* sync : ggml (backend v2) (wip) * sync : migrate examples and llama.cpp to dynamic graphs (wip) * sync : update tests + fix max op params to 64 ggml-ci * sync : ggml-cuda ggml-ci * llama : fix save/load state context size ggml-ci * sync : try to fix build on tvOS * sync : pass custom graph sizes in training examples * sync : update graph copies to new ggml API * sync : update sync-ggml.sh with new files * scripts : fix header in sync script * train : fix context size calculations * llama : increase inference graph size up to 4096 nodes * train : allocate grads for backward graphs * train : allocate grads for gb_tmp
		
			
				
	
	
		
			181 lines
		
	
	
	
		
			5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
	
		
			5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cassert>
 | |
| 
 | |
| #define MAX_NARGS 2
 | |
| 
 | |
| #if defined(__GNUC__)
 | |
| #pragma GCC diagnostic ignored "-Wdouble-promotion"
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // logging
 | |
| //
 | |
| #define GGML_DEBUG 0
 | |
| #if (GGML_DEBUG >= 1)
 | |
| #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 5)
 | |
| #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_5(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 10)
 | |
| #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_10(...)
 | |
| #endif
 | |
| 
 | |
| #define GGML_PRINT(...) printf(__VA_ARGS__)
 | |
| 
 | |
| 
 | |
| static float frand(void) {
 | |
|     return (float)rand()/(float)RAND_MAX;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * get_random_tensor(
 | |
|     struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax
 | |
| ) {
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
 | |
| 
 | |
|     switch (ndims) {
 | |
|         case 1:
 | |
|             for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                 ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                 for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                     ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                 for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                     for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                         ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 4:
 | |
|             for (int i3 = 0; i3 < ne[3]; i3++) {
 | |
|                 for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                     for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                         for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                             ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| int main(void) {
 | |
|     struct ggml_init_params params = {
 | |
|         /* .mem_size   = */ 1024*1024*1024,
 | |
|         /* .mem_buffer = */ NULL,
 | |
|         /* .no_alloc   = */ false,
 | |
|     };
 | |
| 
 | |
|     struct ggml_context * ctx = ggml_init(params);
 | |
| 
 | |
|     int64_t ne1[4] = {4, 128, 1, 1};
 | |
|     int64_t ne2[4] = {4, 256, 1, 1};
 | |
|     int64_t ne3[4] = {128, 256, 1, 1};
 | |
| 
 | |
|     struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
 | |
|     struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1);
 | |
|     ggml_set_param(ctx, a);
 | |
|     ggml_set_param(ctx, b);
 | |
| 
 | |
|     struct ggml_tensor * c = get_random_tensor(ctx, 2, ne3, -1, +1);
 | |
| 
 | |
|     struct ggml_tensor * ab = ggml_mul_mat(ctx, a, b);
 | |
|     struct ggml_tensor * d  = ggml_sub(ctx, c, ab);
 | |
|     struct ggml_tensor * e  = ggml_sum(ctx, ggml_sqr(ctx, d));
 | |
| 
 | |
|     struct ggml_cgraph * ge = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
 | |
|     ggml_build_forward_expand(ge, e);
 | |
|     ggml_graph_reset(ge);
 | |
| 
 | |
|     ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
 | |
| 
 | |
|     const float fe = ggml_get_f32_1d(e, 0);
 | |
|     printf("%s: e = %.4f\n", __func__, fe);
 | |
| 
 | |
|     struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
 | |
| 
 | |
|     ggml_opt(ctx, opt_params, e);
 | |
| 
 | |
|     ggml_graph_reset(ge);
 | |
| 
 | |
|     ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
 | |
| 
 | |
|     const float fe_opt = ggml_get_f32_1d(e, 0);
 | |
|     printf("%s: original  e = %.4f\n", __func__, fe);
 | |
|     printf("%s: optimized e = %.4f\n", __func__, fe_opt);
 | |
| 
 | |
|     const bool success = (fe_opt <= fe);
 | |
|     assert(success);
 | |
| 
 | |
|     ggml_free(ctx);
 | |
|     return success ? 0 : -1;
 | |
| }
 | |
| // int64_t ne1[4] = {4, 128, 1, 1};
 | |
| // int64_t ne2[4] = {4, 256, 1, 1};;
 | |
| // int64_t ne3[4] = {128, 256, 1, 1};
 | |
| // main: original  e = 25890.9375
 | |
| // main: optimized e = 10094.7031
 | |
| 
 | |
| // int64_t ne1[4] = {8, 128, 1, 1};
 | |
| // int64_t ne2[4] = {8, 256, 1, 1};;
 | |
| // int64_t ne3[4] = {128, 256, 1, 1};
 | |
| // main: original  e = 39429.5078
 | |
| // main: optimized e = 9275.8936
 | |
| 
 | |
| // int64_t ne1[4] = {16, 128, 1, 1};
 | |
| // int64_t ne2[4] = {16, 256, 1, 1};;
 | |
| // int64_t ne3[4] = {128, 256, 1, 1};
 | |
| // main: original  e = 68371.1328
 | |
| // main: optimized e = 7854.4502
 | |
| 
 | |
| 
 | |
| // int64_t ne1[4] = {32, 128, 1, 1};
 | |
| // int64_t ne2[4] = {32, 256, 1, 1};;
 | |
| // int64_t ne3[4] = {128, 256, 1, 1};
 | |
| // main: original  e = 126061.1953
 | |
| // main: optimized e = 5451.0166
 | |
| 
 | |
| // int64_t ne1[4] = {4, 1024, 1, 1};
 | |
| // int64_t ne2[4] = {4, 2048, 1, 1};;
 | |
| // int64_t ne3[4] = {1024, 2048, 1, 1};
 | |
| // main: original  e = 1620817.8750
 | |
| // main: optimized e = 698387.6875
 | |
| 
 | |
| // another run on M1
 | |
| // int64_t ne1[4] = {4, 1024, 1, 1};
 | |
| // int64_t ne2[4] = {4, 2048, 1, 1};;
 | |
| // int64_t ne3[4] = {1024, 2048, 1, 1};
 | |
| // main: original  e = 1629595.6250
 | |
| // main: optimized e = 698169.1250
 | |
| 
 | |
| // int64_t ne1[4] = {32, 1024, 1, 1};
 | |
| // int64_t ne2[4] = {32, 2048, 1, 1};;
 | |
| // int64_t ne3[4] = {1024, 2048, 1, 1};
 | |
| // main: original  e = 8146770.5000
 | |
| // main: optimized e = 651119.1250
 |