loops with bounds not known at compile time can not be unrolled. when ncols_template == 0, the bounds of the loop are not constexpr, thus llvm cant unroll the loops here.
283 lines
10 KiB
Text
283 lines
10 KiB
Text
#include "common.cuh"
|
|
#include "ggml.h"
|
|
#include "softmax.cuh"
|
|
#include <cstdint>
|
|
|
|
template <typename T>
|
|
static __device__ __forceinline__ float t2f32(T val) {
|
|
return (float) val;
|
|
}
|
|
|
|
template <>
|
|
__device__ float __forceinline__ t2f32<half>(half val) {
|
|
return __half2float(val);
|
|
}
|
|
|
|
// When ncols_template == 0 the bounds for the loops in this function are not known and can't be unrolled.
|
|
// As we want to keep pragma unroll for all other cases we supress the clang transformation warning here.
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wpass-failed"
|
|
#endif
|
|
template <bool use_shared, int ncols_template, int block_size_template, typename T>
|
|
static __global__ void soft_max_f32(
|
|
const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y,
|
|
const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
|
|
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
|
|
|
const int tid = threadIdx.x;
|
|
const int rowx = blockIdx.x;
|
|
const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
|
|
|
|
x += int64_t(rowx)*ncols;
|
|
mask += int64_t(rowy)*ncols * (mask != nullptr);
|
|
dst += int64_t(rowx)*ncols;
|
|
|
|
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
|
|
|
|
const int warp_id = threadIdx.x / WARP_SIZE;
|
|
const int lane_id = threadIdx.x % WARP_SIZE;
|
|
|
|
const float slope = get_alibi_slope(max_bias, rowx/nrows_y, n_head_log2, m0, m1);
|
|
|
|
extern __shared__ float data_soft_max_f32[];
|
|
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
|
// shared memory buffer to cache values between iterations:
|
|
float * vals = use_shared ? buf_iw + WARP_SIZE : dst;
|
|
|
|
float max_val = -INFINITY;
|
|
|
|
#pragma unroll
|
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
|
const int col = col0 + tid;
|
|
|
|
if (ncols_template == 0 && col >= ncols) {
|
|
break;
|
|
}
|
|
|
|
const float val = x[col]*scale + (mask ? slope*t2f32(mask[col]) : 0.0f);
|
|
|
|
vals[col] = val;
|
|
max_val = max(max_val, val);
|
|
}
|
|
|
|
// find the max value in the block
|
|
max_val = warp_reduce_max(max_val);
|
|
if (block_size > WARP_SIZE) {
|
|
if (warp_id == 0) {
|
|
buf_iw[lane_id] = -INFINITY;
|
|
}
|
|
__syncthreads();
|
|
|
|
if (lane_id == 0) {
|
|
buf_iw[warp_id] = max_val;
|
|
}
|
|
__syncthreads();
|
|
|
|
max_val = buf_iw[lane_id];
|
|
max_val = warp_reduce_max(max_val);
|
|
}
|
|
|
|
float tmp = 0.0f; // partial sum
|
|
|
|
#pragma unroll
|
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
|
const int col = col0 + tid;
|
|
|
|
if (ncols_template == 0 && col >= ncols) {
|
|
break;
|
|
}
|
|
|
|
const float val = expf(vals[col] - max_val);
|
|
tmp += val;
|
|
vals[col] = val;
|
|
}
|
|
|
|
// find the sum of exps in the block
|
|
tmp = warp_reduce_sum(tmp);
|
|
if (block_size > WARP_SIZE) {
|
|
__syncthreads();
|
|
if (warp_id == 0) {
|
|
buf_iw[lane_id] = 0.0f;
|
|
}
|
|
__syncthreads();
|
|
|
|
if (lane_id == 0) {
|
|
buf_iw[warp_id] = tmp;
|
|
}
|
|
__syncthreads();
|
|
|
|
tmp = buf_iw[lane_id];
|
|
tmp = warp_reduce_sum(tmp);
|
|
}
|
|
|
|
const float inv_sum = 1.0f / tmp;
|
|
|
|
#pragma unroll
|
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
|
const int col = col0 + tid;
|
|
|
|
if (ncols_template == 0 && col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
dst[col] = vals[col] * inv_sum;
|
|
}
|
|
}
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
static __global__ void soft_max_back_f32(
|
|
const float * grad, const float * dstf, float * dst, const int ncols, const float scale) {
|
|
const int tid = threadIdx.x;
|
|
const int rowx = blockIdx.x;
|
|
|
|
grad += int64_t(rowx)*ncols;
|
|
dstf += int64_t(rowx)*ncols;
|
|
dst += int64_t(rowx)*ncols;
|
|
|
|
float dgf_dot = 0.0f; // dot product of dst from forward pass and gradients
|
|
|
|
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
|
dgf_dot += dstf[col]*grad[col];
|
|
}
|
|
|
|
dgf_dot = warp_reduce_sum(dgf_dot);
|
|
|
|
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
|
dst[col] = scale * (grad[col] - dgf_dot) * dstf[col];
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
|
|
int nth = WARP_SIZE;
|
|
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
|
const dim3 block_dims(nth, 1, 1);
|
|
const dim3 block_nums(nrows_x, 1, 1);
|
|
const size_t nbytes_shared = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
|
|
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
|
|
|
const uint32_t n_head = nrows_x/nrows_y;
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
|
if (nbytes_shared < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
|
|
switch (ncols_x) {
|
|
case 32:
|
|
soft_max_f32<true, 32, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
|
|
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
|
break;
|
|
case 64:
|
|
soft_max_f32<true, 64, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
|
|
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
|
break;
|
|
case 128:
|
|
soft_max_f32<true, 128, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
|
|
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
|
break;
|
|
case 256:
|
|
soft_max_f32<true, 256, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
|
|
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
|
break;
|
|
case 512:
|
|
soft_max_f32<true, 512, 512><<<block_nums, block_dims, nbytes_shared, stream>>>
|
|
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
|
break;
|
|
case 1024:
|
|
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
|
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
|
break;
|
|
case 2048:
|
|
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
|
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
|
break;
|
|
case 4096:
|
|
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
|
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
|
break;
|
|
default:
|
|
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>
|
|
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
|
break;
|
|
}
|
|
} else {
|
|
const size_t nbytes_shared_low = WARP_SIZE*sizeof(float);
|
|
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
|
}
|
|
}
|
|
|
|
static void soft_max_back_f32_cuda(
|
|
const float * grad, const float * dstf, float * dst,
|
|
const int ncols, const int nrows, const float scale, cudaStream_t stream) {
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
const dim3 block_nums(nrows, 1, 1);
|
|
|
|
soft_max_back_f32<<<block_nums, block_dims, 0, stream>>>(grad, dstf, dst, ncols, scale);
|
|
}
|
|
|
|
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
const float * src0_d = (const float *) src0->data;
|
|
const void * src1_d = src1 ? (const void *) src1->data : nullptr;
|
|
float * dst_d = (float *) dst->data;
|
|
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t nrows_x = ggml_nrows(src0);
|
|
const int64_t nrows_y = src0->ne[1];
|
|
|
|
float scale = 1.0f;
|
|
float max_bias = 0.0f;
|
|
|
|
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
|
|
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
|
|
|
|
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
|
|
|
if (use_f16) {
|
|
soft_max_f32_cuda(src0_d, (const half *) src1_d, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
|
} else {
|
|
soft_max_f32_cuda(src0_d, (const float *) src1_d, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_op_soft_max_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0]; // grad
|
|
const ggml_tensor * src1 = dst->src[1]; // forward pass output
|
|
|
|
const float * src0_d = (const float *) src0->data;
|
|
const float * src1_d = (const float *) src1->data;
|
|
float * dst_d = (float *) dst->data;
|
|
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ncols = src0->ne[0];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
float scale = 1.0f;
|
|
float max_bias = 0.0f;
|
|
|
|
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
|
|
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
|
|
|
|
GGML_ASSERT(max_bias == 0.0f);
|
|
|
|
soft_max_back_f32_cuda(src0_d, src1_d, dst_d, ncols, nrows, scale, stream);
|
|
}
|