* feat(ci): add an option to fail on compile warning * Update CMakeLists.txt * minor : fix compile warnings ggml-ci * ggml : fix unreachable code warnings ggml-ci * ci : disable fatal warnings for windows, ios and tvos * ggml : fix strncpy warning * ci : disable fatal warnings for MPI build * ci : add fatal warnings to ggml-ci ggml-ci --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			462 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			462 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| #include "common.h"
 | |
| #include "ggml.h"
 | |
| #include "ggml-alloc.h"
 | |
| 
 | |
| #include <vector>
 | |
| #include <string>
 | |
| #include <thread>
 | |
| 
 | |
| struct lora_info {
 | |
|     std::string filename;
 | |
|     float scale;
 | |
| };
 | |
| 
 | |
| struct export_lora_params {
 | |
|     std::string fn_model_base;
 | |
|     std::string fn_model_out;
 | |
|     std::vector<struct lora_info> lora;
 | |
|     int n_threads;
 | |
| };
 | |
| 
 | |
| struct lora_data {
 | |
|     struct lora_info     info;
 | |
|     std::vector<uint8_t> data;
 | |
|     struct ggml_context * ctx;
 | |
| 
 | |
|     uint32_t lora_r;
 | |
|     uint32_t lora_alpha;
 | |
| };
 | |
| 
 | |
| struct llama_file {
 | |
|     // use FILE * so we don't have to re-open the file to mmap
 | |
|     FILE * fp;
 | |
|     size_t size;
 | |
| 
 | |
|     llama_file(const char * fname, const char * mode) {
 | |
|         fp = std::fopen(fname, mode);
 | |
|         if (fp == NULL) {
 | |
|             size = 0;
 | |
|         } else {
 | |
|             seek(0, SEEK_END);
 | |
|             size = tell();
 | |
|             seek(0, SEEK_SET);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t tell() const {
 | |
| #ifdef _WIN32
 | |
|         __int64 ret = _ftelli64(fp);
 | |
| #else
 | |
|         long ret = std::ftell(fp);
 | |
| #endif
 | |
|         GGML_ASSERT(ret != -1); // this really shouldn't fail
 | |
|         return (size_t) ret;
 | |
|     }
 | |
| 
 | |
|     void seek(size_t offset, int whence) {
 | |
| #ifdef _WIN32
 | |
|         int ret = _fseeki64(fp, (__int64) offset, whence);
 | |
| #else
 | |
|         int ret = std::fseek(fp, (long) offset, whence);
 | |
| #endif
 | |
|         GGML_ASSERT(ret == 0); // same
 | |
|     }
 | |
| 
 | |
|     void read_raw(void * ptr, size_t size) {
 | |
|         if (size == 0) {
 | |
|             return;
 | |
|         }
 | |
|         errno = 0;
 | |
|         std::size_t ret = std::fread(ptr, size, 1, fp);
 | |
|         if (ferror(fp)) {
 | |
|             die_fmt("read error: %s", strerror(errno));
 | |
|         }
 | |
|         if (ret != 1) {
 | |
|             die("unexpectedly reached end of file");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::uint32_t read_u32() {
 | |
|         std::uint32_t ret;
 | |
|         read_raw(&ret, sizeof(ret));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     std::string read_string(std::uint32_t len) {
 | |
|         std::vector<char> chars(len);
 | |
|         read_raw(chars.data(), len);
 | |
|         return std::string(chars.data(), len);
 | |
|     }
 | |
| 
 | |
|     void write_raw(const void * ptr, size_t size) {
 | |
|         if (size == 0) {
 | |
|             return;
 | |
|         }
 | |
|         errno = 0;
 | |
|         size_t ret = std::fwrite(ptr, size, 1, fp);
 | |
|         if (ret != 1) {
 | |
|             die_fmt("write error: %s", strerror(errno));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void write_u32(std::uint32_t val) {
 | |
|         write_raw(&val, sizeof(val));
 | |
|     }
 | |
| 
 | |
|     bool eof() {
 | |
|         return tell() >= size;
 | |
|     }
 | |
| 
 | |
|     ~llama_file() {
 | |
|         if (fp) {
 | |
|             std::fclose(fp);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| static struct export_lora_params get_default_export_lora_params() {
 | |
|     struct export_lora_params result;
 | |
|     result.fn_model_base = "";
 | |
|     result.fn_model_out  = "";
 | |
|     result.n_threads = GGML_DEFAULT_N_THREADS;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) {
 | |
|     fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "options:\n");
 | |
|     fprintf(stderr, "  -h, --help                         show this help message and exit\n");
 | |
|     fprintf(stderr, "  -m FNAME, --model-base FNAME       model path from which to load base model (default '%s')\n", params->fn_model_base.c_str());
 | |
|     fprintf(stderr, "  -o FNAME, --model-out FNAME        path to save exported model (default '%s')\n", params->fn_model_out.c_str());
 | |
|     fprintf(stderr, "  -l FNAME, --lora FNAME             apply LoRA adapter\n");
 | |
|     fprintf(stderr, "  -s FNAME S, --lora-scaled FNAME S  apply LoRA adapter with user defined scaling S\n");
 | |
|     fprintf(stderr, "  -t N, --threads N                  number of threads to use during computation (default: %d)\n", params->n_threads);
 | |
| }
 | |
| 
 | |
| static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) {
 | |
|     bool invalid_param = false;
 | |
|     std::string arg;
 | |
|     struct export_lora_params default_params = get_default_export_lora_params();
 | |
|     const std::string arg_prefix = "--";
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
|         if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
 | |
|             std::replace(arg.begin(), arg.end(), '_', '-');
 | |
|         }
 | |
| 
 | |
|         if (arg == "-m" || arg == "--model-base") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_model_base = argv[i];
 | |
|         } else if (arg == "-o" || arg == "--model-out") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_model_out = argv[i];
 | |
|         } else if (arg == "-l" || arg == "--lora") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             struct lora_info lora;
 | |
|             lora.filename = argv[i];
 | |
|             lora.scale = 1.0f;
 | |
|             params->lora.push_back(lora);
 | |
|         } else if (arg == "-s" || arg == "--lora-scaled") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             struct lora_info lora;
 | |
|             lora.filename = argv[i];
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             lora.scale = std::stof(argv[i]);
 | |
|             params->lora.push_back(lora);
 | |
|         } else if (arg == "-t" || arg == "--threads") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_threads = std::stoi(argv[i]);
 | |
|             if (params->n_threads <= 0) {
 | |
|                 params->n_threads = std::thread::hardware_concurrency();
 | |
|             }
 | |
|         } else {
 | |
|             fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str());
 | |
|             export_lora_print_usage(argc, argv, &default_params);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (params->fn_model_base == default_params.fn_model_base) {
 | |
|         fprintf(stderr, "error: please specify a filename for model-base.\n");
 | |
|         export_lora_print_usage(argc, argv, &default_params);
 | |
|         exit(1);
 | |
|     }
 | |
|     if (params->fn_model_out == default_params.fn_model_out) {
 | |
|         fprintf(stderr, "error: please specify a filename for model-out.\n");
 | |
|         export_lora_print_usage(argc, argv, &default_params);
 | |
|         exit(1);
 | |
|     }
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str());
 | |
|         export_lora_print_usage(argc, argv, &default_params);
 | |
|         exit(1);
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void free_lora(struct lora_data * lora) {
 | |
|     if (lora->ctx != NULL) {
 | |
|         ggml_free(lora->ctx);
 | |
|     }
 | |
|     delete lora;
 | |
| }
 | |
| 
 | |
| static struct lora_data * load_lora(struct lora_info * info) {
 | |
|     struct lora_data * result = new struct lora_data;
 | |
|     result->info = *info;
 | |
|     result->ctx = NULL;
 | |
|     result->lora_r     = 1;
 | |
|     result->lora_alpha = 1;
 | |
| 
 | |
|     struct llama_file file(info->filename.c_str(), "rb");
 | |
|     if (file.fp == NULL) {
 | |
|         fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n",
 | |
|             info->filename.c_str());
 | |
|         free_lora(result);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     struct ggml_init_params params_ggml;
 | |
|     params_ggml.mem_size   = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE;
 | |
|     params_ggml.mem_buffer = NULL;
 | |
|     params_ggml.no_alloc   = true;
 | |
|     result->ctx = ggml_init(params_ggml);
 | |
| 
 | |
|     uint32_t magic   = file.read_u32();
 | |
|     if (magic != LLAMA_FILE_MAGIC_GGLA) {
 | |
|         die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
 | |
|     }
 | |
|     uint32_t version = file.read_u32();
 | |
|     if (version != 1) {
 | |
|         die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str());
 | |
|     }
 | |
|     result->lora_r     = file.read_u32();
 | |
|     result->lora_alpha = file.read_u32();
 | |
|     // read tensor infos from file
 | |
|     std::vector<char> name_buf;
 | |
|     std::vector<struct ggml_tensor *> tensors;
 | |
|     std::vector<size_t> tensors_offset;
 | |
|     size_t total_nbytes_pad = 0;
 | |
|     while(!file.eof()) {
 | |
|         int64_t ne[4]   = {1,1,1,1};
 | |
|         uint32_t n_dims  = file.read_u32();
 | |
|         uint32_t namelen = file.read_u32();
 | |
|         uint32_t type    = file.read_u32();
 | |
|         for (uint32_t k = 0; k < n_dims; ++k) {
 | |
|             ne[k] = (int64_t)file.read_u32();
 | |
|         }
 | |
|         name_buf.clear();
 | |
|         name_buf.resize(namelen + 1, '\0');
 | |
|         file.read_raw(name_buf.data(), namelen);
 | |
|         file.seek((0-file.tell()) & 31, SEEK_CUR);
 | |
|         size_t offset = file.tell();
 | |
|         struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne);
 | |
|         ggml_set_name(tensor, name_buf.data());
 | |
|         size_t nbytes     = ggml_nbytes(tensor);
 | |
|         size_t nbytes_pad = ggml_nbytes_pad(tensor);
 | |
|         total_nbytes_pad += nbytes_pad;
 | |
|         tensors.push_back(tensor);
 | |
|         tensors_offset.push_back(offset);
 | |
|         file.seek(nbytes, SEEK_CUR);
 | |
|     }
 | |
|     // read tensor data
 | |
|     result->data.resize(total_nbytes_pad);
 | |
|     size_t data_offset = 0;
 | |
|     for (size_t i = 0; i < tensors.size(); ++i) {
 | |
|         struct ggml_tensor * tensor = tensors[i];
 | |
|         size_t offset     = tensors_offset[i];
 | |
|         size_t nbytes     = ggml_nbytes(tensor);
 | |
|         size_t nbytes_pad = ggml_nbytes_pad(tensor);
 | |
|         file.seek(offset, SEEK_SET);
 | |
|         tensor->data = result->data.data() + data_offset;
 | |
|         file.read_raw(tensor->data, nbytes);
 | |
|         data_offset += nbytes_pad;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct ggml_cgraph * build_graph_lora(
 | |
|     struct ggml_context * ctx,
 | |
|     struct ggml_tensor * tensor,
 | |
|     struct ggml_tensor * lora_a,
 | |
|     struct ggml_tensor * lora_b,
 | |
|     float scaling
 | |
| ) {
 | |
|     struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
 | |
|     if (scaling != 1.0f) {
 | |
|         ab = ggml_scale(ctx, ab, scaling);
 | |
|     }
 | |
|     struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
 | |
| 
 | |
|     struct ggml_cgraph * gf = ggml_new_graph(ctx);
 | |
|     ggml_build_forward_expand (gf, res);
 | |
|     return gf;
 | |
| }
 | |
| 
 | |
| static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) {
 | |
|     if (lora->ctx == NULL) {
 | |
|         return false;
 | |
|     }
 | |
|     std::string name = ggml_get_name(tensor);
 | |
|     std::string name_a = name + std::string(".loraA");
 | |
|     std::string name_b = name + std::string(".loraB");
 | |
|     struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str());
 | |
|     struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str());
 | |
|     if (lora_a == NULL || lora_b == NULL) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
 | |
| 
 | |
|     struct ggml_init_params params;
 | |
|     params.mem_size   = GGML_OBJECT_SIZE + ggml_graph_overhead() + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
 | |
|     params.mem_buffer = NULL;
 | |
|     params.no_alloc   = true;
 | |
|     struct ggml_context * ctx = NULL;
 | |
|     struct ggml_gallocr * alloc = NULL;
 | |
|     struct ggml_cgraph  * gf = NULL;
 | |
| 
 | |
|     ctx   = ggml_init(params);
 | |
|     alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
 | |
|     gf    = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
 | |
| 
 | |
|     ggml_gallocr_alloc_graph(alloc, gf);
 | |
| 
 | |
|     struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
 | |
|     static std::vector<uint8_t> data_work;
 | |
|     data_work.resize(cplan.work_size);
 | |
|     cplan.work_data = data_work.data();
 | |
| 
 | |
|     ggml_graph_compute(gf, &cplan);
 | |
| 
 | |
|     ggml_gallocr_free(alloc);
 | |
|     ggml_free(ctx);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void export_lora(struct export_lora_params * params) {
 | |
|     // load all loras
 | |
|     std::vector<struct lora_data *> loras;
 | |
|     for (size_t i = 0; i < params->lora.size(); ++i) {
 | |
|         struct lora_data * lora = load_lora(¶ms->lora[i]);
 | |
|         if (lora != NULL) {
 | |
|             loras.push_back(lora);
 | |
|         }
 | |
|     }
 | |
|     if (loras.size() == 0) {
 | |
|         fprintf(stderr, "warning: no lora adapters will be applied.\n");
 | |
|     }
 | |
| 
 | |
|     // open input file
 | |
|     struct llama_file fin(params->fn_model_base.c_str(), "rb");
 | |
|     if (!fin.fp) {
 | |
|         die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str());
 | |
|     }
 | |
| 
 | |
|     // open base model gguf, read tensors without their data
 | |
|     struct ggml_context * ctx_in;
 | |
|     struct gguf_init_params params_gguf;
 | |
|     params_gguf.no_alloc = true;
 | |
|     params_gguf.ctx      = &ctx_in;
 | |
|     struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf);
 | |
| 
 | |
|     // create new gguf
 | |
|     struct gguf_context * gguf_out = gguf_init_empty();
 | |
| 
 | |
|     // copy meta data from base model: kv and tensors
 | |
|     gguf_set_kv(gguf_out, gguf_in);
 | |
|     int n_tensors = gguf_get_n_tensors(gguf_in);
 | |
|     for (int i=0; i < n_tensors; ++i) {
 | |
|         const char * name = gguf_get_tensor_name(gguf_in, i);
 | |
|         struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
 | |
|         gguf_add_tensor(gguf_out, tensor);
 | |
|     }
 | |
| 
 | |
|     // create output file
 | |
|     struct llama_file fout(params->fn_model_out.c_str(), "wb");
 | |
|     if (!fout.fp) {
 | |
|         die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str());
 | |
|     }
 | |
| 
 | |
|     // write gguf meta data
 | |
|     std::vector<uint8_t> meta;
 | |
|     meta.resize(gguf_get_meta_size(gguf_out));
 | |
|     gguf_get_meta_data(gguf_out, meta.data());
 | |
|     fout.write_raw(meta.data(), meta.size());
 | |
| 
 | |
|     std::vector<uint8_t> data;
 | |
|     std::vector<uint8_t> padding;
 | |
|     for (int i=0; i < n_tensors; ++i) {
 | |
|         const char * name = gguf_get_tensor_name(gguf_in, i);
 | |
|         struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
 | |
| 
 | |
|         // read tensor data
 | |
|         data.resize(ggml_nbytes(tensor));
 | |
|         tensor->data = data.data();
 | |
|         size_t offset = gguf_get_tensor_offset(gguf_in, i);
 | |
|         fin.seek(offset + meta.size(), SEEK_SET);
 | |
|         fin.read_raw(data.data(), data.size());
 | |
| 
 | |
|         // apply all loras
 | |
|         for (size_t k = 0; k < loras.size(); ++k) {
 | |
|             apply_lora(tensor, loras[k], params->n_threads);
 | |
|         }
 | |
| 
 | |
|         // write tensor data + padding
 | |
|         padding.clear();
 | |
|         padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0);
 | |
| 
 | |
|         GGML_ASSERT(fout.tell() == offset + meta.size());
 | |
|         // fout.seek(offset + meta.size(), SEEK_SET);
 | |
|         fout.write_raw(data.data(), data.size());
 | |
|         fout.write_raw(padding.data(), padding.size());
 | |
| 
 | |
|         if (i % 2 == 0) {
 | |
|             printf(".");
 | |
|         }
 | |
|     }
 | |
|     printf("\n");
 | |
| 
 | |
|     // close gguf
 | |
|     gguf_free(gguf_out);
 | |
|     gguf_free(gguf_in);
 | |
| 
 | |
|     // free loras
 | |
|     for (size_t i = 0; i < loras.size(); ++i) {
 | |
|         free_lora(loras[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     struct export_lora_params params = get_default_export_lora_params();
 | |
| 
 | |
|     if (!export_lora_params_parse(argc, argv, ¶ms)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     export_lora(¶ms);
 | |
| 
 | |
|     return 0;
 | |
| }
 |