1248 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1248 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "ggml-alloc.h"
 | |
| #include "ggml-backend.h"
 | |
| #include "common.h"
 | |
| #include "train.h"
 | |
| #include "llama.h"
 | |
| #include <unordered_map>
 | |
| #include <vector>
 | |
| #include <cassert>
 | |
| #include <climits>
 | |
| #include <cstring>
 | |
| #include <cstdarg>
 | |
| #include <ctime>
 | |
| #include <random>
 | |
| #include <stdexcept>
 | |
| #include <algorithm>
 | |
| #include <string>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| struct my_llama_hparams {
 | |
|     uint32_t n_vocab = 32000;
 | |
|     uint32_t n_ctx   = 512;
 | |
|     uint32_t n_embd  = 4096;
 | |
|     uint32_t n_head  = 32;
 | |
|     uint32_t n_layer = 32;
 | |
|     uint32_t n_rot   = 64;
 | |
|     uint32_t n_ff    = 11008;
 | |
| 
 | |
|     // float f_norm_eps     = 1e-5f; // falcon
 | |
|     float f_norm_rms_eps = 1e-5f; // llama
 | |
| 
 | |
|     float rope_freq_base  = 10000.0f;
 | |
|     float rope_freq_scale = 1.0f;
 | |
| };
 | |
| 
 | |
| struct my_llama_layer {
 | |
|     // normalization
 | |
|     struct ggml_tensor * attention_norm;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * wq;
 | |
|     struct ggml_tensor * wk;
 | |
|     struct ggml_tensor * wv;
 | |
|     struct ggml_tensor * wo;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * ffn_norm;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * ffn_gate; // w1
 | |
|     struct ggml_tensor * ffn_down; // w2
 | |
|     struct ggml_tensor * ffn_up;   // w3
 | |
| };
 | |
| 
 | |
| struct my_llama_model {
 | |
|     struct ggml_context * ctx = NULL;
 | |
|     ggml_backend_buffer_t data = NULL;
 | |
| 
 | |
|     my_llama_hparams hparams;
 | |
| 
 | |
|     struct ggml_tensor * tok_embeddings;
 | |
| 
 | |
|     struct ggml_tensor * norm;
 | |
|     struct ggml_tensor * output;
 | |
| 
 | |
|     std::vector<my_llama_layer> layers;
 | |
| };
 | |
| 
 | |
| // gguf constants (sync with gguf.py)
 | |
| static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL     = "train_model";
 | |
| static const char * LLM_KV_TRAINING_TYPE                 = "training.type";
 | |
| 
 | |
| static const char * LLM_KV_GENERAL_ARCHITECTURE        = "general.architecture";
 | |
| static const char * LLM_KV_GENERAL_FILE_TYPE           = "general.file_type";
 | |
| 
 | |
| static const char * LLM_KV_CONTEXT_LENGTH              = "%s.context_length";
 | |
| static const char * LLM_KV_EMBEDDING_LENGTH            = "%s.embedding_length";
 | |
| static const char * LLM_KV_BLOCK_COUNT                 = "%s.block_count";
 | |
| static const char * LLM_KV_FEED_FORWARD_LENGTH         = "%s.feed_forward_length";
 | |
| static const char * LLM_KV_ATTENTION_HEAD_COUNT        = "%s.attention.head_count";
 | |
| static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
 | |
| static const char * LLM_KV_ROPE_DIMENSION_COUNT        = "%s.rope.dimension_count";
 | |
| static const char * LLM_KV_ROPE_FREQ_BASE              = "%s.rope.freq_base"; // TODO load in llama.cpp
 | |
| static const char * LLM_KV_ROPE_SCALE_LINEAR           = "%s.rope.scale_linear";
 | |
| 
 | |
| static const char * LLM_KV_TOKENIZER_MODEL             = "tokenizer.ggml.model";
 | |
| static const char * LLM_KV_TOKENIZER_LIST              = "tokenizer.ggml.tokens";
 | |
| static const char * LLM_KV_TOKENIZER_TOKEN_TYPE        = "tokenizer.ggml.token_type";
 | |
| static const char * LLM_KV_TOKENIZER_SCORES            = "tokenizer.ggml.scores";
 | |
| static const char * LLM_KV_TOKENIZER_MERGES            = "tokenizer.ggml.merges";
 | |
| static const char * LLM_KV_TOKENIZER_BOS_ID            = "tokenizer.ggml.bos_token_id";
 | |
| static const char * LLM_KV_TOKENIZER_EOS_ID            = "tokenizer.ggml.eos_token_id";
 | |
| static const char * LLM_KV_TOKENIZER_UNK_ID            = "tokenizer.ggml.unknown_token_id";
 | |
| static const char * LLM_KV_TOKENIZER_SEP_ID            = "tokenizer.ggml.seperator_token_id";
 | |
| static const char * LLM_KV_TOKENIZER_PAD_ID            = "tokenizer.ggml.padding_token_id";
 | |
| 
 | |
| static const char * LLM_TENSOR_TOKEN_EMBD    = "token_embd";
 | |
| static const char * LLM_TENSOR_OUTPUT_NORM   = "output_norm";
 | |
| static const char * LLM_TENSOR_OUTPUT        = "output";
 | |
| static const char * LLM_TENSOR_ATTN_NORM     = "blk.%d.attn_norm";
 | |
| static const char * LLM_TENSOR_ATTN_Q        = "blk.%d.attn_q";
 | |
| static const char * LLM_TENSOR_ATTN_K        = "blk.%d.attn_k";
 | |
| static const char * LLM_TENSOR_ATTN_V        = "blk.%d.attn_v";
 | |
| static const char * LLM_TENSOR_ATTN_OUT      = "blk.%d.attn_output";
 | |
| static const char * LLM_TENSOR_FFN_NORM      = "blk.%d.ffn_norm";
 | |
| static const char * LLM_TENSOR_FFN_GATE      = "blk.%d.ffn_gate";
 | |
| static const char * LLM_TENSOR_FFN_DOWN      = "blk.%d.ffn_down";
 | |
| static const char * LLM_TENSOR_FFN_UP        = "blk.%d.ffn_up";
 | |
| 
 | |
| static void print_params(struct my_llama_hparams * params) {
 | |
|     printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
 | |
|     printf("%s: n_ctx:   %u\n", __func__, params->n_ctx);
 | |
|     printf("%s: n_embd:  %u\n", __func__, params->n_embd);
 | |
|     printf("%s: n_head:  %u\n", __func__, params->n_head);
 | |
|     printf("%s: n_ff:    %u\n", __func__, params->n_ff);
 | |
|     printf("%s: n_layer: %u\n", __func__, params->n_layer);
 | |
|     printf("%s: n_rot:   %u\n", __func__, params->n_rot);
 | |
| }
 | |
| 
 | |
| static void set_param_model(struct my_llama_model * model) {
 | |
|     const auto& hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     struct ggml_context* ctx = model->ctx;
 | |
| 
 | |
|     ggml_set_param(ctx, model->tok_embeddings);
 | |
|     ggml_set_param(ctx, model->norm);
 | |
|     ggml_set_param(ctx, model->output);
 | |
| 
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         ggml_set_param(ctx, layer.attention_norm);
 | |
|         ggml_set_param(ctx, layer.wq);
 | |
|         ggml_set_param(ctx, layer.wk);
 | |
|         ggml_set_param(ctx, layer.wv);
 | |
|         ggml_set_param(ctx, layer.wo);
 | |
|         ggml_set_param(ctx, layer.ffn_norm);
 | |
|         ggml_set_param(ctx, layer.ffn_gate);
 | |
|         ggml_set_param(ctx, layer.ffn_down);
 | |
|         ggml_set_param(ctx, layer.ffn_up);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void init_model(struct my_llama_model * model) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_embd  = hparams.n_embd;
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
|     const uint32_t n_vocab = hparams.n_vocab;
 | |
|     const uint32_t n_ff    = hparams.n_ff;
 | |
| 
 | |
| 
 | |
|     std::vector<char> tn_buf;
 | |
|     tn_buf.resize(GGML_MAX_NAME);
 | |
|     auto tn = [&tn_buf](const char * key) -> const char * {
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
 | |
|         return tn_buf.data();
 | |
|     };
 | |
|     auto tni = [&tn_buf](const char * key, int bid) -> const char * {
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), key, bid);
 | |
|         std::string s = tn_buf.data();
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
 | |
|         return tn_buf.data();
 | |
|     };
 | |
| 
 | |
|     // context for model tensors without their data
 | |
|     struct ggml_init_params ctx_model_params;
 | |
|     ctx_model_params.mem_size   = ggml_tensor_overhead()*2*(6 + n_layer*18);
 | |
|     ctx_model_params.mem_buffer = NULL;
 | |
|     ctx_model_params.no_alloc   = true;
 | |
| 
 | |
|     struct ggml_context * ctx = ggml_init(ctx_model_params);
 | |
|     model->ctx = ctx;
 | |
| 
 | |
|     model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
 | |
|     model->norm           = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
|     model->output         = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
 | |
| 
 | |
|     ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD));
 | |
|     ggml_set_name(model->norm,           tn(LLM_TENSOR_OUTPUT_NORM));
 | |
|     ggml_set_name(model->output,         tn(LLM_TENSOR_OUTPUT));
 | |
| 
 | |
|     model->layers.resize(n_layer);
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|         layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | |
|         layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | |
|         layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | |
|         layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | |
| 
 | |
|         layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|         layer.ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);
 | |
|         layer.ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_F32,   n_ff, n_embd);
 | |
|         layer.ffn_up   = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);
 | |
| 
 | |
|         ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i));
 | |
| 
 | |
|         ggml_set_name(layer.wq,             tni(LLM_TENSOR_ATTN_Q, i));
 | |
|         ggml_set_name(layer.wk,             tni(LLM_TENSOR_ATTN_K, i));
 | |
|         ggml_set_name(layer.wv,             tni(LLM_TENSOR_ATTN_V, i));
 | |
|         ggml_set_name(layer.wo,             tni(LLM_TENSOR_ATTN_OUT, i));
 | |
| 
 | |
|         ggml_set_name(layer.ffn_norm,       tni(LLM_TENSOR_FFN_NORM, i));
 | |
| 
 | |
|         ggml_set_name(layer.ffn_gate,       tni(LLM_TENSOR_FFN_GATE, i));
 | |
|         ggml_set_name(layer.ffn_down,       tni(LLM_TENSOR_FFN_DOWN, i));
 | |
|         ggml_set_name(layer.ffn_up,         tni(LLM_TENSOR_FFN_UP, i));
 | |
|     }
 | |
| 
 | |
|     set_param_model(model);
 | |
| 
 | |
|     // allocate data
 | |
|     model->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
 | |
| }
 | |
| 
 | |
| static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
 | |
| 
 | |
|     randomize_tensor_normal(model->tok_embeddings, rnd);
 | |
|     randomize_tensor_normal(model->norm,           rnd);
 | |
|     randomize_tensor_normal(model->output,         rnd);
 | |
| 
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
|         randomize_tensor_normal(layer.attention_norm, rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.wq, rnd);
 | |
|         randomize_tensor_normal(layer.wk, rnd);
 | |
|         randomize_tensor_normal(layer.wv, rnd);
 | |
|         randomize_tensor_normal(layer.wo, rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.ffn_norm, rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.ffn_gate, rnd);
 | |
|         randomize_tensor_normal(layer.ffn_down, rnd);
 | |
|         randomize_tensor_normal(layer.ffn_up,   rnd);
 | |
|     }
 | |
| 
 | |
|     free_random_normal_distribution(rnd);
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * llama_build_train_graphs(
 | |
|         struct my_llama_model * model,
 | |
|         ggml_gallocr_t          alloc,
 | |
|         struct ggml_context   * ctx,
 | |
|         struct ggml_cgraph    * gf,
 | |
|         struct ggml_cgraph    * gb,
 | |
|         struct ggml_cgraph    * gb_tmp,
 | |
|         struct ggml_tensor  * * logits,
 | |
|         struct ggml_tensor    * tokens_input,
 | |
|         struct ggml_tensor    * targets,
 | |
|         const  int              n_tokens,
 | |
|         const  int              n_batch,
 | |
|         const  bool             enable_flash_attn,
 | |
|         const  bool             enable_checkpointing,
 | |
|         const  bool             measure_only) {
 | |
| 
 | |
|     ggml_set_scratch(ctx, { 0, 0, nullptr, });
 | |
|     const int n_past = 0;
 | |
|     const int N = n_tokens;
 | |
|     const auto & hparams = model->hparams;
 | |
|     const int n_ctx      = hparams.n_ctx;
 | |
|     const int n_vocab    = hparams.n_vocab;
 | |
|     const int n_embd     = hparams.n_embd;
 | |
|     const int n_layer    = hparams.n_layer;
 | |
|     const int n_head     = hparams.n_head;
 | |
|     const int n_rot      = hparams.n_rot;
 | |
|     const int n_ff       = hparams.n_ff;
 | |
|     const float f_norm_rms_eps  = hparams.f_norm_rms_eps;
 | |
|     const float rope_freq_base  = hparams.rope_freq_base;
 | |
|     const float rope_freq_scale = hparams.rope_freq_scale;
 | |
| 
 | |
|     auto set_name = [](struct ggml_tensor * t, const char * n) {
 | |
|         ggml_set_name(t, n);
 | |
|         if (t->grad) {
 | |
|             ggml_format_name(t->grad, "%s->grad", n);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // KQ_pos - contains the positions
 | |
|     struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
 | |
|     ggml_set_input(KQ_pos);
 | |
| 
 | |
|     // rope has so much parameters that we make a custom function for it
 | |
|     auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
 | |
|                 (struct ggml_tensor * t) -> struct ggml_tensor * {
 | |
|         // not capturing these, to silcence warnings
 | |
|         const int rope_mode = 0;
 | |
| 
 | |
|         return ggml_rope_custom(
 | |
|             ctx, t, KQ_pos, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
 | |
|         );
 | |
|     };
 | |
| 
 | |
|     set_name(tokens_input, "tokens_input");
 | |
|     set_name(targets,      "targets");
 | |
| 
 | |
|     GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
 | |
|     struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch);  set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
 | |
|     struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
 | |
| 
 | |
|     struct ggml_tensor * cur = t01;
 | |
| 
 | |
|     std::vector<struct ggml_tensor *> checkpoints;
 | |
|     checkpoints.push_back(tokens_input);
 | |
|     checkpoints.push_back(targets);
 | |
|     checkpoints.push_back(t00);
 | |
|     checkpoints.push_back(t01);
 | |
| 
 | |
|     const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
 | |
| 
 | |
|     for (int il = 0; il < n_layer; ++il) {
 | |
|         struct my_llama_layer & layer = model->layers[il];
 | |
|         struct ggml_tensor * t02 = ggml_rms_norm     (ctx, cur, f_norm_rms_eps);                    set_name(t02, "t02");     assert_shape_2d(t02, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t03 = ggml_repeat       (ctx, layer.attention_norm, t02);              set_name(t03, "t03");     assert_shape_2d(t03, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t04 = ggml_mul          (ctx, t03, t02);                               set_name(t04, "t04");     assert_shape_2d(t04, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t05 = ggml_mul_mat      (ctx, layer.wq, t04);                          set_name(t05, "t05");     assert_shape_2d(t05, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t06 = ggml_reshape_4d   (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06");     assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t07 = rope              (t06);                                         set_name(t07, "t07");     assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t08 = ggml_mul_mat      (ctx, layer.wk, t04);                          set_name(t08, "t08");     assert_shape_2d(t08, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t09 = ggml_reshape_4d   (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09");     assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t10 = rope              (t09);                                         set_name(t10, "t10");     assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t11 = ggml_mul_mat      (ctx, t04, layer.wv);                          set_name(t11, "t11");     assert_shape_2d(t11, N*n_batch, n_embd);
 | |
|         struct ggml_tensor * t12 = ggml_reshape_4d   (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12");     assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head);
 | |
|         struct ggml_tensor * t13 = ggml_permute      (ctx, t07, 0, 2, 1, 3);                        set_name(t13, "t13");     assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch);
 | |
|         struct ggml_tensor * t14 = ggml_permute      (ctx, t10, 0, 2, 1, 3);                        set_name(t14, "t14");     assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch);
 | |
|         struct ggml_tensor * t15 = ggml_permute      (ctx, t12, 0, 3, 1, 2);                        set_name(t15, "t15");     assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
 | |
|         struct ggml_tensor * t16;
 | |
|         if (enable_flash_attn) {
 | |
|             t16 = ggml_flash_attn(ctx, t13, t14, t15, true);                                        set_name(t16, "t16");     assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
 | |
|         } else {
 | |
|             struct ggml_tensor * t16_0 = ggml_mul_mat              (ctx, t14, t13);                 set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
 | |
|             struct ggml_tensor * t16_1 = ggml_scale_inplace        (ctx, t16_0, kv_scale);          set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
 | |
|             struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past);            set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
 | |
|             struct ggml_tensor * t16_3 = ggml_soft_max_inplace     (ctx, t16_2);                    set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
 | |
|             t16 = ggml_mul_mat(ctx, t15, t16_3);                                                    set_name(t16, "t16");     assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
 | |
|         }
 | |
|         struct ggml_tensor * t17 = ggml_permute      (ctx, t16, 0, 2, 1, 3);                        set_name(t17, "t17");     assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t18 = ggml_cont         (ctx, t17);                                    set_name(t18, "t18");     assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t19 = ggml_reshape_2d   (ctx, t18, n_embd, N*n_batch);                 set_name(t19, "t19");     assert_shape_2d(t19, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t20 = ggml_mul_mat      (ctx, layer.wo, t19);                          set_name(t20, "t20");     assert_shape_2d(t20, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t21 = ggml_add          (ctx, t20, cur);                               set_name(t21, "t21");     assert_shape_2d(t21, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t22 = ggml_rms_norm     (ctx, t21, f_norm_rms_eps);                    set_name(t22, "t22");     assert_shape_2d(t22, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t23 = ggml_repeat       (ctx, layer.ffn_norm, t22);                    set_name(t23, "t23");     assert_shape_2d(t23, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t24 = ggml_mul          (ctx, t23, t22);                               set_name(t24, "t24");     assert_shape_2d(t24, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t25 = ggml_mul_mat      (ctx, layer.ffn_up, t24);                      set_name(t25, "t25");     assert_shape_2d(t25, n_ff, N*n_batch);
 | |
|         struct ggml_tensor * t26 = ggml_mul_mat      (ctx, layer.ffn_gate, t24);                    set_name(t26, "t26");     assert_shape_2d(t26, n_ff, N*n_batch);
 | |
|         struct ggml_tensor * t27 = ggml_silu         (ctx, t26);                                    set_name(t27, "t27");     assert_shape_2d(t27, n_ff, N*n_batch);
 | |
|         struct ggml_tensor * t28 = ggml_mul          (ctx, t27, t25);                               set_name(t28, "t28");     assert_shape_2d(t28, n_ff, N*n_batch);
 | |
|         struct ggml_tensor * t29 = ggml_mul_mat      (ctx, layer.ffn_down, t28);                    set_name(t29, "t29");     assert_shape_2d(t29, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t30 = ggml_add          (ctx, t29, t21);                               set_name(t30, "t30");     assert_shape_2d(t30, n_embd, N*n_batch);
 | |
|         cur = t30;
 | |
|         checkpoints.push_back(cur);
 | |
|     }
 | |
|     struct ggml_tensor * t31   = ggml_rms_norm          (ctx, cur, f_norm_rms_eps);                 set_name(t31, "t31");     assert_shape_2d(t31, n_embd, N*n_batch);
 | |
|     struct ggml_tensor * t32   = ggml_repeat            (ctx, model->norm, t31);                    set_name(t32, "t32");     assert_shape_2d(t32, n_embd, N*n_batch);
 | |
|     struct ggml_tensor * t33   = ggml_mul               (ctx, t32, t31);                            set_name(t33, "t33");     assert_shape_2d(t33, n_embd, N*n_batch);
 | |
|     struct ggml_tensor * t34   = ggml_mul_mat           (ctx, model->output, t33);                  set_name(t34, "t34");     assert_shape_2d(t34, n_vocab, N*n_batch);
 | |
|     struct ggml_tensor * t35   = ggml_reshape_3d        (ctx, t34, n_vocab, N, n_batch);            set_name(t35, "t35");     assert_shape_3d(t35, n_vocab, N, n_batch);
 | |
|     struct ggml_tensor * t36   = ggml_cross_entropy_loss(ctx, t35, targets);                        set_name(t36, "t36");     assert_shape_1d(t36, 1);
 | |
| 
 | |
|     checkpoints.push_back(t31);
 | |
|     checkpoints.push_back(t32);
 | |
|     checkpoints.push_back(t33);
 | |
|     checkpoints.push_back(t34);
 | |
|     checkpoints.push_back(t35);
 | |
|     checkpoints.push_back(t36);
 | |
| 
 | |
|     ggml_build_forward_expand(gf, t36);
 | |
| 
 | |
|     if (enable_checkpointing) {
 | |
|         ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
 | |
|     } else {
 | |
|         ggml_graph_cpy(gf, gb);
 | |
|         ggml_build_backward_expand(ctx, gf, gb, true);
 | |
|     }
 | |
| 
 | |
|     if (alloc) {
 | |
|         // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
 | |
|         int n_leafs_before = gb->n_leafs;
 | |
|         int n_nodes_before = gb->n_nodes;
 | |
|         // output tensors
 | |
|         ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
 | |
|         ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
 | |
|         // input gradient
 | |
|         ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
 | |
|         // KQ_pos
 | |
|         ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
 | |
|         GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
 | |
|         ggml_set_input(t36->grad);
 | |
| 
 | |
|         // allocating checkpoints in one block to reduce memory fragmentation
 | |
|         // note: they will be freed in reverse order
 | |
|         for (int i = 0; i < (int) checkpoints.size(); ++i) {
 | |
|             if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
 | |
|                 ggml_set_input(checkpoints[i]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         //int n_leafs_after = gb->n_leafs;
 | |
|         //int n_nodes_after = gb->n_nodes;
 | |
|         if (measure_only) {
 | |
|             // FIXME: will still allocate
 | |
|             ggml_gallocr_reserve(alloc, gb);
 | |
|         } else {
 | |
|             ggml_gallocr_alloc_graph(alloc, gb);
 | |
| 
 | |
|             if (!measure_only) {
 | |
|                 int * data = (int *) KQ_pos->data;
 | |
|                 for (int i = 0; i < N; ++i) {
 | |
|                     data[i] = n_past + i;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // remove the additional nodes and leafs
 | |
|         for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
 | |
|             gb->leafs[i] = NULL;
 | |
|         }
 | |
|         for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
 | |
|             gb->nodes[i] = NULL;
 | |
|         }
 | |
|         gb->n_leafs = n_leafs_before;
 | |
|         gb->n_nodes = n_nodes_before;
 | |
|     }
 | |
| 
 | |
|     *logits = t35;
 | |
|     return t36;
 | |
| }
 | |
| 
 | |
| #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
 | |
| do { \
 | |
|     const std::string skey(key); \
 | |
|     const int kid = gguf_find_key(ctx, skey.c_str()); \
 | |
|     if (kid >= 0) { \
 | |
|         enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
 | |
|         if (ktype != (type)) { \
 | |
|             die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
 | |
|         } \
 | |
|         (dst) = func(ctx, kid); \
 | |
|     } else if (req) { \
 | |
|         die_fmt("key not found in model: %s", skey.c_str()); \
 | |
|     } \
 | |
| } while (0)
 | |
| 
 | |
| static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
 | |
|     // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
 | |
|     std::string arch;
 | |
| 
 | |
|     std::vector<char> keybuf;
 | |
|     keybuf.resize(512);
 | |
|     auto kv = [&arch, &keybuf](const char * key) -> const char * {
 | |
|         snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
 | |
|         return keybuf.data();
 | |
|     };
 | |
| 
 | |
|     std::vector<char> tn_buf;
 | |
|     tn_buf.resize(GGML_MAX_NAME);
 | |
|     auto tn = [&tn_buf](const char * key) -> const char * {
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
 | |
|         return tn_buf.data();
 | |
|     };
 | |
|     auto tni = [&tn_buf](const char * key, int bid) -> const char * {
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), key, bid);
 | |
|         std::string s = tn_buf.data();
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
 | |
|         return tn_buf.data();
 | |
|     };
 | |
| 
 | |
|     GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
 | |
|     GGML_ASSERT(arch == "llama");
 | |
| 
 | |
|     uint32_t ftype_u;
 | |
|     GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
 | |
|     GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
 | |
| 
 | |
|     // n_ctx was not saved in earlier checkpoint file versions, so we make it optional here
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_ctx,   gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
 | |
| 
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_embd,  gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_ff,    gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_head,  gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
 | |
| 
 | |
|     model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head;
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_rot,   gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
 | |
| 
 | |
|     float rope_freq_scale = 1.0f;
 | |
|     GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
 | |
|     GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
 | |
|     GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
 | |
|     if (rope_freq_scale != 1.0f) {
 | |
|         model->hparams.rope_freq_scale = 1.0f / rope_freq_scale;
 | |
|     }
 | |
| 
 | |
|     init_model(model);
 | |
| 
 | |
|     copy_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
 | |
|     copy_tensor_by_name(model->norm,           f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
 | |
|     copy_tensor_by_name(model->output,         f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
 | |
| 
 | |
|     for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         copy_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
 | |
|         copy_tensor_by_name(layer.wq,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
 | |
|         copy_tensor_by_name(layer.wk,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
 | |
|         copy_tensor_by_name(layer.wv,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
 | |
|         copy_tensor_by_name(layer.wo,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
 | |
|         copy_tensor_by_name(layer.ffn_norm,       f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
 | |
|         copy_tensor_by_name(layer.ffn_gate,       f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
 | |
|         copy_tensor_by_name(layer.ffn_down,       f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
 | |
|         copy_tensor_by_name(layer.ffn_up,         f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
 | |
|     const char * arch = "llama";
 | |
|     enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
 | |
| 
 | |
|     std::vector<char> keybuf;
 | |
|     keybuf.resize(512);
 | |
|     auto kv = [arch, &keybuf](const char * key) -> const char * {
 | |
|         snprintf(keybuf.data(), keybuf.size(), key, arch);
 | |
|         return keybuf.data();
 | |
|     };
 | |
| 
 | |
|     // set arch
 | |
|     gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
 | |
|     gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
 | |
| 
 | |
|     // set hparams
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH),              model->hparams.n_ctx                  );
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH),            model->hparams.n_embd                 );
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH),         model->hparams.n_ff                   );
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT),        model->hparams.n_head                 );
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT),                 model->hparams.n_layer                );
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT),        model->hparams.n_rot                  );
 | |
| 
 | |
|     gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps         );
 | |
|     gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE),              model->hparams.rope_freq_base         ); // TODO load in llama.cpp
 | |
|     gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR),           1.0f / model->hparams.rope_freq_scale );
 | |
| 
 | |
|     // set vocab by copying from vocab_model gguf file
 | |
|     {
 | |
|         struct gguf_init_params params = {
 | |
|             /*.no_alloc = */ false,
 | |
|             /*.ctx      = */ NULL,
 | |
|         };
 | |
|         struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params);
 | |
| 
 | |
|         const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
 | |
|         if (token_idx == -1) {
 | |
|             die("cannot find tokenizer vocab in model file");
 | |
|         }
 | |
|         const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);
 | |
| 
 | |
|         const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
 | |
|         if (score_idx == -1) {
 | |
|             die("cannot find tokenizer scores in model file");
 | |
|         }
 | |
| 
 | |
|         const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);
 | |
| 
 | |
|         const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
 | |
|         if (toktype_idx == -1) {
 | |
|             die("cannot find token type list in GGUF file");
 | |
|         }
 | |
| 
 | |
|         const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);
 | |
| 
 | |
|         std::string tokenizer_name;
 | |
|         GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
 | |
| 
 | |
|         gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str());
 | |
|         gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab);
 | |
|         gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab);
 | |
| 
 | |
|         int32_t special_bos_id = 1;
 | |
|         int32_t special_eos_id = 2;
 | |
|         int32_t special_unk_id = 0;
 | |
|         int32_t special_sep_id = -1;
 | |
|         int32_t special_pad_id = -1;
 | |
|         if (tokenizer_name == "llama") {
 | |
|             // default special tokens
 | |
|             special_bos_id = 1;
 | |
|             special_eos_id = 2;
 | |
|             special_unk_id = 0;
 | |
|             special_sep_id = -1;
 | |
|             special_pad_id = -1;
 | |
|         } else if (tokenizer_name == "gpt2") {
 | |
|             // read and copy bpe merges
 | |
|             const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
 | |
|             if (merges_keyidx == -1) {
 | |
|                 die("cannot find tokenizer merges in model file");
 | |
|             }
 | |
| 
 | |
|             const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);
 | |
| 
 | |
|             std::vector<const char*> merges;
 | |
|             merges.resize(n_merges);
 | |
|             for (int i = 0; i < n_merges; i++) {
 | |
|                 merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i);
 | |
|             }
 | |
|             gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges);
 | |
| 
 | |
|             // default special tokens
 | |
|             special_bos_id = 11;
 | |
|             special_eos_id = 11;
 | |
|             special_unk_id = -1;
 | |
|             special_sep_id = -1;
 | |
|             special_pad_id = -1;
 | |
|         } else {
 | |
|             fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
 | |
|             fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__);
 | |
|         }
 | |
| 
 | |
|         std::vector<const char*> tokens;
 | |
|         tokens.resize(n_vocab);
 | |
|         for (uint32_t i = 0; i < n_vocab; i++) {
 | |
|             tokens[i] = gguf_get_arr_str(vctx, token_idx, i);
 | |
|         }
 | |
|         gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab);
 | |
| 
 | |
|         GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
 | |
|         GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
 | |
|         GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
 | |
|         GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
 | |
|         GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
 | |
| 
 | |
|         gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id);
 | |
|         gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id);
 | |
|         gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id);
 | |
|         gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id);
 | |
|         gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id);
 | |
| 
 | |
|         gguf_free(vctx);
 | |
|     }
 | |
| 
 | |
|     // add tensors
 | |
|     gguf_add_tensor(fctx, model->tok_embeddings);
 | |
|     gguf_add_tensor(fctx, model->norm);
 | |
|     gguf_add_tensor(fctx, model->output);
 | |
|     for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
| 
 | |
|         gguf_add_tensor(fctx, layer.attention_norm);
 | |
|         gguf_add_tensor(fctx, layer.wq);
 | |
|         gguf_add_tensor(fctx, layer.wk);
 | |
|         gguf_add_tensor(fctx, layer.wv);
 | |
|         gguf_add_tensor(fctx, layer.wo);
 | |
|         gguf_add_tensor(fctx, layer.ffn_norm);
 | |
|         gguf_add_tensor(fctx, layer.ffn_gate);
 | |
|         gguf_add_tensor(fctx, layer.ffn_down);
 | |
|         gguf_add_tensor(fctx, layer.ffn_up);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
 | |
|     printf("%s: saving to %s\n", __func__, filename);
 | |
|     struct gguf_context * fctx = gguf_init_empty();
 | |
| 
 | |
|     save_llama_model_gguf(fctx, fn_vocab_model, model);
 | |
| 
 | |
|     // write file
 | |
|     const bool only_meta = false;
 | |
|     gguf_write_to_file(fctx, filename, only_meta);
 | |
|     gguf_free(fctx);
 | |
| }
 | |
| 
 | |
| static void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct train_state * train) {
 | |
|     load_llama_model_gguf(fctx, f_ggml_ctx, model);
 | |
|     if (load_train_state_gguf(fctx, f_ggml_ctx, train)) {
 | |
|         std::string train_type = LLM_KV_TRAINING_TYPE_TRAIN_MODEL;
 | |
|         GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
 | |
|         GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
 | |
|     } else {
 | |
|         printf("%s: loaded llama model as checkpoint\n", __func__);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
 | |
|     gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
 | |
|     save_llama_model_gguf(fctx, fn_vocab_model, model);
 | |
|     save_train_state_gguf(fctx, train);
 | |
| }
 | |
| 
 | |
| static bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct train_state * train) {
 | |
|     struct ggml_context * f_ggml_ctx;
 | |
|     struct gguf_init_params params;
 | |
|     params.no_alloc = false;
 | |
|     params.ctx = &f_ggml_ctx;
 | |
|     struct gguf_context * fctx = gguf_init_from_file(filename, params);
 | |
|     if (fctx == NULL) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     load_checkpoint_gguf(fctx, f_ggml_ctx, model, train);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
 | |
|     printf("%s: saving to %s\n", __func__, filename);
 | |
|     struct gguf_context * fctx = gguf_init_empty();
 | |
| 
 | |
|     save_checkpoint_gguf(fctx, fn_vocab_model, model, train);
 | |
| 
 | |
|     // write file
 | |
|     const bool only_meta = false;
 | |
|     gguf_write_to_file(fctx, filename, only_meta);
 | |
|     gguf_free(fctx);
 | |
| }
 | |
| 
 | |
| struct train_params {
 | |
|     struct train_params_common common;
 | |
| 
 | |
|     const char * fn_vocab_model;
 | |
|     const char * fn_model_out;
 | |
| 
 | |
|     bool only_write_model;
 | |
| 
 | |
|     int n_ctx;
 | |
|     int n_embd;
 | |
|     int n_head;
 | |
|     int n_layer;
 | |
|     int n_ff;
 | |
| 
 | |
|     float f_norm_rms_eps;
 | |
|     float rope_freq_base;
 | |
|     float rope_freq_scale;
 | |
| };
 | |
| 
 | |
| static struct train_params get_default_train_params() {
 | |
|     struct train_params params;
 | |
|     params.common = get_default_train_params_common();
 | |
|     params.fn_vocab_model    = "ggml-vic7b-uncensored-q4_0.bin";
 | |
|     params.fn_model_out      = "ggml-checkpoint-f32.bin";
 | |
| 
 | |
|     params.only_write_model = false;
 | |
| 
 | |
|     params.n_ctx      =  128;
 | |
|     params.n_embd     =  256;
 | |
|     params.n_head     =    8;
 | |
|     params.n_layer    =   16;
 | |
|     params.n_ff       =  768;
 | |
| 
 | |
|     params.f_norm_rms_eps  = 1e-5f;
 | |
|     params.rope_freq_base  = 10000.0f;
 | |
|     params.rope_freq_scale = 1.0f;
 | |
| 
 | |
|     return params;
 | |
| }
 | |
| 
 | |
| static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
 | |
|     fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "options:\n");
 | |
|     fprintf(stderr, "  -h, --help                 show this help message and exit\n");
 | |
| 
 | |
|     fprintf(stderr, "  --vocab-model FNAME        model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
 | |
|     fprintf(stderr, "  --model-out FNAME          path to save ggml model (default '%s')\n", params->fn_model_out);
 | |
|     fprintf(stderr, "  --only-write-model         only save llama model, don't do any training. use this if you only want to convert a checkpoint to a model.\n");
 | |
|     fprintf(stderr, "  --embd N                   Embedding size used for new models (default %d)\n", params->n_embd);
 | |
|     fprintf(stderr, "  --ff N                     Feedforward size used for new models. (default %d)\n", params->n_ff);
 | |
|     fprintf(stderr, "  --head N                   Number of heads for new models (default %d)\n", params->n_head);
 | |
|     fprintf(stderr, "  --layer N                  Number of layers for new models (default %d)\n", params->n_layer);
 | |
|     fprintf(stderr, "  --norm-rms-eps F           RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
 | |
|     fprintf(stderr, "  --rope-freq-base F         Frequency base for ROPE (default %f)\n", params->rope_freq_base);
 | |
|     fprintf(stderr, "  --rope-freq-scale F        Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
 | |
| 
 | |
|     print_common_train_usage(argc, argv, ¶ms->common);
 | |
| }
 | |
| 
 | |
| static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
 | |
|     bool invalid_param = false;
 | |
|     std::string arg;
 | |
|     struct train_params default_params = get_default_train_params();
 | |
|     const std::string arg_prefix = "--";
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
|         if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
 | |
|             std::replace(arg.begin(), arg.end(), '_', '-');
 | |
|         }
 | |
| 
 | |
|         if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) {
 | |
|             if (invalid_param) {
 | |
|                 break;
 | |
|             } else if (params->common.print_usage) {
 | |
|                 train_print_usage(argc, argv, &default_params);
 | |
|                 exit(0);
 | |
|             }
 | |
|         } else if (arg == "--vocab-model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_vocab_model = argv[i];
 | |
|         } else if (arg == "--model-out") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_model_out = argv[i];
 | |
|         } else if (arg == "--only-write-model") {
 | |
|             params->only_write_model = true;
 | |
|         } else if (arg == "--embd") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_embd = std::stoi(argv[i]);
 | |
|         } else if (arg == "--ff") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_ff = std::stoi(argv[i]);
 | |
|         } else if (arg == "--head") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_head = std::stoi(argv[i]);
 | |
|         } else if (arg == "--layer") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_layer = std::stoi(argv[i]);
 | |
|         } else if (arg == "--norm-rms-eps") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->f_norm_rms_eps = std::stof(argv[i]);
 | |
|         } else if (arg == "--rope-freq-base") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->rope_freq_base = std::stof(argv[i]);
 | |
|         } else if (arg == "--rope-freq-scale") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->rope_freq_scale = std::stof(argv[i]);
 | |
|         } else {
 | |
|             fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | |
|             train_print_usage(argc, argv, &default_params);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         train_print_usage(argc, argv, &default_params);
 | |
|         exit(1);
 | |
|     }
 | |
|     finish_processing_train_args(¶ms->common);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| struct save_train_files_data {
 | |
|     const char            * fn_checkpoint_out;
 | |
|     const char            * fn_model_out;
 | |
|     const char            * fn_vocab_model;
 | |
|     const char            * pattern_fn_it;
 | |
|     const char            * fn_latest;
 | |
|     struct my_llama_model * model;
 | |
| };
 | |
| 
 | |
| static void save_train_files(void * vdata, struct train_state * train) {
 | |
|     struct save_train_files_data * data   = (struct save_train_files_data *) vdata;
 | |
|     int64_t iter = train->opt->iter;
 | |
| 
 | |
|     if (strlen(data->fn_checkpoint_out) > 0) {
 | |
|         save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model, train);
 | |
|         save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1  ).c_str(), data->fn_vocab_model, data->model, train);
 | |
| 
 | |
|     }
 | |
|     if (strlen(data->fn_model_out) > 0) {
 | |
|         save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model);
 | |
|         save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, -1  ).c_str(), data->fn_vocab_model, data->model);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int64_t get_parameter_count(struct my_llama_model* model) {
 | |
|     int64_t nx = 0;
 | |
|     nx += ggml_nelements(model->tok_embeddings);
 | |
|     nx += ggml_nelements(model->norm);
 | |
|     nx += ggml_nelements(model->output);
 | |
| 
 | |
|     for (uint32_t i = 0; i < model->layers.size(); ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
|         nx += ggml_nelements(layer.attention_norm);
 | |
|         nx += ggml_nelements(layer.wq);
 | |
|         nx += ggml_nelements(layer.wk);
 | |
|         nx += ggml_nelements(layer.wv);
 | |
|         nx += ggml_nelements(layer.wo);
 | |
|         nx += ggml_nelements(layer.ffn_norm);
 | |
|         nx += ggml_nelements(layer.ffn_gate);
 | |
|         nx += ggml_nelements(layer.ffn_down);
 | |
|         nx += ggml_nelements(layer.ffn_up);
 | |
|     }
 | |
|     return nx;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     struct train_params params = get_default_train_params();
 | |
| 
 | |
|     if (!train_params_parse(argc, argv, ¶ms)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (params.common.seed == LLAMA_DEFAULT_SEED) {
 | |
|         params.common.seed = time(NULL);
 | |
|     }
 | |
|     printf("%s: seed: %u\n", __func__, params.common.seed);
 | |
|     srand(params.common.seed);
 | |
| 
 | |
|     struct llama_model_params mparams = llama_model_default_params();
 | |
|     mparams.vocab_only = true;
 | |
| 
 | |
|     struct llama_context_params cparams = llama_context_default_params();
 | |
| 
 | |
|     struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, mparams);
 | |
|     struct llama_context * lctx = llama_new_context_with_model(lmodel, cparams);
 | |
| 
 | |
|     struct my_llama_model model;
 | |
|     model.hparams.n_vocab = llama_n_vocab(lmodel);
 | |
|     model.hparams.n_ctx   = params.common.n_ctx;
 | |
|     model.hparams.n_embd  = params.n_embd;
 | |
|     model.hparams.n_head  = params.n_head;
 | |
|     model.hparams.n_layer = params.n_layer;
 | |
|     model.hparams.n_ff    = params.n_ff;
 | |
|     // llama.cpp requires n_rot to be exactly n_embd / n_head
 | |
|     model.hparams.n_rot   = model.hparams.n_embd / model.hparams.n_head;
 | |
|     model.hparams.f_norm_rms_eps  = params.f_norm_rms_eps;
 | |
|     model.hparams.rope_freq_base  = params.rope_freq_base;
 | |
|     model.hparams.rope_freq_scale = params.rope_freq_scale;
 | |
| 
 | |
|     struct train_state      * train = init_train_state();
 | |
|     struct ggml_opt_context * opt   = train->opt;
 | |
| 
 | |
|     // set opt params from command line
 | |
|     opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
 | |
|     opt->params.print_forward_graph     = false;
 | |
|     opt->params.print_backward_graph    = false;
 | |
|     opt->params.graph_size              = LLAMA_TRAIN_MAX_NODES;
 | |
|     opt->params.n_threads               = params.common.n_threads;
 | |
|     opt->params.past                    = params.common.opt_past;
 | |
|     opt->params.delta                   = params.common.opt_delta;
 | |
|     opt->params.max_no_improvement      = params.common.opt_max_no_improvement;
 | |
|     opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
 | |
|     opt->params.adam.n_iter             = params.common.adam_n_iter;
 | |
|     opt->params.adam.sched              = 1.0f;
 | |
|     opt->params.adam.alpha              = params.common.adam_alpha;
 | |
|     opt->params.adam.decay              = params.common.adam_decay;
 | |
|     opt->params.adam.decay_min_ndim     = params.common.adam_decay_min_ndim;
 | |
|     opt->params.adam.beta1              = params.common.adam_beta1;
 | |
|     opt->params.adam.beta2              = params.common.adam_beta2;
 | |
|     opt->params.adam.gclip              = params.common.adam_gclip;
 | |
|     opt->params.adam.eps_f              = params.common.adam_eps_f;
 | |
| 
 | |
|     printf("%s: init model\n", __func__);
 | |
|     bool existed = load_checkpoint_file(params.common.fn_checkpoint_in, &model, train);
 | |
|     if (existed) {
 | |
|         // overwrite last n_ctx with user provided n_ctx
 | |
|         if (params.common.custom_n_ctx) {
 | |
|             model.hparams.n_ctx = params.common.n_ctx;
 | |
|         }
 | |
| 
 | |
|         const bool opt_past_changed = opt->params.past != params.common.opt_past;
 | |
| 
 | |
|         if (opt_past_changed) {
 | |
|             die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value train from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
 | |
|             // need to discard previous optimizer past function value statistics and opt_init with new shapes
 | |
|             // TODO
 | |
|         }
 | |
|     } else {
 | |
|         init_model(&model);
 | |
|         randomize_model(&model, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
 | |
|         if (!params.only_write_model) {
 | |
|             ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&model));
 | |
|         }
 | |
|     }
 | |
|     opt->iter = train->train_its;
 | |
| 
 | |
|     print_params(&model.hparams);
 | |
|     printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
 | |
|     printf("%s: seen train_samples     %llu\n", __func__, (long long unsigned) train->train_samples);
 | |
|     printf("%s: seen train_tokens      %llu\n", __func__, (long long unsigned) train->train_tokens);
 | |
|     printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
 | |
|     printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)), (float) (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)) / (1024.0f*1024.0f));
 | |
| 
 | |
|     if (params.only_write_model) {
 | |
|         save_train_files_data save_data;
 | |
|         save_data.fn_checkpoint_out = "";
 | |
|         save_data.fn_model_out      = params.fn_model_out;
 | |
|         save_data.fn_vocab_model    = params.fn_vocab_model;
 | |
|         save_data.pattern_fn_it     = params.common.pattern_fn_it;
 | |
|         save_data.fn_latest         = params.common.fn_latest;
 | |
|         save_data.model             = &model;
 | |
| 
 | |
|         save_train_files(&save_data, train);
 | |
| 
 | |
|         free_train_state(train);
 | |
|         ggml_free(model.ctx);
 | |
|         llama_free(lctx);
 | |
|         llama_free_model(lmodel);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     printf("%s: opt_size  = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
 | |
|     printf("%s: opt iter %d\n", __func__, opt->iter);
 | |
| 
 | |
|     int n_tokens = model.hparams.n_ctx;
 | |
|     int n_vocab  = model.hparams.n_vocab;
 | |
|     int n_batch  = params.common.n_batch;
 | |
| 
 | |
|     // context for input tensors without their data
 | |
|     struct ggml_init_params ctx_input_params = {
 | |
|         ggml_tensor_overhead() * 2, // mem_size
 | |
|         NULL,                       // mem_buffer
 | |
|         true,                       // no_alloc
 | |
|     };
 | |
|     struct ggml_context * ctx_input = ggml_init(ctx_input_params);
 | |
| 
 | |
|     // the input tensors
 | |
|     struct ggml_tensor * tokens_input  = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
 | |
|     struct ggml_tensor * target_probs  = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab,  n_tokens, n_batch);
 | |
| 
 | |
|     // measure required memory for input tensors
 | |
|     // allocate input tensors
 | |
|     ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
 | |
|     size_t max_input_size = ggml_backend_buffer_get_size(input_data);
 | |
|     printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
 | |
| 
 | |
|     // context for compute tensors without their data
 | |
|     const size_t estimated_compute_size_wo_data = (
 | |
|             2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
 | |
|             (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
 | |
|     );
 | |
|     struct ggml_init_params ctx_compute_params = {
 | |
|         estimated_compute_size_wo_data, // mem_size
 | |
|         NULL,                           // mem_buffer
 | |
|         true,                           // no_alloc
 | |
|     };
 | |
|     struct ggml_context * ctx_compute = NULL;
 | |
| 
 | |
|     struct ggml_tensor * loss   = NULL;
 | |
|     struct ggml_tensor * logits = NULL;
 | |
| 
 | |
|     struct ggml_cgraph * gf     = NULL;
 | |
|     struct ggml_cgraph * gb     = NULL;
 | |
|     struct ggml_cgraph * gb_tmp = NULL;
 | |
| 
 | |
|     // measure required memory for compute tensors
 | |
|     size_t best_compute_size = SIZE_MAX;
 | |
|     enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
 | |
|     // find best evaluation order
 | |
|     for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
 | |
|         ctx_compute = ggml_init(ctx_compute_params);
 | |
|         ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
 | |
|         gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
 | |
|         gf->order = (enum ggml_cgraph_eval_order) order;
 | |
|         gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
 | |
|         gb_tmp = params.common.use_checkpointing
 | |
|             ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
 | |
|             : NULL;
 | |
|         loss = llama_build_train_graphs(
 | |
|             &model, alloc, ctx_compute,
 | |
|             gf, gb, gb_tmp,
 | |
|             &logits, tokens_input, target_probs,
 | |
|             n_tokens, n_batch,
 | |
|             params.common.use_flash,
 | |
|             params.common.use_checkpointing,
 | |
|             true
 | |
|         );
 | |
|         size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
 | |
|         if (max_compute_size < best_compute_size) {
 | |
|             best_compute_size = max_compute_size;
 | |
|             best_order = gf->order;
 | |
|         }
 | |
|         ggml_free(ctx_compute);
 | |
|     }
 | |
|     size_t max_compute_size = best_compute_size;
 | |
|     printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
 | |
|     printf("%s: evaluation order = %s\n", __func__,
 | |
|         (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
 | |
|         (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
 | |
|         "invalid");
 | |
| 
 | |
|     // allocate compute tensors
 | |
|     ctx_compute = ggml_init(ctx_compute_params);
 | |
|     ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
 | |
|     gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
 | |
|     gf->order = best_order;
 | |
|     gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
 | |
|     gb_tmp = params.common.use_checkpointing
 | |
|         ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
 | |
|         : NULL;
 | |
|     loss = llama_build_train_graphs(
 | |
|         &model, alloc, ctx_compute,
 | |
|         gf, gb, gb_tmp,
 | |
|         &logits, tokens_input, target_probs,
 | |
|         n_tokens, n_batch,
 | |
|         params.common.use_flash,
 | |
|         params.common.use_checkpointing,
 | |
|         false
 | |
|     );
 | |
| 
 | |
|     std::vector<llama_token> train_tokens;
 | |
|     std::vector<size_t> train_samples_begin;
 | |
|     std::vector<size_t> train_samples_size;
 | |
|     printf("%s: tokenize training data\n", __func__);
 | |
|     tokenize_file(lctx,
 | |
|             params.common.fn_train_data,
 | |
|             params.common.sample_start,
 | |
|             params.common.include_sample_start,
 | |
|             params.common.overlapping_samples,
 | |
|             n_tokens,
 | |
|             train_tokens,
 | |
|             train_samples_begin,
 | |
|             train_samples_size);
 | |
|     GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
 | |
| 
 | |
|     printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
 | |
| 
 | |
|     size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
 | |
|     const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
 | |
|     if (changed_train_data) {
 | |
|         printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
 | |
|     }
 | |
|     if (params.common.force_reshuffle) {
 | |
|         printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
 | |
|     }
 | |
|     if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
 | |
|         train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
 | |
|         train->shuffle_sample_count = train_samples_size.size();
 | |
|         train->shuffle_next_sample = 0;
 | |
|         train->shuffle_samples_hash = shuffle_samples_hash;
 | |
|     }
 | |
|     std::vector<size_t> train_shuffled_samples_offs;
 | |
|     std::vector<size_t> train_shuffled_samples_begin;
 | |
|     std::vector<size_t> train_shuffled_samples_size;
 | |
|     train_shuffled_samples_offs.resize(train_samples_begin.size());
 | |
|     train_shuffled_samples_begin.resize(train_samples_begin.size());
 | |
|     train_shuffled_samples_size.resize(train_samples_size.size());
 | |
|     train->shuffle_rng_state_next = shuffle_samples(
 | |
|         train->shuffle_rng_state_current,
 | |
|         train_shuffled_samples_offs.data(),
 | |
|         train_shuffled_samples_begin.data(),
 | |
|         train_shuffled_samples_size.data(),
 | |
|         train_samples_begin.data(),
 | |
|         train_samples_size.data(),
 | |
|         train_samples_size.size());
 | |
|     printf("%s: begin training\n", __func__);
 | |
| 
 | |
|     save_train_files_data save_data;
 | |
|     save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
 | |
|     save_data.fn_model_out      = params.fn_model_out;
 | |
|     save_data.fn_vocab_model    = params.fn_vocab_model;
 | |
|     save_data.pattern_fn_it     = params.common.pattern_fn_it;
 | |
|     save_data.fn_latest         = params.common.fn_latest;
 | |
|     save_data.model             = &model;
 | |
| 
 | |
|     struct train_opt_callback_data opt_cb_data;
 | |
|     opt_cb_data.params                 = ¶ms.common;
 | |
|     opt_cb_data.train                  = train;
 | |
|     opt_cb_data.save_cb                = &save_train_files;
 | |
|     opt_cb_data.save_data              = &save_data;
 | |
|     opt_cb_data.lctx                   = lctx;
 | |
|     opt_cb_data.last_save_iter         = opt->iter;
 | |
|     opt_cb_data.tokens_data            = train_tokens.data();
 | |
|     opt_cb_data.tokens_size            = train_tokens.size();
 | |
|     opt_cb_data.samples_begin          = train_samples_begin.data();
 | |
|     opt_cb_data.samples_size           = train_samples_size.data();
 | |
|     opt_cb_data.shuffled_samples_offs  = train_shuffled_samples_offs.data();
 | |
|     opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
 | |
|     opt_cb_data.shuffled_samples_size  = train_shuffled_samples_size.data();
 | |
|     opt_cb_data.samples_count          = train_samples_size.size();
 | |
|     opt_cb_data.tokens_input           = tokens_input;
 | |
|     opt_cb_data.target_probs           = target_probs;
 | |
|     opt_cb_data.first_iter             = opt->iter;
 | |
|     opt_cb_data.first_epoch            = train->train_epochs;
 | |
|     opt_cb_data.iter_at_last_epoch     = -1;
 | |
|     opt_cb_data.last_time              = ggml_time_ms();
 | |
|     opt_cb_data.millis_per_iter        = 0.0;
 | |
| 
 | |
|     // measure required memory for work buffer
 | |
|     size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
 | |
|     printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
 | |
| 
 | |
|     // context for work buffer
 | |
|     struct ggml_init_params ctx_work_params = {
 | |
|         max_work_size, // mem_size
 | |
|         NULL,          // mem_buffer
 | |
|         false,         // no_alloc
 | |
|     };
 | |
|     struct ggml_context * ctx_work = ggml_init(ctx_work_params);
 | |
| 
 | |
|     int64_t t0 = ggml_time_ms();
 | |
| 
 | |
|     ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
 | |
| 
 | |
|     ggml_free(ctx_work);
 | |
|     ggml_free(ctx_compute);
 | |
|     ggml_free(ctx_input);
 | |
| 
 | |
|     int64_t t1 = ggml_time_ms();
 | |
|     printf("%s: total training time: ", __func__);
 | |
|     print_duration((double) (t1 - t0));
 | |
|     printf("\n");
 | |
| 
 | |
|     int new_iters = opt->iter - opt_cb_data.last_save_iter;
 | |
|     if (new_iters > 0) {
 | |
|         train->train_its     += new_iters;
 | |
|         train->train_tokens  += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
 | |
| 
 | |
|         save_train_files(&save_data, train);
 | |
|         opt_cb_data.last_save_iter = opt->iter;
 | |
|     }
 | |
| 
 | |
|     ggml_free(opt->ctx);
 | |
|     free_train_state(train);
 | |
|     ggml_free(model.ctx);
 | |
|     llama_free(lctx);
 | |
|     llama_free_model(lmodel);
 | |
|     return 0;
 | |
| }
 |