there are different ways to init these tokens
 | |
|                         if (0) {
 | |
|                             // random init
 | |
|                             tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)];
 | |
|                         } else {
 | |
|                             // init from the previous level
 | |
|                             tokens_j[N - 2][i] = tokens_j[0][i];
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // update observed ngrams
 | |
|             if (v == 0) {
 | |
|                 // the first token of the n-gram is determined by the index in the container so it is not stored
 | |
|                 std::vector<llama_token> ngram(N - 1);
 | |
| 
 | |
|                 // n-gram generation
 | |
|                 // ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518
 | |
|                 for (int f = 0; f < W; ++f) {
 | |
|                     const int ft = tokens_j_prev[f]; // first token of the n-gram
 | |
| 
 | |
|                     for (int j = 0; j < N - 1; ++j) {
 | |
|                         ngram[j] = tokens_j[j][f];
 | |
|                     }
 | |
| 
 | |
|                     // filter-out repeating n-grams
 | |
|                     {
 | |
|                         bool is_unique = true;
 | |
| 
 | |
|                         for (int k = 0; k < ngrams_observed.cnt[ft]; ++k) {
 | |
|                             const int idx = ft*(N - 1)*G + k*(N - 1);
 | |
| 
 | |
|                             bool is_match = true;
 | |
|                             for (int j = 0; j < N - 1; ++j) {
 | |
|                                 if (ngrams_observed.tokens[idx + j] != ngram[j]) {
 | |
|                                     is_match = false;
 | |
|                                     break;
 | |
|                                 }
 | |
|                             }
 | |
| 
 | |
|                             if (is_match) {
 | |
|                                 is_unique = false;
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         if (!is_unique) {
 | |
|                             continue;
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     const int head = ngrams_observed.head[ft];
 | |
|                     const int idx  = ft*(N - 1)*G + head*(N - 1);
 | |
| 
 | |
|                     for (int i = 0; i < N - 1; i++) {
 | |
|                         ngrams_observed.tokens[idx + i] = ngram[i];
 | |
|                     }
 | |
| 
 | |
|                     ngrams_observed.cnt[ft]  = std::min(G, ngrams_observed.cnt[ft] + 1);
 | |
|                     ngrams_observed.head[ft] = (head + 1) % G;
 | |
| 
 | |
|                     ngrams_observed.n_total++;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // KV cache management
 | |
|         // if no verification token matched, we simply remove all cells from this batch -> no fragmentation
 | |
|         llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
 | |
| 
 | |
|         if (seq_id_best != 0) {
 | |
|             // if a verification token matched, we keep the best sequence and remove the rest
 | |
|             // this leads to some KV cache fragmentation
 | |
|             llama_kv_cache_seq_keep(ctx, seq_id_best);
 | |
|             llama_kv_cache_seq_cp  (ctx, seq_id_best, 0, -1, -1);
 | |
|             llama_kv_cache_seq_rm  (ctx, seq_id_best,    -1, -1);
 | |
| 
 | |
|             for (int s = 1; s < W + G + 1; ++s) {
 | |
|                 llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto t_dec_end = ggml_time_us();
 | |
| 
 | |
|     LOG_TEE("\n\n");
 | |
| 
 | |
|     LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
 | |
|     LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));
 | |
| 
 | |
|     LOG_TEE("\n");
 | |
|     LOG_TEE("W = %2d\n", W);
 | |
|     LOG_TEE("N = %2d\n", N);
 | |
|     LOG_TEE("G = %2d\n", G);
 | |
|     LOG_TEE("\n");
 | |
|     LOG_TEE("n_predict = %d\n", n_predict);
 | |
|     LOG_TEE("n_accept  = %d\n", n_accept);
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
| 
 | |
|     llama_kv_cache_view_free(&kvc_view);
 | |
|     llama_sampling_free(ctx_sampling);
 | |
| 
 | |
|     llama_batch_free(batch);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 |