533 lines
20 KiB
Python
533 lines
20 KiB
Python
|
# pylint: disable=protected-access
|
||
|
|
||
|
import json
|
||
|
import logging
|
||
|
import uuid
|
||
|
|
||
|
from time import time
|
||
|
from datetime import timedelta, datetime, date
|
||
|
from dateutil.parser import parse as parse_datetime
|
||
|
|
||
|
from abc import ABCMeta, abstractmethod
|
||
|
from six import add_metaclass
|
||
|
|
||
|
from elasticsearch.exceptions import ConnectionTimeout, NotFoundError
|
||
|
|
||
|
from data import model
|
||
|
from data.database import CloseForLongOperation
|
||
|
from data.model import config
|
||
|
from data.model.log import (_json_serialize, ACTIONS_ALLOWED_WITHOUT_AUDIT_LOGGING,
|
||
|
DataModelException)
|
||
|
from data.logs_model.elastic_logs import LogEntry, configure_es
|
||
|
from data.logs_model.datatypes import Log, AggregatedLogCount, LogEntriesPage
|
||
|
from data.logs_model.interface import (ActionLogsDataInterface, LogRotationContextInterface,
|
||
|
LogsIterationTimeout)
|
||
|
from data.logs_model.shared import SharedModel, epoch_ms
|
||
|
|
||
|
from data.logs_model.logs_producer import LogProducerProxy, LogSendException
|
||
|
from data.logs_model.logs_producer.kafka_logs_producer import KafkaLogsProducer
|
||
|
from data.logs_model.logs_producer.elasticsearch_logs_producer import ElasticsearchLogsProducer
|
||
|
from data.logs_model.logs_producer.kinesis_stream_logs_producer import KinesisStreamLogsProducer
|
||
|
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
PAGE_SIZE = 20
|
||
|
DEFAULT_RESULT_WINDOW = 5000
|
||
|
MAX_RESULT_WINDOW = 10000
|
||
|
|
||
|
# DATE_RANGE_LIMIT is to limit the query date time range to at most 1 month.
|
||
|
DATE_RANGE_LIMIT = 32
|
||
|
|
||
|
# Timeout for count_repository_actions
|
||
|
COUNT_REPOSITORY_ACTION_TIMEOUT = 30
|
||
|
|
||
|
|
||
|
|
||
|
def _date_range_descending(start_datetime, end_datetime, includes_end_datetime=False):
|
||
|
""" Generate the dates between `end_datetime` and `start_datetime`.
|
||
|
|
||
|
If `includes_end_datetime` is set, the generator starts at `end_datetime`,
|
||
|
otherwise, starts the generator at `end_datetime` minus 1 second.
|
||
|
"""
|
||
|
assert end_datetime >= start_datetime
|
||
|
start_date = start_datetime.date()
|
||
|
|
||
|
if includes_end_datetime:
|
||
|
current_date = end_datetime.date()
|
||
|
else:
|
||
|
current_date = (end_datetime - timedelta(seconds=1)).date()
|
||
|
|
||
|
while current_date >= start_date:
|
||
|
yield current_date
|
||
|
current_date = current_date - timedelta(days=1)
|
||
|
|
||
|
|
||
|
def _date_range_in_single_index(dt1, dt2):
|
||
|
""" Determine whether a single index can be searched given a range
|
||
|
of dates or datetimes. If date instances are given, difference should be 1 day.
|
||
|
|
||
|
NOTE: dt2 is exclusive to the search result set.
|
||
|
i.e. The date range is larger or equal to dt1 and strictly smaller than dt2
|
||
|
"""
|
||
|
assert isinstance(dt1, date) and isinstance(dt2, date)
|
||
|
|
||
|
dt = dt2 - dt1
|
||
|
|
||
|
# Check if date or datetime
|
||
|
if not isinstance(dt1, datetime) and not isinstance(dt2, datetime):
|
||
|
return dt == timedelta(days=1)
|
||
|
|
||
|
if dt < timedelta(days=1) and dt >= timedelta(days=0):
|
||
|
return dt2.day == dt1.day
|
||
|
|
||
|
# Check if datetime can be interpreted as a date: hour, minutes, seconds or microseconds set to 0
|
||
|
if dt == timedelta(days=1):
|
||
|
return dt1.hour == 0 and dt1.minute == 0 and dt1.second == 0 and dt1.microsecond == 0
|
||
|
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _for_elasticsearch_logs(logs, repository_id=None, namespace_id=None):
|
||
|
namespace_ids = set()
|
||
|
for log in logs:
|
||
|
namespace_ids.add(log.account_id)
|
||
|
namespace_ids.add(log.performer_id)
|
||
|
assert namespace_id is None or log.account_id == namespace_id
|
||
|
assert repository_id is None or log.repository_id == repository_id
|
||
|
|
||
|
id_user_map = model.user.get_user_map_by_ids(namespace_ids)
|
||
|
return [Log.for_elasticsearch_log(log, id_user_map) for log in logs]
|
||
|
|
||
|
|
||
|
def _random_id():
|
||
|
""" Generates a unique uuid4 string for the random_id field in LogEntry.
|
||
|
It is used as tie-breaker for sorting logs based on datetime:
|
||
|
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-search-after.html
|
||
|
"""
|
||
|
return str(uuid.uuid4())
|
||
|
|
||
|
|
||
|
@add_metaclass(ABCMeta)
|
||
|
class ElasticsearchLogsModelInterface(object):
|
||
|
"""
|
||
|
Interface for Elasticsearch specific operations with the logs model.
|
||
|
These operations are usually index based.
|
||
|
"""
|
||
|
|
||
|
@abstractmethod
|
||
|
def can_delete_index(self, index, cutoff_date):
|
||
|
""" Return whether the given index is older than the given cutoff date. """
|
||
|
|
||
|
@abstractmethod
|
||
|
def list_indices(self):
|
||
|
""" List the logs model's indices. """
|
||
|
|
||
|
|
||
|
class DocumentLogsModel(SharedModel, ActionLogsDataInterface, ElasticsearchLogsModelInterface):
|
||
|
"""
|
||
|
DocumentLogsModel implements the data model for the logs API backed by an
|
||
|
elasticsearch service.
|
||
|
"""
|
||
|
def __init__(self, should_skip_logging=None, elasticsearch_config=None, producer=None, **kwargs):
|
||
|
self._should_skip_logging = should_skip_logging
|
||
|
self._logs_producer = LogProducerProxy()
|
||
|
self._es_client = configure_es(**elasticsearch_config)
|
||
|
|
||
|
if producer == 'kafka':
|
||
|
kafka_config = kwargs['kafka_config']
|
||
|
self._logs_producer.initialize(KafkaLogsProducer(**kafka_config))
|
||
|
elif producer == 'elasticsearch':
|
||
|
self._logs_producer.initialize(ElasticsearchLogsProducer())
|
||
|
elif producer == 'kinesis_stream':
|
||
|
kinesis_stream_config = kwargs['kinesis_stream_config']
|
||
|
self._logs_producer.initialize(KinesisStreamLogsProducer(**kinesis_stream_config))
|
||
|
else:
|
||
|
raise Exception('Invalid log producer: %s' % producer)
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_ids_by_names(repository_name, namespace_name, performer_name):
|
||
|
""" Retrieve repository/namespace/performer ids based on their names.
|
||
|
throws DataModelException when the namespace_name does not match any
|
||
|
user in the database.
|
||
|
returns database ID or None if not exists.
|
||
|
"""
|
||
|
repository_id = None
|
||
|
account_id = None
|
||
|
performer_id = None
|
||
|
|
||
|
if repository_name and namespace_name:
|
||
|
repository = model.repository.get_repository(namespace_name, repository_name)
|
||
|
if repository:
|
||
|
repository_id = repository.id
|
||
|
account_id = repository.namespace_user.id
|
||
|
|
||
|
if namespace_name and account_id is None:
|
||
|
account = model.user.get_user_or_org(namespace_name)
|
||
|
if account is None:
|
||
|
raise DataModelException('Invalid namespace requested')
|
||
|
|
||
|
account_id = account.id
|
||
|
|
||
|
if performer_name:
|
||
|
performer = model.user.get_user(performer_name)
|
||
|
if performer:
|
||
|
performer_id = performer.id
|
||
|
|
||
|
return repository_id, account_id, performer_id
|
||
|
|
||
|
def _base_query(self, performer_id=None, repository_id=None, account_id=None, filter_kinds=None,
|
||
|
index=None):
|
||
|
if filter_kinds is not None:
|
||
|
assert all(isinstance(kind_name, str) for kind_name in filter_kinds)
|
||
|
|
||
|
if index is not None:
|
||
|
search = LogEntry.search(index=index)
|
||
|
else:
|
||
|
search = LogEntry.search()
|
||
|
|
||
|
if performer_id is not None:
|
||
|
assert isinstance(performer_id, int)
|
||
|
search = search.filter('term', performer_id=performer_id)
|
||
|
|
||
|
if repository_id is not None:
|
||
|
assert isinstance(repository_id, int)
|
||
|
search = search.filter('term', repository_id=repository_id)
|
||
|
|
||
|
if account_id is not None and repository_id is None:
|
||
|
assert isinstance(account_id, int)
|
||
|
search = search.filter('term', account_id=account_id)
|
||
|
|
||
|
if filter_kinds is not None:
|
||
|
kind_map = model.log.get_log_entry_kinds()
|
||
|
ignore_ids = [kind_map[kind_name] for kind_name in filter_kinds]
|
||
|
search = search.exclude('terms', kind_id=ignore_ids)
|
||
|
|
||
|
return search
|
||
|
|
||
|
def _base_query_date_range(self, start_datetime, end_datetime, performer_id, repository_id,
|
||
|
account_id, filter_kinds, index=None):
|
||
|
skip_datetime_check = False
|
||
|
if _date_range_in_single_index(start_datetime, end_datetime):
|
||
|
index = self._es_client.index_name(start_datetime)
|
||
|
skip_datetime_check = self._es_client.index_exists(index)
|
||
|
|
||
|
if index and (skip_datetime_check or self._es_client.index_exists(index)):
|
||
|
search = self._base_query(performer_id, repository_id, account_id, filter_kinds,
|
||
|
index=index)
|
||
|
else:
|
||
|
search = self._base_query(performer_id, repository_id, account_id, filter_kinds)
|
||
|
|
||
|
if not skip_datetime_check:
|
||
|
search = search.query('range', datetime={'gte': start_datetime, 'lt': end_datetime})
|
||
|
|
||
|
return search
|
||
|
|
||
|
def _load_logs_for_day(self, logs_date, performer_id, repository_id, account_id, filter_kinds,
|
||
|
after_datetime=None, after_random_id=None, size=PAGE_SIZE):
|
||
|
index = self._es_client.index_name(logs_date)
|
||
|
if not self._es_client.index_exists(index):
|
||
|
return []
|
||
|
|
||
|
search = self._base_query(performer_id, repository_id, account_id, filter_kinds,
|
||
|
index=index)
|
||
|
search = search.sort({'datetime': 'desc'}, {'random_id.keyword': 'desc'})
|
||
|
search = search.extra(size=size)
|
||
|
|
||
|
if after_datetime is not None and after_random_id is not None:
|
||
|
after_datetime_epoch_ms = epoch_ms(after_datetime)
|
||
|
search = search.extra(search_after=[after_datetime_epoch_ms, after_random_id])
|
||
|
|
||
|
return search.execute()
|
||
|
|
||
|
def _load_latest_logs(self, performer_id, repository_id, account_id, filter_kinds, size):
|
||
|
""" Return the latest logs from Elasticsearch.
|
||
|
|
||
|
Look at indices up to theset logrotateworker threshold, or up to 30 days if not defined.
|
||
|
"""
|
||
|
# Set the last index to check to be the logrotateworker threshold, or 30 days
|
||
|
end_datetime = datetime.now()
|
||
|
start_datetime = end_datetime - timedelta(days=DATE_RANGE_LIMIT)
|
||
|
|
||
|
latest_logs = []
|
||
|
for day in _date_range_descending(start_datetime, end_datetime, includes_end_datetime=True):
|
||
|
try:
|
||
|
logs = self._load_logs_for_day(day, performer_id, repository_id, account_id, filter_kinds,
|
||
|
size=size)
|
||
|
latest_logs.extend(logs)
|
||
|
except NotFoundError:
|
||
|
continue
|
||
|
|
||
|
if len(latest_logs) >= size:
|
||
|
break
|
||
|
|
||
|
return _for_elasticsearch_logs(latest_logs[:size], repository_id, account_id)
|
||
|
|
||
|
def lookup_logs(self, start_datetime, end_datetime, performer_name=None, repository_name=None,
|
||
|
namespace_name=None, filter_kinds=None, page_token=None, max_page_count=None):
|
||
|
assert start_datetime is not None and end_datetime is not None
|
||
|
|
||
|
# Check for a valid combined model token when migrating online from a combined model
|
||
|
if page_token is not None and page_token.get('readwrite_page_token') is not None:
|
||
|
page_token = page_token.get('readwrite_page_token')
|
||
|
|
||
|
if page_token is not None and max_page_count is not None:
|
||
|
page_number = page_token.get('page_number')
|
||
|
if page_number is not None and page_number + 1 > max_page_count:
|
||
|
return LogEntriesPage([], None)
|
||
|
|
||
|
repository_id, account_id, performer_id = DocumentLogsModel._get_ids_by_names(
|
||
|
repository_name, namespace_name, performer_name)
|
||
|
|
||
|
after_datetime = None
|
||
|
after_random_id = None
|
||
|
if page_token is not None:
|
||
|
after_datetime = parse_datetime(page_token['datetime'])
|
||
|
after_random_id = page_token['random_id']
|
||
|
|
||
|
if after_datetime is not None:
|
||
|
end_datetime = min(end_datetime, after_datetime)
|
||
|
|
||
|
all_logs = []
|
||
|
|
||
|
with CloseForLongOperation(config.app_config):
|
||
|
for current_date in _date_range_descending(start_datetime, end_datetime):
|
||
|
try:
|
||
|
logs = self._load_logs_for_day(current_date, performer_id, repository_id, account_id,
|
||
|
filter_kinds, after_datetime, after_random_id,
|
||
|
size=PAGE_SIZE+1)
|
||
|
|
||
|
all_logs.extend(logs)
|
||
|
except NotFoundError:
|
||
|
continue
|
||
|
|
||
|
if len(all_logs) > PAGE_SIZE:
|
||
|
break
|
||
|
|
||
|
next_page_token = None
|
||
|
all_logs = all_logs[0:PAGE_SIZE+1]
|
||
|
|
||
|
if len(all_logs) == PAGE_SIZE + 1:
|
||
|
# The last element in the response is used to check if there's more elements.
|
||
|
# The second element in the response is used as the pagination token because search_after does
|
||
|
# not include the exact match, and so the next page will start with the last element.
|
||
|
# This keeps the behavior exactly the same as table_logs_model, so that
|
||
|
# the caller can expect when a pagination token is non-empty, there must be
|
||
|
# at least 1 log to be retrieved.
|
||
|
next_page_token = {
|
||
|
'datetime': all_logs[-2].datetime.isoformat(),
|
||
|
'random_id': all_logs[-2].random_id,
|
||
|
'page_number': page_token['page_number'] + 1 if page_token else 1,
|
||
|
}
|
||
|
|
||
|
return LogEntriesPage(_for_elasticsearch_logs(all_logs[:PAGE_SIZE], repository_id, account_id),
|
||
|
next_page_token)
|
||
|
|
||
|
def lookup_latest_logs(self, performer_name=None, repository_name=None, namespace_name=None,
|
||
|
filter_kinds=None, size=20):
|
||
|
repository_id, account_id, performer_id = DocumentLogsModel._get_ids_by_names(
|
||
|
repository_name, namespace_name, performer_name)
|
||
|
|
||
|
with CloseForLongOperation(config.app_config):
|
||
|
latest_logs = self._load_latest_logs(performer_id, repository_id, account_id, filter_kinds,
|
||
|
size)
|
||
|
|
||
|
return latest_logs
|
||
|
|
||
|
|
||
|
def get_aggregated_log_counts(self, start_datetime, end_datetime, performer_name=None,
|
||
|
repository_name=None, namespace_name=None, filter_kinds=None):
|
||
|
if end_datetime - start_datetime >= timedelta(days=DATE_RANGE_LIMIT):
|
||
|
raise Exception('Cannot lookup aggregated logs over a period longer than a month')
|
||
|
|
||
|
repository_id, account_id, performer_id = DocumentLogsModel._get_ids_by_names(
|
||
|
repository_name, namespace_name, performer_name)
|
||
|
|
||
|
with CloseForLongOperation(config.app_config):
|
||
|
search = self._base_query_date_range(start_datetime, end_datetime, performer_id,
|
||
|
repository_id, account_id, filter_kinds)
|
||
|
search.aggs.bucket('by_id', 'terms', field='kind_id').bucket('by_date', 'date_histogram',
|
||
|
field='datetime', interval='day')
|
||
|
# es returns all buckets when size=0
|
||
|
search = search.extra(size=0)
|
||
|
resp = search.execute()
|
||
|
|
||
|
if not resp.aggregations:
|
||
|
return []
|
||
|
|
||
|
counts = []
|
||
|
by_id = resp.aggregations['by_id']
|
||
|
|
||
|
for id_bucket in by_id.buckets:
|
||
|
for date_bucket in id_bucket.by_date.buckets:
|
||
|
if date_bucket.doc_count > 0:
|
||
|
counts.append(AggregatedLogCount(id_bucket.key, date_bucket.doc_count, date_bucket.key))
|
||
|
|
||
|
return counts
|
||
|
|
||
|
def count_repository_actions(self, repository, day):
|
||
|
index = self._es_client.index_name(day)
|
||
|
search = self._base_query_date_range(day, day + timedelta(days=1),
|
||
|
None,
|
||
|
repository.id,
|
||
|
None,
|
||
|
None,
|
||
|
index=index)
|
||
|
search = search.params(request_timeout=COUNT_REPOSITORY_ACTION_TIMEOUT)
|
||
|
|
||
|
try:
|
||
|
return search.count()
|
||
|
except NotFoundError:
|
||
|
return 0
|
||
|
|
||
|
def log_action(self, kind_name, namespace_name=None, performer=None, ip=None, metadata=None,
|
||
|
repository=None, repository_name=None, timestamp=None, is_free_namespace=False):
|
||
|
if self._should_skip_logging and self._should_skip_logging(kind_name, namespace_name,
|
||
|
is_free_namespace):
|
||
|
return
|
||
|
|
||
|
if repository_name is not None:
|
||
|
assert repository is None
|
||
|
assert namespace_name is not None
|
||
|
repository = model.repository.get_repository(namespace_name, repository_name)
|
||
|
|
||
|
if timestamp is None:
|
||
|
timestamp = datetime.today()
|
||
|
|
||
|
account_id = None
|
||
|
performer_id = None
|
||
|
repository_id = None
|
||
|
|
||
|
if namespace_name is not None:
|
||
|
account_id = model.user.get_namespace_user(namespace_name).id
|
||
|
|
||
|
if performer is not None:
|
||
|
performer_id = performer.id
|
||
|
|
||
|
if repository is not None:
|
||
|
repository_id = repository.id
|
||
|
|
||
|
metadata_json = json.dumps(metadata or {}, default=_json_serialize)
|
||
|
kind_id = model.log._get_log_entry_kind(kind_name)
|
||
|
log = LogEntry(random_id=_random_id(), kind_id=kind_id, account_id=account_id,
|
||
|
performer_id=performer_id, ip=ip, metadata_json=metadata_json,
|
||
|
repository_id=repository_id, datetime=timestamp)
|
||
|
|
||
|
try:
|
||
|
self._logs_producer.send(log)
|
||
|
except LogSendException as lse:
|
||
|
strict_logging_disabled = config.app_config.get('ALLOW_PULLS_WITHOUT_STRICT_LOGGING')
|
||
|
logger.exception('log_action failed', extra=({'exception': lse}).update(log.to_dict()))
|
||
|
if not (strict_logging_disabled and kind_name in ACTIONS_ALLOWED_WITHOUT_AUDIT_LOGGING):
|
||
|
raise
|
||
|
|
||
|
def yield_logs_for_export(self, start_datetime, end_datetime, repository_id=None,
|
||
|
namespace_id=None, max_query_time=None):
|
||
|
max_query_time = max_query_time.total_seconds() if max_query_time is not None else 300
|
||
|
search = self._base_query_date_range(start_datetime, end_datetime, None, repository_id,
|
||
|
namespace_id, None)
|
||
|
|
||
|
def raise_on_timeout(batch_generator):
|
||
|
start = time()
|
||
|
for batch in batch_generator:
|
||
|
elapsed = time() - start
|
||
|
if elapsed > max_query_time:
|
||
|
logger.error('Retrieval of logs `%s/%s` timed out with time of `%s`', namespace_id,
|
||
|
repository_id, elapsed)
|
||
|
raise LogsIterationTimeout()
|
||
|
|
||
|
yield batch
|
||
|
start = time()
|
||
|
|
||
|
def read_batch(scroll):
|
||
|
batch = []
|
||
|
for log in scroll:
|
||
|
batch.append(log)
|
||
|
if len(batch) == DEFAULT_RESULT_WINDOW:
|
||
|
yield _for_elasticsearch_logs(batch, repository_id=repository_id,
|
||
|
namespace_id=namespace_id)
|
||
|
batch = []
|
||
|
|
||
|
if batch:
|
||
|
yield _for_elasticsearch_logs(batch, repository_id=repository_id, namespace_id=namespace_id)
|
||
|
|
||
|
search = search.params(size=DEFAULT_RESULT_WINDOW, request_timeout=max_query_time)
|
||
|
|
||
|
try:
|
||
|
with CloseForLongOperation(config.app_config):
|
||
|
for batch in raise_on_timeout(read_batch(search.scan())):
|
||
|
yield batch
|
||
|
except ConnectionTimeout:
|
||
|
raise LogsIterationTimeout()
|
||
|
|
||
|
def can_delete_index(self, index, cutoff_date):
|
||
|
return self._es_client.can_delete_index(index, cutoff_date)
|
||
|
|
||
|
def list_indices(self):
|
||
|
return self._es_client.list_indices()
|
||
|
|
||
|
def yield_log_rotation_context(self, cutoff_date, min_logs_per_rotation):
|
||
|
""" Yield a context manager for a group of outdated logs. """
|
||
|
all_indices = self.list_indices()
|
||
|
for index in all_indices:
|
||
|
if not self.can_delete_index(index, cutoff_date):
|
||
|
continue
|
||
|
|
||
|
context = ElasticsearchLogRotationContext(index, min_logs_per_rotation, self._es_client)
|
||
|
yield context
|
||
|
|
||
|
|
||
|
class ElasticsearchLogRotationContext(LogRotationContextInterface):
|
||
|
"""
|
||
|
ElasticsearchLogRotationContext yield batch of logs from an index.
|
||
|
|
||
|
When completed without exceptions, this context will delete its associated
|
||
|
Elasticsearch index.
|
||
|
"""
|
||
|
def __init__(self, index, min_logs_per_rotation, es_client):
|
||
|
self._es_client = es_client
|
||
|
self.min_logs_per_rotation = min_logs_per_rotation
|
||
|
self.index = index
|
||
|
|
||
|
self.start_pos = 0
|
||
|
self.end_pos = 0
|
||
|
|
||
|
self.scroll = None
|
||
|
|
||
|
def __enter__(self):
|
||
|
search = self._base_query()
|
||
|
self.scroll = search.scan()
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, ex_type, ex_value, ex_traceback):
|
||
|
if ex_type is None and ex_value is None and ex_traceback is None:
|
||
|
logger.debug('Deleting index %s', self.index)
|
||
|
self._es_client.delete_index(self.index)
|
||
|
|
||
|
def yield_logs_batch(self):
|
||
|
def batched_logs(gen, size):
|
||
|
batch = []
|
||
|
for log in gen:
|
||
|
batch.append(log)
|
||
|
if len(batch) == size:
|
||
|
yield batch
|
||
|
batch = []
|
||
|
|
||
|
if batch:
|
||
|
yield batch
|
||
|
|
||
|
for batch in batched_logs(self.scroll, self.min_logs_per_rotation):
|
||
|
self.end_pos = self.start_pos + len(batch) - 1
|
||
|
yield batch, self._generate_filename()
|
||
|
self.start_pos = self.end_pos + 1
|
||
|
|
||
|
def _base_query(self):
|
||
|
search = LogEntry.search(index=self.index)
|
||
|
return search
|
||
|
|
||
|
def _generate_filename(self):
|
||
|
""" Generate the filenames used to archive the action logs. """
|
||
|
filename = '%s_%d-%d' % (self.index, self.start_pos, self.end_pos)
|
||
|
filename = '.'.join((filename, 'txt.gz'))
|
||
|
return filename
|