* speculative : refactor and add a simpler example ggml-ci * speculative : clean-up and add comments and TODOs [no ci] * speculative : manage context in common_speculative ggml-ci * speculative : simplify ggml-ci * speculative : simplify (cont) ggml-ci * speculative : add --draft-min CLI arg * speculative : minor fixup * make : build fixes * speculative : do not redraft previous drafts ggml-ci * speculative : fix the draft sampling ggml-ci * speculative : fix compile warning * common : refactor args ggml-ci * common : change defaults [no ci] * common : final touches ggml-ci
		
			
				
	
	
		
			304 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			304 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "common.h"
 | |
| #include "log.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <fstream>
 | |
| #include <iostream> // TODO: remove me
 | |
| 
 | |
| static void print_usage(int, char ** argv) {
 | |
|     LOG("\nexample usage:\n");
 | |
|     LOG("\n    %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
 | |
|     LOG("\n");
 | |
| }
 | |
| 
 | |
| struct chunk {
 | |
|     // filename
 | |
|     std::string filename;
 | |
|     // original file position
 | |
|     size_t filepos;
 | |
|     // original text data
 | |
|     std::string textdata;
 | |
|     // tokenized text data
 | |
|     std::vector<llama_token> tokens;
 | |
|     // embedding
 | |
|     std::vector<float> embedding;
 | |
| };
 | |
| 
 | |
| // chunk file data to chunks of size >= chunk_size
 | |
| // chunk_separator is the separator between chunks
 | |
| static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) {
 | |
|     std::vector<chunk> chunks;
 | |
|     std::ifstream f(filename.c_str());
 | |
| 
 | |
|     if (!f.is_open()) {
 | |
|         LOG_ERR("could not open file %s\n", filename.c_str());
 | |
|         return chunks;
 | |
|     }
 | |
| 
 | |
|     chunk current_chunk;
 | |
|     char buffer[1024];
 | |
|     int64_t filepos = 0;
 | |
|     std::string current;
 | |
|     while (f.read(buffer, 1024)) {
 | |
|         current += std::string(buffer, f.gcount());
 | |
|         size_t pos;
 | |
|         while ((pos = current.find(chunk_separator)) != std::string::npos) {
 | |
|             current_chunk.textdata += current.substr(0, pos + chunk_separator.size());
 | |
|             if ((int) current_chunk.textdata.size() > chunk_size) {
 | |
|                 // save chunk
 | |
|                 current_chunk.filepos = filepos;
 | |
|                 current_chunk.filename = filename;
 | |
|                 chunks.push_back(current_chunk);
 | |
|                 // update filepos
 | |
|                 filepos += (int) current_chunk.textdata.size();
 | |
|                 // reset current_chunk
 | |
|                 current_chunk = chunk();
 | |
|             }
 | |
|             current = current.substr(pos + chunk_separator.size());
 | |
|         }
 | |
| 
 | |
|     }
 | |
|     // add leftover data to last chunk
 | |
|     if (current_chunk.textdata.size() > 0) {
 | |
|         if (chunks.empty()) {
 | |
|             current_chunk.filepos = filepos;
 | |
|             current_chunk.filename = filename;
 | |
|             chunks.push_back(current_chunk);
 | |
|         } else {
 | |
|             chunks.back().textdata += current_chunk.textdata;
 | |
|         }
 | |
|     }
 | |
|     f.close();
 | |
|     return chunks;
 | |
| }
 | |
| 
 | |
| static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
 | |
|     size_t n_tokens = tokens.size();
 | |
|     for (size_t i = 0; i < n_tokens; i++) {
 | |
|         common_batch_add(batch, tokens[i], i, { seq_id }, true);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
 | |
|     // clear previous kv_cache values (irrelevant for embeddings)
 | |
|     llama_kv_cache_clear(ctx);
 | |
| 
 | |
|     // run model
 | |
|     LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
 | |
|     if (llama_decode(ctx, batch) < 0) {
 | |
|         LOG_ERR("%s : failed to decode\n", __func__);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < batch.n_tokens; i++) {
 | |
|         if (!batch.logits[i]) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         // try to get sequence embeddings - supported only when pooling_type is not NONE
 | |
|         const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
 | |
|         if (embd == NULL) {
 | |
|             embd = llama_get_embeddings_ith(ctx, i);
 | |
|             if (embd == NULL) {
 | |
|                 LOG_ERR("%s: failed to get embeddings for token %d\n", __func__, i);
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         float * out = output + batch.seq_id[i][0] * n_embd;
 | |
|         common_embd_normalize(embd, out, n_embd);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     common_params params;
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     // For BERT models, batch size must be equal to ubatch size
 | |
|     params.n_ubatch = params.n_batch;
 | |
|     params.embedding = true;
 | |
| 
 | |
|     if (params.chunk_size <= 0) {
 | |
|         LOG_ERR("chunk_size must be positive\n");
 | |
|         return 1;
 | |
|     }
 | |
|     if (params.context_files.empty()) {
 | |
|         LOG_ERR("context_files must be specified\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     LOG_INF("processing files:\n");
 | |
|     for (auto & context_file : params.context_files) {
 | |
|         LOG_INF("%s\n", context_file.c_str());
 | |
|     }
 | |
| 
 | |
|     std::vector<chunk> chunks;
 | |
|     for (auto & context_file : params.context_files) {
 | |
|         std::vector<chunk> file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator);
 | |
|         chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
 | |
|     }
 | |
|     LOG_INF("Number of chunks: %ld\n", chunks.size());
 | |
| 
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     // load the model
 | |
|     common_init_result llama_init = common_init_from_params(params);
 | |
| 
 | |
|     llama_model * model = llama_init.model;
 | |
|     llama_context * ctx = llama_init.context;
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         LOG_ERR("%s: unable to load model\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const int n_ctx_train = llama_n_ctx_train(model);
 | |
|     const int n_ctx = llama_n_ctx(ctx);
 | |
| 
 | |
|     const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
 | |
|     if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
 | |
|         LOG_ERR("%s: pooling type NONE not supported\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (n_ctx > n_ctx_train) {
 | |
|         LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n",
 | |
|                 __func__, n_ctx_train, n_ctx);
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         LOG_INF("\n");
 | |
|         LOG_INF("%s\n", common_params_get_system_info(params).c_str());
 | |
|     }
 | |
| 
 | |
|     // max batch size
 | |
|     const uint64_t n_batch = params.n_batch;
 | |
|     GGML_ASSERT(params.n_batch >= params.n_ctx);
 | |
| 
 | |
|     // tokenize the prompts and trim
 | |
|     for (auto & chunk : chunks) {
 | |
|         auto inp = common_tokenize(ctx, chunk.textdata, true, false);
 | |
|         if (inp.size() > n_batch) {
 | |
|             LOG_ERR("%s: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
 | |
|                     __func__, (long long int) inp.size(), (long long int) n_batch);
 | |
|             return 1;
 | |
|         }
 | |
|         // add eos if not present
 | |
|         if (llama_token_eos(model) >= 0 && (inp.empty() || inp.back() != llama_token_eos(model))) {
 | |
|             inp.push_back(llama_token_eos(model));
 | |
|         }
 | |
|         chunk.tokens = inp;
 | |
|     }
 | |
| 
 | |
|     // tokenization stats
 | |
|     if (params.verbose_prompt) {
 | |
|         for (int i = 0; i < (int) chunks.size(); i++) {
 | |
|             LOG_INF("%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
 | |
|             LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
 | |
|             for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
 | |
|                 LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], common_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
 | |
|             }
 | |
|             LOG_INF("\n\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // initialize batch
 | |
|     const int n_chunks = chunks.size();
 | |
|     struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
 | |
| 
 | |
|     // allocate output
 | |
|     const int n_embd = llama_n_embd(model);
 | |
|     std::vector<float> embeddings(n_chunks * n_embd, 0);
 | |
|     float * emb = embeddings.data();
 | |
| 
 | |
|     // break into batches
 | |
|     int p = 0; // number of prompts processed already
 | |
|     int s = 0; // number of prompts in current batch
 | |
|     for (int k = 0; k < n_chunks; k++) {
 | |
|         // clamp to n_batch tokens
 | |
|         auto & inp = chunks[k].tokens;
 | |
| 
 | |
|         const uint64_t n_toks = inp.size();
 | |
| 
 | |
|         // encode if at capacity
 | |
|         if (batch.n_tokens + n_toks > n_batch) {
 | |
|             float * out = emb + p * n_embd;
 | |
|             batch_decode(ctx, batch, out, s, n_embd);
 | |
|             common_batch_clear(batch);
 | |
|             p += s;
 | |
|             s = 0;
 | |
|         }
 | |
| 
 | |
|         // add to batch
 | |
|         batch_add_seq(batch, inp, s);
 | |
|         s += 1;
 | |
|     }
 | |
| 
 | |
|     // final batch
 | |
|     float * out = emb + p * n_embd;
 | |
|     batch_decode(ctx, batch, out, s, n_embd);
 | |
| 
 | |
|     // save embeddings to chunks
 | |
|     for (int i = 0; i < n_chunks; i++) {
 | |
|         chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
 | |
|         // clear tokens as they are no longer needed
 | |
|         chunks[i].tokens.clear();
 | |
|     }
 | |
| 
 | |
|     struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
 | |
| 
 | |
|     // start loop, receive query and return top k similar chunks based on cosine similarity
 | |
|     std::string query;
 | |
|     while (true) {
 | |
|         LOG("Enter query: ");
 | |
|         std::getline(std::cin, query);
 | |
|         std::vector<int32_t> query_tokens = common_tokenize(ctx, query, true);
 | |
| 
 | |
|         batch_add_seq(query_batch, query_tokens, 0);
 | |
| 
 | |
|         std::vector<float> query_emb(n_embd, 0);
 | |
|         batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
 | |
| 
 | |
|         common_batch_clear(query_batch);
 | |
| 
 | |
|         // compute cosine similarities
 | |
|         {
 | |
|             std::vector<std::pair<int, float>> similarities;
 | |
|             for (int i = 0; i < n_chunks; i++) {
 | |
|                 float sim = common_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
 | |
|                 similarities.push_back(std::make_pair(i, sim));
 | |
|             }
 | |
| 
 | |
|             // sort similarities
 | |
|             std::sort(similarities.begin(), similarities.end(), [](const std::pair<int, float> & a, const std::pair<int, float> & b) {
 | |
|                 return a.second > b.second;
 | |
|             });
 | |
| 
 | |
|             LOG("Top %d similar chunks:\n", params.sampling.top_k);
 | |
|             for (int i = 0; i < std::min(params.sampling.top_k, (int) chunks.size()); i++) {
 | |
|                 LOG("filename: %s\n", chunks[similarities[i].first].filename.c_str());
 | |
|                 LOG("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
 | |
|                 LOG("similarity: %f\n", similarities[i].second);
 | |
|                 LOG("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
 | |
|                 LOG("--------------------\n");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     LOG("\n");
 | |
|     llama_perf_context_print(ctx);
 | |
| 
 | |
|     // clean up
 | |
|     llama_batch_free(query_batch);
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
|     llama_backend_free();
 | |
| }
 |