* refactor llama_batch_get_one * adapt all examples * fix simple.cpp * fix llama_bench * fix * fix context shifting * free batch before return * use common_batch_add, reuse llama_batch in loop * null terminated seq_id list * fix save-load-state example * fix perplexity * correct token pos in llama_batch_allocr |
||
|---|---|---|
| .. | ||
| CMakeLists.txt | ||
| imatrix.cpp | ||
| README.md | ||
llama.cpp/examples/imatrix
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantized models. More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
Usage
./llama-imatrix \
-m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \
[--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \
[--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]
Here -m with a model name and -f with a file containing training data (such as e.g. wiki.train.raw) are mandatory.
The parameters in square brackets are optional and have the following meaning:
-o(or--output-file) specifies the name of the file where the computed data will be stored. If missingimatrix.datis used.--verbosityspecifies the verbosity level. If set to0, no output other than the perplexity of the processed chunks will be generated. If set to1, each time the results are saved a message is written tostderr. If>=2, a message is output each time data is collected for any tensor. Default verbosity level is1.--output-frequencyspecifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks)--save-frequencyspecifies how often to save a copy of the imatrix in a separate file. Default is 0 (i.e., never)--process-outputspecifies if data will be collected for theoutput.weighttensor. My experience is that it is better to not utilize the importance matrix when quantizingoutput.weight, so this is set tofalseby default.
For faster computation, make sure to use GPU offloading via the -ngl argument
Example
GGML_CUDA=1 make -j
# generate importance matrix (imatrix.dat)
./llama-imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99
# use the imatrix to perform a Q4_K_M quantization
./llama-quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m