* per-layer KV * remove unnecessary copies * less code duplication, offload k and v separately * llama : offload KV cache per-layer * llama : offload K shift tensors * llama : offload for rest of the model arches * llama : enable offload debug temporarily * llama : keep the KV related layers on the device * llama : remove mirrors, perform Device -> Host when partial offload * common : add command-line arg to disable KV cache offloading * llama : update session save/load * llama : support quantum K cache (#4312) * llama : support quantum K cache (wip) * metal : add F32 -> Q8_0 copy kernel * cuda : add F32 -> Q8_0 copy kernel ggml-ci * cuda : use mmv kernel for quantum cache ops * llama : pass KV cache type through API * llama : fix build ggml-ci * metal : add F32 -> Q4_0 copy kernel * metal : add F32 -> Q4_1 copy kernel * cuda : wip * cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels * llama-bench : support type_k/type_v * metal : use mm kernel only for quantum KV cache * cuda : add comment * llama : remove memory_f16 and kv_f16 flags --------- Co-authored-by: slaren <slarengh@gmail.com> * readme : add API change notice --------- Co-authored-by: slaren <slarengh@gmail.com>
		
			
				
	
	
		
			422 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			422 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #define LLAMA_API_INTERNAL
 | |
| #include "common.h"
 | |
| #include "ggml.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cinttypes>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <map>
 | |
| #include <numeric>
 | |
| #include <regex>
 | |
| #include <string>
 | |
| #include <unordered_map>
 | |
| #include <vector>
 | |
| #include <thread>
 | |
| #include <mutex>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| struct quantize_stats_params {
 | |
|     std::string model = "models/7B/ggml-model-f16.gguf";
 | |
|     bool verbose = false;
 | |
|     bool per_layer_stats = false;
 | |
|     bool print_histogram = false;
 | |
|     bool reference = false;
 | |
|     std::vector<std::string> include_layers;
 | |
|     std::vector<std::string> exclude_layers;
 | |
|     std::vector<enum ggml_type> include_types;
 | |
| };
 | |
| 
 | |
| constexpr size_t HISTOGRAM_BUCKETS = 150;
 | |
| constexpr double HISTOGRAM_RANGE = 0.03;
 | |
| 
 | |
| struct error_stats {
 | |
|     size_t num_samples;
 | |
|     double total_error;
 | |
|     double max_error;
 | |
|     uint64_t error_histogram[HISTOGRAM_BUCKETS];
 | |
| };
 | |
| 
 | |
| static void quantize_stats_print_usage(int /*argc*/, char ** argv) {
 | |
|     quantize_stats_params params;
 | |
|     fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "options:\n");
 | |
|     fprintf(stderr, "  -h, --help            show this help message and exit\n");
 | |
|     fprintf(stderr, "  -m FNAME, --model FNAME\n");
 | |
|     fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());
 | |
|     fprintf(stderr, "  -r, --reference\n");
 | |
|     fprintf(stderr, "                        use reference implementation (default: false)\n");
 | |
|     fprintf(stderr, "  -v, --verbose\n");
 | |
|     fprintf(stderr, "                        verbose output (default: false)\n");
 | |
|     fprintf(stderr, "  -p, --per-layer-stats\n");
 | |
|     fprintf(stderr, "                        print stats per layer (default: false)\n");
 | |
|     fprintf(stderr, "  --histogram\n");
 | |
|     fprintf(stderr, "                        print error histogram (default: false)\n");
 | |
|     fprintf(stderr, "  -l LAYER, --include-layer LAYER\n");
 | |
|     fprintf(stderr, "                        only test layers matching pattern\n");
 | |
|     fprintf(stderr, "  -L LAYER, --exclude-layer LAYER\n");
 | |
|     fprintf(stderr, "                        exclude layers matching pattern\n");
 | |
|     fprintf(stderr, "  -t TYPE, --type TYPE\n");
 | |
|     fprintf(stderr, "                        only test given type (q4_0, q4_1)\n");
 | |
|     fprintf(stderr, "\n");
 | |
| }
 | |
| 
 | |
| // Check if a layer is included/excluded by command line
 | |
| static bool layer_included(const quantize_stats_params & params, const std::string & layer) {
 | |
|     for (const auto& excluded : params.exclude_layers) {
 | |
|         if (std::regex_search(layer, std::regex(excluded))) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     for (const auto& included : params.include_layers) {
 | |
|         if (std::regex_search(layer, std::regex(included))) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return params.include_layers.empty();
 | |
| }
 | |
| 
 | |
| // Update error statistics given vectors with the before/after result of quantization
 | |
| static void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
 | |
|     for (int64_t i = 0; i < nelements; i++) {
 | |
|         double diff = input[i] - output[i];
 | |
|         stats.total_error += diff * diff;
 | |
|         stats.max_error = fmax(fabs(diff), stats.max_error);
 | |
|         stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
 | |
|     }
 | |
|     stats.num_samples += nelements;
 | |
| }
 | |
| 
 | |
| static void combine_error_stats(error_stats & into, const error_stats & from) {
 | |
|     into.num_samples += from.num_samples;
 | |
|     into.total_error += from.total_error;
 | |
|     if (from.max_error > into.max_error) into.max_error = from.max_error;
 | |
|     for (size_t i=0; i<HISTOGRAM_BUCKETS; ++i) into.error_histogram[i] += from.error_histogram[i];
 | |
| }
 | |
| 
 | |
| static double find_quantile(const error_stats & stats, double quantile) {
 | |
|     double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
 | |
| 
 | |
|     double accum = 0;
 | |
|     for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
 | |
|         accum += stats.error_histogram[i];
 | |
|         if (accum >= sum*quantile) {
 | |
|             return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
 | |
|         }
 | |
|     }
 | |
|     return INFINITY;
 | |
| }
 | |
| 
 | |
| static void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
 | |
|     double rmse = sqrt(stats.total_error / (double) stats.num_samples);
 | |
|     double median = find_quantile(stats, .5);
 | |
|     double pct95 = find_quantile(stats, .95);
 | |
|     printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median);
 | |
|     if (print_histogram) {
 | |
|         printf("Error distribution:\n");
 | |
|         for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
 | |
|             double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
 | |
|             double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
 | |
|             if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
 | |
|             printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // copied from ggml.h - verify that we can access this as a flat array
 | |
| static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return
 | |
|         tensor->nb[0] == ggml_type_size(tensor->type) &&
 | |
|         tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
 | |
|         tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
 | |
|         tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
 | |
| }
 | |
| 
 | |
| static void test_roundtrip_on_chunk(
 | |
|     const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits_t & qfns, bool use_reference,
 | |
|     float * input_scratch, char * quantized_scratch, float * output_scratch, error_stats & stats
 | |
| ) {
 | |
|     if (layer->type == GGML_TYPE_F16) {
 | |
|         for (int i = 0; i < chunk_size; i++) {
 | |
|             input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
 | |
|         }
 | |
|     } else {
 | |
|         input_scratch = ggml_get_data_f32(layer) + offset;
 | |
|     }
 | |
| 
 | |
|     if (use_reference) {
 | |
|         qfns.from_float_reference(input_scratch, quantized_scratch, chunk_size);
 | |
|     } else {
 | |
|         qfns.from_float(input_scratch, quantized_scratch, chunk_size);
 | |
|     }
 | |
|     qfns.to_float(quantized_scratch, output_scratch, chunk_size);
 | |
| 
 | |
|     update_error_stats(chunk_size, input_scratch, output_scratch, stats);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Run quantization function for a single layer and update error stats
 | |
| static void test_roundtrip_on_layer(
 | |
|     std::string & name, bool print_layer_stats, const ggml_type_traits_t & qfns, bool use_reference,
 | |
|     const ggml_tensor * layer, std::vector<float> & input_scratch, std::vector<char> & quantized_scratch,
 | |
|     std::vector<float> & output_scratch, error_stats & total_error, int max_thread = 0
 | |
| ) {
 | |
|     assert(tensor_is_contiguous(layer));
 | |
|     error_stats layer_error {};
 | |
|     uint64_t nelements = ggml_nelements(layer);
 | |
| 
 | |
|     float* input_scratch_ptr = nullptr;
 | |
|     if (layer->type == GGML_TYPE_F16) {
 | |
|         if (input_scratch.size() < nelements) input_scratch.resize(nelements);
 | |
|         input_scratch_ptr = input_scratch.data();
 | |
|     }
 | |
|     if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements);
 | |
|     if (output_scratch.size() < nelements) output_scratch.resize(nelements);
 | |
| 
 | |
|     if (max_thread < 1) max_thread = std::thread::hardware_concurrency();
 | |
|     int chunk_size = 32*512;
 | |
|     int num_chunks = (nelements + chunk_size - 1)/chunk_size;
 | |
| 
 | |
|     if (num_chunks < 2 || max_thread < 2) {
 | |
|         test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(),
 | |
|                 output_scratch.data(), print_layer_stats ? layer_error : total_error);
 | |
|     } else {
 | |
|         auto & stats = print_layer_stats ? layer_error : total_error;
 | |
|         std::mutex mutex;
 | |
|         uint64_t counter = 0;
 | |
|         auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr,
 | |
|              &quantized_scratch, &output_scratch, chunk_size] () {
 | |
|             error_stats local_stats {};
 | |
|             while (true) {
 | |
|                 std::unique_lock<std::mutex> lock(mutex);
 | |
|                 uint64_t offset = counter; counter += chunk_size;
 | |
|                 if (offset >= nelements) {
 | |
|                     combine_error_stats(stats, local_stats);
 | |
|                     break;
 | |
|                 }
 | |
|                 lock.unlock();
 | |
|                 uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
 | |
|                 test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset,
 | |
|                         quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats);
 | |
|             }
 | |
|         };
 | |
|         int nthread = std::min(num_chunks, max_thread);
 | |
|         std::vector<std::thread> workers(nthread-1);
 | |
|         for (auto& w : workers) w = std::thread(compute);
 | |
|         compute();
 | |
|         for (auto& w : workers) w.join();
 | |
|     }
 | |
| 
 | |
|     if (print_layer_stats) {
 | |
|         print_error_stats(name, layer_error, false);
 | |
|         combine_error_stats(total_error, layer_error);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     quantize_stats_params params;
 | |
| 
 | |
|     // read command line
 | |
| 
 | |
|     int max_thread = 0;
 | |
|     bool invalid_param = false;
 | |
|     std::string arg;
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
| 
 | |
|         if (arg == "-h" || arg == "--help") {
 | |
|             quantize_stats_print_usage(argc, argv);
 | |
|             exit(0);
 | |
|         } else if (arg == "-r" || arg == "--reference") {
 | |
|             params.reference = true;
 | |
|         } else if (arg == "-v") {
 | |
|             params.verbose = true;
 | |
|         } else if (arg == "-p" || arg == "--per-layer-stats") {
 | |
|             params.per_layer_stats = true;
 | |
|         } else if (arg == "--histogram") {
 | |
|             params.print_histogram = true;
 | |
|         } else if (arg == "-m" || arg == "--model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.model = argv[i];
 | |
|         } else if (arg == "-l" || arg == "--include-layer") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.include_layers.push_back(argv[i]);
 | |
|         } else if (arg == "-L" || arg == "--exclude-layer") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.exclude_layers.push_back(argv[i]);
 | |
|         } else if (arg == "-t" || arg == "--type") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             int j;
 | |
|             for (j = 0; j < GGML_TYPE_COUNT; ++j) {
 | |
|                const auto * name = ggml_type_name((ggml_type) j);
 | |
|                if (name && strcmp(argv[i], name) == 0) break;
 | |
|             }
 | |
|             if (j < GGML_TYPE_COUNT) {
 | |
|                 params.include_types.push_back((ggml_type) j);
 | |
|             } else {
 | |
|                 fprintf(stderr, "error: %s not in list of types\n", argv[i]);
 | |
|                 invalid_param = true;
 | |
|             }
 | |
|         } else if (arg == "-n" || arg == "--num-threads") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             max_thread = atoi(argv[i]);
 | |
|         } else {
 | |
|             fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | |
|             quantize_stats_print_usage(argc, argv);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         quantize_stats_print_usage(argc, argv);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     print_build_info();
 | |
| 
 | |
|     // load the model
 | |
|     fprintf(stderr, "Loading model\n");
 | |
| 
 | |
|     const int64_t t_main_start_us = ggml_time_us();
 | |
|     llama_model * model;
 | |
|     llama_context * ctx;
 | |
| 
 | |
|     {
 | |
|         auto mparams = llama_model_default_params();
 | |
|         mparams.use_mlock  = false;
 | |
| 
 | |
|         model = llama_load_model_from_file(params.model.c_str(), mparams);
 | |
| 
 | |
|         if (model == NULL) {
 | |
|             fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         auto cparams = llama_context_default_params();
 | |
|         cparams.n_ctx      = 256;
 | |
|         cparams.seed       = 1;
 | |
| 
 | |
|         ctx = llama_new_context_with_model(model, cparams);
 | |
| 
 | |
|         if (ctx == NULL) {
 | |
|             fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const auto &tensors = llama_internal_get_tensor_map(ctx);
 | |
| 
 | |
|     // check layer tensors
 | |
|     int included_layers = 0;
 | |
|     int64_t max_nelements = 0;
 | |
|     bool is_f16 = false;
 | |
|     for (const auto& kv_tensor : tensors) {
 | |
|         if (!layer_included(params, kv_tensor.first)) {
 | |
|             continue;
 | |
|         }
 | |
|         if (params.verbose) {
 | |
|             printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second));
 | |
|         }
 | |
|         if (kv_tensor.second->type == GGML_TYPE_F16) {
 | |
|             is_f16 = true;
 | |
|         } else if (kv_tensor.second->type != GGML_TYPE_F32) {
 | |
|             fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
 | |
|                 "this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
 | |
|             llama_free(ctx);
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
|         included_layers++;
 | |
|         max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
 | |
|     }
 | |
| 
 | |
|     if (is_f16) {
 | |
|         printf("note: source model is f16\n");
 | |
|     }
 | |
|     printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
 | |
|     // allocate scratch space
 | |
|     std::vector<float> input_scratch;
 | |
|     std::vector<char> quantized_scratch;
 | |
|     std::vector<float> output_scratch;
 | |
| 
 | |
|     // loop throught quantization types
 | |
|     for (int i = 0; i < GGML_TYPE_COUNT; i++) {
 | |
|         const ggml_type type = (ggml_type) i;
 | |
|         if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
 | |
|             continue;
 | |
|         }
 | |
|         ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
 | |
|         if (qfns.from_float && qfns.to_float) {
 | |
|             if (params.verbose) {
 | |
|                 printf("testing %s ...\n",  ggml_type_name(type));
 | |
|             }
 | |
| 
 | |
|             error_stats global_stats {};
 | |
| 
 | |
|             for (const auto& kv_tensor : tensors) {
 | |
|                 if (!layer_included(params, kv_tensor.first)) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (params.verbose) {
 | |
|                     printf("  %s ...\n",  kv_tensor.first.c_str());
 | |
|                 }
 | |
|                 std::string layer_name { ggml_type_name(type) };
 | |
|                 layer_name += "::" + kv_tensor.first;
 | |
|                 test_roundtrip_on_layer(
 | |
|                         layer_name,
 | |
|                         params.per_layer_stats,
 | |
|                         qfns,
 | |
|                         params.reference,
 | |
|                         kv_tensor.second,
 | |
|                         input_scratch,
 | |
|                         quantized_scratch,
 | |
|                         output_scratch,
 | |
|                         global_stats,
 | |
|                         max_thread
 | |
|                 );
 | |
|             }
 | |
| 
 | |
|             print_error_stats(ggml_type_name(type), global_stats, params.print_histogram);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
|     // report timing
 | |
|     {
 | |
|         const int64_t t_main_end_us = ggml_time_us();
 | |
| 
 | |
|         printf("\n");
 | |
|         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 |