| * ggml : group all experts in a single ggml_mul_mat_id cuda : improve mmid row copy * cuda : fix bin bcast with non-cont src0 * test-backend-ops : only run all mul mat tests for base types * llama : disable moe offloading with SYCL --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> | ||
|---|---|---|
| .. | ||
| CMakeLists.txt | ||
| imatrix.cpp | ||
| README.md | ||
llama.cpp/examples/imatrix
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantum models. More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
Usage
./imatrix -m <some_fp_model> -f <some_training_data> [-o <output_file>] [--verbosity <verbosity_level>]
        [-ofreq num_chunks] [-ow <0 or 1>] [other common params]
Here -m with a model name and -f with a file containing training data (such as e.g. wiki.train.raw) are mandatory.
The parameters in square brackets are optional and have the following meaning:
- -o(or- --output-file) specifies the name of the file where the computed data will be stored. If missing- imatrix.datis used.
- --verbosityspecifies the verbosity level. If set to- 0, no output other than the perplexity of the processed chunks will be generated. If set to- 1, each time the results are saved a message is written to- stderr. If- >=2, a message is output each time data is collected for any tensor. Default verbosity level is- 1.
- -ofreq(or- --output-frequency) specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks)
- -ow(or- --output-weight) specifies if data will be collected for the- output.weighttensor. My experience is that it is better to not utilize the importance matrix when quantizing- output.weight, so this is set to- falseby default.
For faster computation, make sure to use GPU offloading via the -ngl argument
Example
LLAMA_CUDA=1 make -j
# generate importance matrix (imatrix.dat)
./imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99
# use the imatrix to perform a Q4_K_M quantization
./quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m