241 lines
7.6 KiB
C++
241 lines
7.6 KiB
C++
#pragma once
|
|
|
|
#include "llama.h"
|
|
|
|
#include "ggml-cpp.h"
|
|
|
|
#include <set>
|
|
#include <vector>
|
|
#include <functional>
|
|
|
|
struct llama_cparams;
|
|
struct llama_hparams;
|
|
struct llama_ubatch;
|
|
|
|
struct llama_kv_cell {
|
|
llama_pos pos = -1;
|
|
llama_pos delta = 0;
|
|
int32_t src = -1; // used by recurrent state models to copy states
|
|
int32_t tail = -1;
|
|
|
|
std::set<llama_seq_id> seq_id;
|
|
|
|
bool has_seq_id(const llama_seq_id & id) const {
|
|
return seq_id.find(id) != seq_id.end();
|
|
}
|
|
|
|
bool is_empty() const {
|
|
return seq_id.empty();
|
|
}
|
|
|
|
bool is_same_seq(const llama_kv_cell & other) const {
|
|
return seq_id == other.seq_id;
|
|
}
|
|
};
|
|
|
|
// a structure holds information about the slot found in llama_kv_cache_find_slot
|
|
struct llama_kv_cache_slot_info {
|
|
std::pair<uint32_t, uint32_t> boundaries; // slot boundaries [begin, end)
|
|
bool found = false; // the slot was found
|
|
|
|
explicit llama_kv_cache_slot_info(bool found_) : found{found_} {}
|
|
llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {}
|
|
|
|
operator bool() const { return found; }
|
|
};
|
|
|
|
// ring-buffer of cached KV data
|
|
// TODO: pimpl
|
|
// TODO: add notion of max sequences
|
|
// TODO: add llama_hparams &
|
|
struct llama_kv_cache {
|
|
bool has_shift = false;
|
|
bool do_defrag = false;
|
|
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
|
|
bool v_trans = true; // the value tensor is transposed
|
|
bool can_shift = false;
|
|
|
|
// Note: The value of head isn't only used to optimize searching
|
|
// for a free KV slot. llama_decode_internal also uses it, so it
|
|
// cannot be freely changed after a slot has been allocated.
|
|
uint32_t head = 0;
|
|
uint32_t size = 0;
|
|
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
|
|
|
// computed before each graph build
|
|
uint32_t n = 0;
|
|
|
|
std::vector<llama_kv_cell> cells;
|
|
|
|
std::vector<struct ggml_tensor *> k_l; // per layer
|
|
std::vector<struct ggml_tensor *> v_l;
|
|
|
|
// TODO: become constructor
|
|
bool init(
|
|
const llama_model & model,
|
|
const llama_cparams & cparams,
|
|
ggml_type type_k,
|
|
ggml_type type_v,
|
|
uint32_t kv_size,
|
|
bool offload);
|
|
|
|
int32_t n_tokens() const;
|
|
|
|
size_t total_size() const;
|
|
|
|
// TODO: better data structures to reduce the cost of this operation
|
|
llama_pos pos_max() const;
|
|
|
|
void clear();
|
|
|
|
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1);
|
|
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1);
|
|
void seq_keep(llama_seq_id seq_id);
|
|
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta);
|
|
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d);
|
|
|
|
llama_pos seq_pos_max(llama_seq_id seq_id);
|
|
|
|
void defrag();
|
|
|
|
// find an empty slot of size "n_tokens" in the cache
|
|
// updates the cache head
|
|
// returns a structure holding information about the slot found
|
|
// Note: On success, it's important that cache.head points
|
|
// to the first cell of the slot.
|
|
llama_kv_cache_slot_info find_slot(const llama_ubatch & batch);
|
|
|
|
// TODO: maybe not needed
|
|
uint32_t get_padding(const llama_cparams & cparams) const;
|
|
|
|
// find how many cells are currently in use
|
|
uint32_t cell_max() const;
|
|
|
|
size_t size_k_bytes() const;
|
|
size_t size_v_bytes() const;
|
|
|
|
struct io {
|
|
std::function<void(const void * src, size_t size)> write;
|
|
std::function<void(const struct ggml_tensor * tensor, size_t offset, size_t size)> write_tensor_data;
|
|
|
|
std::function<const uint8_t * (size_t size)> read;
|
|
std::function<void(void * dst, size_t size)> read_to;
|
|
};
|
|
|
|
void state_write(const io & io, const llama_hparams & hparams, llama_seq_id seq_id = -1) const;
|
|
void state_read (const io & io, const llama_hparams & hparams, llama_seq_id seq_id = -1);
|
|
|
|
private:
|
|
ggml_type type_k = GGML_TYPE_F16;
|
|
ggml_type type_v = GGML_TYPE_F16;
|
|
|
|
std::vector<ggml_context_ptr> ctxs;
|
|
std::vector<ggml_backend_buffer_ptr> bufs;
|
|
|
|
void state_write_meta(const io & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
|
void state_write_data(const io & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, const llama_hparams & hparams) const;
|
|
|
|
bool state_read_meta(const io & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
|
|
bool state_read_data(const io & io, const llama_hparams & hparams, uint32_t cell_count);
|
|
};
|
|
|
|
//
|
|
// kv cache restore
|
|
//
|
|
|
|
// saves the kv_cache state for future recovery.
|
|
// used to rollback llama_kv_cache_find_slot changes.
|
|
struct llama_kv_slot_restorer {
|
|
struct llama_kv_cache_state {
|
|
uint32_t head = 0;
|
|
uint32_t n = 0;
|
|
} old_state;
|
|
|
|
// for non-recurrent models only
|
|
// list of slots to restore
|
|
std::vector<std::pair<uint32_t, uint32_t>> slot_boundaries;
|
|
|
|
bool do_restore = false;
|
|
|
|
explicit llama_kv_slot_restorer(const struct llama_kv_cache & cache) {
|
|
old_state.head = cache.head;
|
|
old_state.n = cache.n;
|
|
}
|
|
|
|
// saves a slot information for future restoration
|
|
void save(const struct llama_kv_cache_slot_info & slot) {
|
|
if (slot) {
|
|
do_restore = true;
|
|
if (slot.boundaries.first != slot.boundaries.second) {
|
|
slot_boundaries.push_back(slot.boundaries);
|
|
}
|
|
}
|
|
}
|
|
|
|
// must be explicitly called to restore the kv_cache state
|
|
// and rollback changes from all llama_kv_cache_find_slot calls
|
|
void restore(struct llama_kv_cache & cache) {
|
|
if (do_restore) {
|
|
cache.head = old_state.head;
|
|
cache.n = old_state.n;
|
|
|
|
if (cache.recurrent) { // recurrent models like Mamba or RWKV can't have a state partially erased
|
|
cache.seq_rm(-1, -1, -1);
|
|
} else {
|
|
for (auto & slot : slot_boundaries) {
|
|
cache.seq_rm(-1, slot.first, slot.second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// TODO: maybe become part of the public llama_kv_cache in the future
|
|
int32_t llama_kv_cache_n_tokens(const llama_kv_cache * kv);
|
|
|
|
int32_t llama_kv_cache_used_cells(const llama_kv_cache * kv);
|
|
|
|
void llama_kv_cache_clear(llama_kv_cache * kv);
|
|
|
|
bool llama_kv_cache_seq_rm(
|
|
llama_kv_cache * kv,
|
|
llama_seq_id seq_id,
|
|
llama_pos p0,
|
|
llama_pos p1);
|
|
|
|
void llama_kv_cache_seq_cp(
|
|
llama_kv_cache * kv,
|
|
llama_seq_id seq_id_src,
|
|
llama_seq_id seq_id_dst,
|
|
llama_pos p0,
|
|
llama_pos p1);
|
|
|
|
void llama_kv_cache_seq_keep(llama_kv_cache * kv, llama_seq_id seq_id);
|
|
|
|
void llama_kv_cache_seq_add(
|
|
llama_kv_cache * kv,
|
|
llama_seq_id seq_id,
|
|
llama_pos p0,
|
|
llama_pos p1,
|
|
llama_pos delta);
|
|
|
|
void llama_kv_cache_seq_div(
|
|
llama_kv_cache * kv,
|
|
llama_seq_id seq_id,
|
|
llama_pos p0,
|
|
llama_pos p1,
|
|
int d);
|
|
|
|
llama_pos llama_kv_cache_seq_pos_max(llama_kv_cache * kv, llama_seq_id seq_id);
|
|
|
|
void llama_kv_cache_defrag(llama_kv_cache * kv);
|
|
|
|
bool llama_kv_cache_can_shift(const llama_kv_cache * kv);
|
|
|
|
//
|
|
// kv cache view
|
|
//
|
|
|
|
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max);
|
|
|
|
void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv);
|