* Introduce the new Min-P sampler by @kalomaze The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. * Min-P enabled and set to 0.05 default --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
		
			
				
	
	
		
			228 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			228 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "sampling.h"
 | |
| 
 | |
| struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
 | |
|     struct llama_sampling_context * result = new llama_sampling_context();
 | |
| 
 | |
|     result->params  = params;
 | |
|     result->grammar = nullptr;
 | |
| 
 | |
|     // if there is a grammar, parse it
 | |
|     if (!params.grammar.empty()) {
 | |
|         result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
 | |
| 
 | |
|         // will be empty (default) if there are parse errors
 | |
|         if (result->parsed_grammar.rules.empty()) {
 | |
|             fprintf(stderr, "%s: failed to parse grammar\n", __func__);
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
 | |
| 
 | |
|         result->grammar = llama_grammar_init(
 | |
|                 grammar_rules.data(),
 | |
|                 grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
 | |
|     }
 | |
| 
 | |
|     result->prev.resize(params.n_prev);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void llama_sampling_free(struct llama_sampling_context * ctx) {
 | |
|     if (ctx->grammar != NULL) {
 | |
|         llama_grammar_free(ctx->grammar);
 | |
|     }
 | |
| 
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| void llama_sampling_reset(llama_sampling_context * ctx) {
 | |
|     if (ctx->grammar != NULL) {
 | |
|         llama_grammar_free(ctx->grammar);
 | |
|     }
 | |
| 
 | |
|     if (!ctx->parsed_grammar.rules.empty()) {
 | |
|         std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
 | |
| 
 | |
|         ctx->grammar = llama_grammar_init(
 | |
|                 grammar_rules.data(),
 | |
|                 grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
 | |
|     }
 | |
| 
 | |
|     std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
 | |
|     ctx->cur.clear();
 | |
| }
 | |
| 
 | |
| void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
 | |
|     if (dst->grammar) {
 | |
|         llama_grammar_free(dst->grammar);
 | |
|         dst->grammar = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (src->grammar) {
 | |
|         dst->grammar = llama_grammar_copy(src->grammar);
 | |
|     }
 | |
| 
 | |
|     dst->prev = src->prev;
 | |
| }
 | |
| 
 | |
| llama_token llama_sampling_last(llama_sampling_context * ctx) {
 | |
|     return ctx->prev.back();
 | |
| }
 | |
| 
 | |
| std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
 | |
|     const int size = ctx_sampling->prev.size();
 | |
| 
 | |
|     n = std::min(n, size);
 | |
| 
 | |
|     std::string result;
 | |
| 
 | |
|     for (int i = size - n; i < size; i++) {
 | |
|         result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| std::string llama_sampling_print(const llama_sampling_params & params) {
 | |
|     char result[1024];
 | |
| 
 | |
|     snprintf(result, sizeof(result),
 | |
|             "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
 | |
|             "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
 | |
|             "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
 | |
|             params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
 | |
|             params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
 | |
|             params.mirostat, params.mirostat_eta, params.mirostat_tau);
 | |
| 
 | |
|     return std::string(result);
 | |
| }
 | |
| 
 | |
| llama_token llama_sampling_sample(
 | |
|                   struct llama_sampling_context * ctx_sampling,
 | |
|                   struct llama_context * ctx_main,
 | |
|                   struct llama_context * ctx_cfg,
 | |
|                   const int idx) {
 | |
|     const llama_sampling_params & params = ctx_sampling->params;
 | |
| 
 | |
|     const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
 | |
| 
 | |
|     const float   temp            = params.temp;
 | |
|     const int32_t top_k           = params.top_k <= 0 ? n_vocab : params.top_k;
 | |
|     const float   top_p           = params.top_p;
 | |
|     const float   min_p           = params.min_p;
 | |
|     const float   tfs_z           = params.tfs_z;
 | |
|     const float   typical_p       = params.typical_p;
 | |
|     const int32_t penalty_last_n  = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
 | |
|     const float   penalty_repeat  = params.penalty_repeat;
 | |
|     const float   penalty_freq    = params.penalty_freq;
 | |
|     const float   penalty_present = params.penalty_present;
 | |
|     const int     mirostat        = params.mirostat;
 | |
|     const float   mirostat_tau    = params.mirostat_tau;
 | |
|     const float   mirostat_eta    = params.mirostat_eta;
 | |
|     const bool    penalize_nl     = params.penalize_nl;
 | |
| 
 | |
|     auto & prev = ctx_sampling->prev;
 | |
|     auto & cur  = ctx_sampling->cur;
 | |
| 
 | |
|     llama_token id = 0;
 | |
| 
 | |
|     float * logits = llama_get_logits_ith(ctx_main, idx);
 | |
| 
 | |
|     // apply params.logit_bias map
 | |
|     for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
 | |
|         logits[it->first] += it->second;
 | |
|     }
 | |
| 
 | |
|     cur.clear();
 | |
| 
 | |
|     for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|         cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | |
|     }
 | |
| 
 | |
|     llama_token_data_array cur_p = { cur.data(), cur.size(), false };
 | |
| 
 | |
|     if (ctx_cfg) {
 | |
|         llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
 | |
|     }
 | |
| 
 | |
|     // apply penalties
 | |
|     if (!prev.empty()) {
 | |
|         const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
 | |
| 
 | |
|         llama_sample_repetition_penalties(ctx_main, &cur_p,
 | |
|                 prev.data() + prev.size() - penalty_last_n,
 | |
|                 penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
 | |
| 
 | |
|         if (!penalize_nl) {
 | |
|             for (size_t idx = 0; idx < cur_p.size; idx++) {
 | |
|                 if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
 | |
|                     cur_p.data[idx].logit = nl_logit;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ctx_sampling->grammar != NULL) {
 | |
|         llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
 | |
|     }
 | |
| 
 | |
|     if (temp < 0.0) {
 | |
|         // greedy sampling, with probs
 | |
|         llama_sample_softmax(ctx_main, &cur_p);
 | |
|         id = cur_p.data[0].id;
 | |
|     } else if (temp == 0.0) {
 | |
|         // greedy sampling, no probs
 | |
|         id = llama_sample_token_greedy(ctx_main, &cur_p);
 | |
|     } else {
 | |
|         if (mirostat == 1) {
 | |
|             const int mirostat_m = 100;
 | |
|             llama_sample_temp(ctx_main, &cur_p, temp);
 | |
|             id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
 | |
|         } else if (mirostat == 2) {
 | |
|             llama_sample_temp(ctx_main, &cur_p, temp);
 | |
|             id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
 | |
|         } else {
 | |
|             // temperature sampling
 | |
|             size_t min_keep = std::max(1, params.n_probs);
 | |
| 
 | |
|             llama_sample_top_k    (ctx_main, &cur_p, top_k,     min_keep);
 | |
|             llama_sample_tail_free(ctx_main, &cur_p, tfs_z,     min_keep);
 | |
|             llama_sample_typical  (ctx_main, &cur_p, typical_p, min_keep);
 | |
|             llama_sample_top_p    (ctx_main, &cur_p, top_p,     min_keep);
 | |
|             llama_sample_min_p    (ctx_main, &cur_p, min_p,     min_keep);
 | |
|             llama_sample_temp     (ctx_main, &cur_p, temp);
 | |
| 
 | |
|             id = llama_sample_token(ctx_main, &cur_p);
 | |
| 
 | |
|             //{
 | |
|             //    const int n_top = 10;
 | |
|             //    LOG("top %d candidates:\n", n_top);
 | |
| 
 | |
|             //    for (int i = 0; i < n_top; i++) {
 | |
|             //        const llama_token id = cur_p.data[i].id;
 | |
|             //        (void)id; // To avoid a warning that id is unused when logging is disabled.
 | |
|             //        LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
 | |
|             //    }
 | |
|             //}
 | |
| 
 | |
|             LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| void llama_sampling_accept(
 | |
|         struct llama_sampling_context * ctx_sampling,
 | |
|         struct llama_context * ctx_main,
 | |
|         llama_token id,
 | |
|         bool apply_grammar) {
 | |
|     ctx_sampling->prev.erase(ctx_sampling->prev.begin());
 | |
|     ctx_sampling->prev.push_back(id);
 | |
| 
 | |
|     if (ctx_sampling->grammar != NULL && apply_grammar) {
 | |
|         llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
 | |
|     }
 | |
| }
 |