* ggml : remove old quantization functions ggml-ci * ggml : simplify ggml_quantize_chunk ggml-ci * ggml : restrict correctness ggml-ci * ggml : remove hist data from the quantization API ggml-ci * tests : remove hist usage in test-backend-ops ggml-ci * vulkan : remove hist and fix typo
		
			
				
	
	
		
			275 lines
		
	
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			275 lines
		
	
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "ggml.h"
 | |
| 
 | |
| #include <locale.h>
 | |
| #include <assert.h>
 | |
| #include <math.h>
 | |
| #include <cstring>
 | |
| #include <cstdio>
 | |
| #include <cinttypes>
 | |
| #include <unordered_map>
 | |
| #include <queue>
 | |
| #include <string.h>
 | |
| #include <cassert>
 | |
| #include <fstream>
 | |
| #include <string>
 | |
| #include <iterator>
 | |
| #include <algorithm>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
 | |
|     struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
 | |
| 
 | |
|     if (plan.work_size > 0) {
 | |
|         buf.resize(plan.work_size);
 | |
|         plan.work_data = buf.data();
 | |
|     }
 | |
| 
 | |
|     ggml_graph_compute(graph, &plan);
 | |
| }
 | |
| 
 | |
| static float tensor_sum_elements(const ggml_tensor * tensor) {
 | |
|     double sum = 0;
 | |
|     if (tensor->type == GGML_TYPE_F32) {
 | |
|         for (int j = 0; j < tensor->ne[1]; j++) {
 | |
|             for (int k = 0; k < tensor->ne[0]; k++) {
 | |
|                 sum += ((float *) tensor->data)[j*tensor->ne[0] + k];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| static void tensor_dump(const ggml_tensor * tensor, const char * name) {
 | |
|     printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
 | |
|         tensor->type, ggml_type_name(tensor->type),
 | |
|         tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
 | |
|     float sum = tensor_sum_elements(tensor);
 | |
|     printf("Sum of tensor %s is %6.2f\n", name, sum);
 | |
| }
 | |
| 
 | |
| #define TENSOR_DUMP(tensor) tensor_dump(tensor, #tensor)
 | |
| 
 | |
| struct benchmark_params_struct {
 | |
|     int32_t n_threads     = 1;
 | |
|     int32_t n_iterations  = 10;
 | |
| };
 | |
| 
 | |
| static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
 | |
|     fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "options:\n");
 | |
|     fprintf(stderr, "  -h, --help            show this help message and exit\n");
 | |
|     fprintf(stderr, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);
 | |
|     fprintf(stderr, "  -i N, --iter N     number of iterations to use during computation (default: %d)\n", params.n_iterations);
 | |
|     fprintf(stderr, "\n");
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv)  {
 | |
|     struct benchmark_params_struct benchmark_params;
 | |
| 
 | |
|     bool invalid_param = false;
 | |
|     std::string arg;
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
| 
 | |
|         if (arg == "-t" || arg == "--threads") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             benchmark_params.n_threads = std::stoi(argv[i]);
 | |
|         } else if (arg == "-i" || arg == "--iter") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             benchmark_params.n_iterations = std::stoi(argv[i]);
 | |
|         }  else if (arg == "-h" || arg == "--help") {
 | |
|             print_usage(argc, argv, benchmark_params);
 | |
|             exit(0);
 | |
|         }
 | |
|     }
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         print_usage(argc, argv, benchmark_params);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     print_build_info();
 | |
|     printf("Starting Test\n");
 | |
| 
 | |
|     // create the ggml context
 | |
|     struct ggml_context * ctx;
 | |
|     //const int sizex = 4096;
 | |
|     //const int sizey = 11008;
 | |
| 
 | |
| #undef VERBOSE_DEBUGGING
 | |
| #ifndef VERBOSE_DEBUGGING
 | |
|     const int sizey = 4096;
 | |
|     const int sizex = 11008;
 | |
|     const int sizez = 128;
 | |
| #else
 | |
|     /* Working - let's increase size */
 | |
|     const int sizey = 1;
 | |
|     const int sizex = (8*32);
 | |
|     const int sizez = 1;
 | |
| 
 | |
|     /*const int sizey = 1;
 | |
|     const int sizex = 3*(8*32);
 | |
|     const int sizez = 1;*/
 | |
| #endif
 | |
| 
 | |
|     //printf("Memsize required = %i\n", sizex*sizex);
 | |
| 
 | |
|     // TODO: perform the bench for all types or for a user specified type
 | |
|     const ggml_type qtype = GGML_TYPE_Q4_1;
 | |
| 
 | |
|     size_t ctx_size = 0;
 | |
|     ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
 | |
|     ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
 | |
|     ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizez);
 | |
|     ctx_size += ggml_row_size(qtype,         sizex*sizey);
 | |
|     ctx_size += ggml_row_size(qtype,         sizex*sizey);
 | |
|     ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
 | |
|     ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
 | |
|     ctx_size += 1024*1024*16;
 | |
| 
 | |
|     printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /*.mem_size   =*/ ctx_size,
 | |
|         /*.mem_buffer =*/ NULL,
 | |
|         /* no_alloc   =*/ 0
 | |
|     };
 | |
| 
 | |
|     ctx = ggml_init(params);
 | |
|     if (!ctx) {
 | |
|         fprintf(stderr, "%s: ggml_init() failed\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     printf("Creating new tensors\n");
 | |
|     // printf("Creating new tensor m1\n");
 | |
|     struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
 | |
|     ggml_set_f32(m11, 1.0f);
 | |
| 
 | |
|     // printf("Creating new tensor m1\n");
 | |
|     struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
 | |
|     ggml_set_f32(m12, 1.5f);
 | |
| 
 | |
|     // printf("Creating new tensor m2\n");
 | |
|     struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
 | |
|     ggml_set_f32(m2, 2.0f);
 | |
| 
 | |
|     printf("\n------ Test 1 - Matrix Mult via F32 code\n");
 | |
|     // printf("Creating new tensor m11xm2\n");
 | |
|     struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
 | |
| 
 | |
|     // printf("Creating compute graph\n");
 | |
|     struct ggml_cgraph * gf = ggml_new_graph(ctx);
 | |
|     ggml_build_forward_expand(gf, m11xm2);
 | |
| 
 | |
|     printf("n_threads=%i\n", benchmark_params.n_threads);
 | |
| 
 | |
|     TENSOR_DUMP(m11);
 | |
|     TENSOR_DUMP(m2);
 | |
| 
 | |
|     std::vector<uint8_t> work_buffer;
 | |
| 
 | |
|     ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
 | |
| 
 | |
|     TENSOR_DUMP(gf->nodes[0]);
 | |
| 
 | |
|     printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
 | |
| 
 | |
|     int32_t nelements = sizex*sizey;
 | |
| 
 | |
|     // Set up a the benchmark matrices
 | |
|     // printf("Creating new tensor q11 & Running quantize\n");
 | |
|     struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
 | |
|     ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], nullptr);
 | |
| 
 | |
|     // Set up a the compute graph
 | |
|     // printf("Creating new tensor q31\n");
 | |
|     struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
 | |
| 
 | |
|     // printf("Creating compute graph\n");
 | |
|     struct ggml_cgraph * gf31 = ggml_new_graph(ctx);
 | |
|     ggml_build_forward_expand(gf31, q31);
 | |
| 
 | |
|     // Set up a second graph computation to make sure we override the CPU cache lines
 | |
|     // printf("Creating new tensor q12 & Running quantize\n");
 | |
|     struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
 | |
|     ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], nullptr);
 | |
| 
 | |
|     // printf("Creating new tensor q32\n");
 | |
|     struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
 | |
| 
 | |
|     //printf("Creating compute graph\n");
 | |
|     struct ggml_cgraph * gf32 = ggml_new_graph(ctx);
 | |
|     ggml_build_forward_expand(gf32, q32);
 | |
|     printf("n_threads=%i\n", benchmark_params.n_threads);
 | |
| 
 | |
|     const int dimx = sizex;
 | |
|     const int dimy = sizey;
 | |
|     const int dimz = sizez;
 | |
|     long long int flops_per_dot_product = dimy + dimy;
 | |
|     long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
 | |
|     printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
 | |
| 
 | |
| 
 | |
|     // Let's use the F32 result from above as a reference for the quantized multiplication
 | |
|     float sum_of_F32_reference = tensor_sum_elements(gf->nodes[0]);
 | |
| 
 | |
|     printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
 | |
|     printf("=====================================================================================\n");
 | |
| 
 | |
|     double  gflops_sum = 0;
 | |
|     for (int i=0;i<benchmark_params.n_iterations ;i++) {
 | |
| 
 | |
|         long long int start = ggml_time_us();
 | |
|         //printf("Running ggml_graph_compute\n");
 | |
|         ggml_graph_compute_helper(work_buffer, gf31, benchmark_params.n_threads);
 | |
| 
 | |
|         long long int stop = ggml_time_us();
 | |
|         long long int usec = stop-start;
 | |
|         double gflops = (double)(flops_per_matrix)/usec/1000.0;
 | |
|         gflops_sum += gflops;
 | |
|         printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n",
 | |
|             i,
 | |
|             benchmark_params.n_threads,
 | |
|             sizex, sizey, sizez, flops_per_matrix,
 | |
|             usec,gflops);
 | |
| 
 | |
| #ifdef VERBOSE_DEBUGGING
 | |
|         TENSOR_DUMP("res",gf31.nodes[0])
 | |
| #endif
 | |
| 
 | |
|         // Check that the matrix multiplication result is in the right ballpark
 | |
|         // We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
 | |
|         float sum_of_Q4_result = tensor_sum_elements(gf31->nodes[0]);
 | |
|         float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
 | |
|         float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; //  Let's accept an epsilon of 10^-6
 | |
| 
 | |
|         if (delta > allowed_delta)  {
 | |
|             printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
 | |
|                 sum_of_F32_reference,
 | |
|                 sum_of_Q4_result,
 | |
|                 delta,
 | |
|                 allowed_delta
 | |
|             );
 | |
|             exit(0);
 | |
|         }
 | |
| 
 | |
|         // Running a different graph computation to make sure we override the CPU cache lines
 | |
|         ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads);
 | |
|     }
 | |
|     printf("\n");
 | |
|     printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
 | |
|     printf("=====================================================================================\n");
 | |
| }
 |