292 lines
12 KiB
Python
292 lines
12 KiB
Python
|
# pylint: disable=protected-access
|
||
|
|
||
|
import logging
|
||
|
|
||
|
from datetime import datetime, timedelta
|
||
|
|
||
|
from tzlocal import get_localzone
|
||
|
from dateutil.relativedelta import relativedelta
|
||
|
|
||
|
from data import model
|
||
|
from data.model import config
|
||
|
from data.database import LogEntry, LogEntry2, LogEntry3, UseThenDisconnect
|
||
|
from data.logs_model.interface import ActionLogsDataInterface, LogsIterationTimeout, \
|
||
|
LogRotationContextInterface
|
||
|
from data.logs_model.datatypes import Log, AggregatedLogCount, LogEntriesPage
|
||
|
from data.logs_model.shared import SharedModel
|
||
|
from data.model.log import get_stale_logs, get_stale_logs_start_id, delete_stale_logs
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
MINIMUM_RANGE_SIZE = 1 # second
|
||
|
MAXIMUM_RANGE_SIZE = 60 * 60 * 24 * 30 # seconds ~= 1 month
|
||
|
EXPECTED_ITERATION_LOG_COUNT = 1000
|
||
|
|
||
|
|
||
|
LOG_MODELS = [LogEntry3, LogEntry2, LogEntry]
|
||
|
|
||
|
|
||
|
class TableLogsModel(SharedModel, ActionLogsDataInterface):
|
||
|
"""
|
||
|
TableLogsModel implements the data model for the logs API backed by a single table
|
||
|
in the database.
|
||
|
"""
|
||
|
def __init__(self, should_skip_logging=None, **kwargs):
|
||
|
self._should_skip_logging = should_skip_logging
|
||
|
|
||
|
def lookup_logs(self, start_datetime, end_datetime, performer_name=None, repository_name=None,
|
||
|
namespace_name=None, filter_kinds=None, page_token=None, max_page_count=None):
|
||
|
if filter_kinds is not None:
|
||
|
assert all(isinstance(kind_name, str) for kind_name in filter_kinds)
|
||
|
|
||
|
assert start_datetime is not None
|
||
|
assert end_datetime is not None
|
||
|
|
||
|
repository = None
|
||
|
if repository_name and namespace_name:
|
||
|
repository = model.repository.get_repository(namespace_name, repository_name)
|
||
|
assert repository
|
||
|
|
||
|
performer = None
|
||
|
if performer_name:
|
||
|
performer = model.user.get_user(performer_name)
|
||
|
assert performer
|
||
|
|
||
|
def get_logs(m, page_token):
|
||
|
logs_query = model.log.get_logs_query(start_datetime, end_datetime, performer=performer,
|
||
|
repository=repository, namespace=namespace_name,
|
||
|
ignore=filter_kinds, model=m)
|
||
|
|
||
|
logs, next_page_token = model.modelutil.paginate(logs_query, m,
|
||
|
descending=True,
|
||
|
page_token=page_token,
|
||
|
limit=20,
|
||
|
max_page=max_page_count,
|
||
|
sort_field_name='datetime')
|
||
|
|
||
|
return logs, next_page_token
|
||
|
|
||
|
TOKEN_TABLE_ID = 'tti'
|
||
|
table_index = 0
|
||
|
logs = []
|
||
|
next_page_token = page_token or None
|
||
|
|
||
|
# Skip empty pages (empty table)
|
||
|
while len(logs) == 0 and table_index < len(LOG_MODELS) - 1:
|
||
|
table_specified = next_page_token is not None and next_page_token.get(TOKEN_TABLE_ID) is not None
|
||
|
if table_specified:
|
||
|
table_index = next_page_token.get(TOKEN_TABLE_ID)
|
||
|
|
||
|
logs_result, next_page_token = get_logs(LOG_MODELS[table_index], next_page_token)
|
||
|
logs.extend(logs_result)
|
||
|
|
||
|
if next_page_token is None and table_index < len(LOG_MODELS) - 1:
|
||
|
next_page_token = {TOKEN_TABLE_ID: table_index + 1}
|
||
|
|
||
|
return LogEntriesPage([Log.for_logentry(log) for log in logs], next_page_token)
|
||
|
|
||
|
def lookup_latest_logs(self, performer_name=None, repository_name=None, namespace_name=None,
|
||
|
filter_kinds=None, size=20):
|
||
|
if filter_kinds is not None:
|
||
|
assert all(isinstance(kind_name, str) for kind_name in filter_kinds)
|
||
|
|
||
|
repository = None
|
||
|
if repository_name and namespace_name:
|
||
|
repository = model.repository.get_repository(namespace_name, repository_name)
|
||
|
assert repository
|
||
|
|
||
|
performer = None
|
||
|
if performer_name:
|
||
|
performer = model.user.get_user(performer_name)
|
||
|
assert performer
|
||
|
|
||
|
def get_latest_logs(m):
|
||
|
logs_query = model.log.get_latest_logs_query(performer=performer, repository=repository,
|
||
|
namespace=namespace_name, ignore=filter_kinds,
|
||
|
model=m, size=size)
|
||
|
|
||
|
logs = list(logs_query)
|
||
|
return [Log.for_logentry(log) for log in logs]
|
||
|
|
||
|
return get_latest_logs(LOG_MODELS[0])
|
||
|
|
||
|
def get_aggregated_log_counts(self, start_datetime, end_datetime, performer_name=None,
|
||
|
repository_name=None, namespace_name=None, filter_kinds=None):
|
||
|
if filter_kinds is not None:
|
||
|
assert all(isinstance(kind_name, str) for kind_name in filter_kinds)
|
||
|
|
||
|
if end_datetime - start_datetime >= timedelta(weeks=4):
|
||
|
raise Exception('Cannot lookup aggregated logs over a period longer than a month')
|
||
|
|
||
|
repository = None
|
||
|
if repository_name and namespace_name:
|
||
|
repository = model.repository.get_repository(namespace_name, repository_name)
|
||
|
|
||
|
performer = None
|
||
|
if performer_name:
|
||
|
performer = model.user.get_user(performer_name)
|
||
|
|
||
|
entries = {}
|
||
|
for log_model in LOG_MODELS:
|
||
|
aggregated = model.log.get_aggregated_logs(start_datetime, end_datetime,
|
||
|
performer=performer,
|
||
|
repository=repository,
|
||
|
namespace=namespace_name,
|
||
|
ignore=filter_kinds,
|
||
|
model=log_model)
|
||
|
|
||
|
for entry in aggregated:
|
||
|
synthetic_date = datetime(start_datetime.year, start_datetime.month, int(entry.day),
|
||
|
tzinfo=get_localzone())
|
||
|
if synthetic_date.day < start_datetime.day:
|
||
|
synthetic_date = synthetic_date + relativedelta(months=1)
|
||
|
|
||
|
key = '%s-%s' % (entry.kind_id, entry.day)
|
||
|
|
||
|
if key in entries:
|
||
|
entries[key] = AggregatedLogCount(entry.kind_id, entry.count + entries[key].count,
|
||
|
synthetic_date)
|
||
|
else:
|
||
|
entries[key] = AggregatedLogCount(entry.kind_id, entry.count, synthetic_date)
|
||
|
|
||
|
return entries.values()
|
||
|
|
||
|
def count_repository_actions(self, repository, day):
|
||
|
return model.repositoryactioncount.count_repository_actions(repository, day)
|
||
|
|
||
|
def log_action(self, kind_name, namespace_name=None, performer=None, ip=None, metadata=None,
|
||
|
repository=None, repository_name=None, timestamp=None, is_free_namespace=False):
|
||
|
if self._should_skip_logging and self._should_skip_logging(kind_name, namespace_name,
|
||
|
is_free_namespace):
|
||
|
return
|
||
|
|
||
|
if repository_name is not None:
|
||
|
assert repository is None
|
||
|
assert namespace_name is not None
|
||
|
repository = model.repository.get_repository(namespace_name, repository_name)
|
||
|
|
||
|
model.log.log_action(kind_name, namespace_name, performer=performer, repository=repository,
|
||
|
ip=ip, metadata=metadata or {}, timestamp=timestamp)
|
||
|
|
||
|
def yield_logs_for_export(self, start_datetime, end_datetime, repository_id=None,
|
||
|
namespace_id=None, max_query_time=None):
|
||
|
# Using an adjusting scale, start downloading log rows in batches, starting at
|
||
|
# MINIMUM_RANGE_SIZE and doubling until we've reached EXPECTED_ITERATION_LOG_COUNT or
|
||
|
# the lookup range has reached MAXIMUM_RANGE_SIZE. If at any point this operation takes
|
||
|
# longer than the MAXIMUM_WORK_PERIOD_SECONDS, terminate the batch operation as timed out.
|
||
|
batch_start_time = datetime.utcnow()
|
||
|
|
||
|
current_start_datetime = start_datetime
|
||
|
current_batch_size = timedelta(seconds=MINIMUM_RANGE_SIZE)
|
||
|
|
||
|
while current_start_datetime < end_datetime:
|
||
|
# Verify we haven't been working for too long.
|
||
|
work_elapsed = datetime.utcnow() - batch_start_time
|
||
|
if max_query_time is not None and work_elapsed > max_query_time:
|
||
|
logger.error('Retrieval of logs `%s/%s` timed out with time of `%s`',
|
||
|
namespace_id, repository_id, work_elapsed)
|
||
|
raise LogsIterationTimeout()
|
||
|
|
||
|
current_end_datetime = current_start_datetime + current_batch_size
|
||
|
current_end_datetime = min(current_end_datetime, end_datetime)
|
||
|
|
||
|
# Load the next set of logs.
|
||
|
def load_logs():
|
||
|
logger.debug('Retrieving logs over range %s -> %s with namespace %s and repository %s',
|
||
|
current_start_datetime, current_end_datetime, namespace_id, repository_id)
|
||
|
|
||
|
logs_query = model.log.get_logs_query(namespace=namespace_id,
|
||
|
repository=repository_id,
|
||
|
start_time=current_start_datetime,
|
||
|
end_time=current_end_datetime)
|
||
|
logs = list(logs_query)
|
||
|
for log in logs:
|
||
|
if namespace_id is not None:
|
||
|
assert log.account_id == namespace_id
|
||
|
|
||
|
if repository_id is not None:
|
||
|
assert log.repository_id == repository_id
|
||
|
|
||
|
logs = [Log.for_logentry(log) for log in logs]
|
||
|
return logs
|
||
|
|
||
|
logs, elapsed = _run_and_time(load_logs)
|
||
|
if max_query_time is not None and elapsed > max_query_time:
|
||
|
logger.error('Retrieval of logs for export `%s/%s` with range `%s-%s` timed out at `%s`',
|
||
|
namespace_id, repository_id, current_start_datetime, current_end_datetime,
|
||
|
elapsed)
|
||
|
raise LogsIterationTimeout()
|
||
|
|
||
|
yield logs
|
||
|
|
||
|
# Move forward.
|
||
|
current_start_datetime = current_end_datetime
|
||
|
|
||
|
# Increase the batch size if necessary.
|
||
|
if len(logs) < EXPECTED_ITERATION_LOG_COUNT:
|
||
|
seconds = min(MAXIMUM_RANGE_SIZE, current_batch_size.total_seconds() * 2)
|
||
|
current_batch_size = timedelta(seconds=seconds)
|
||
|
|
||
|
def yield_log_rotation_context(self, cutoff_date, min_logs_per_rotation):
|
||
|
""" Yield a context manager for a group of outdated logs. """
|
||
|
for log_model in LOG_MODELS:
|
||
|
while True:
|
||
|
with UseThenDisconnect(config.app_config):
|
||
|
start_id = get_stale_logs_start_id(log_model)
|
||
|
|
||
|
if start_id is None:
|
||
|
logger.warning('Failed to find start id')
|
||
|
break
|
||
|
|
||
|
logger.debug('Found starting ID %s', start_id)
|
||
|
lookup_end_id = start_id + min_logs_per_rotation
|
||
|
logs = [log for log in get_stale_logs(start_id, lookup_end_id,
|
||
|
log_model, cutoff_date)]
|
||
|
|
||
|
if not logs:
|
||
|
logger.debug('No further logs found')
|
||
|
break
|
||
|
|
||
|
end_id = max([log.id for log in logs])
|
||
|
context = DatabaseLogRotationContext(logs, log_model, start_id, end_id)
|
||
|
yield context
|
||
|
|
||
|
|
||
|
def _run_and_time(fn):
|
||
|
start_time = datetime.utcnow()
|
||
|
result = fn()
|
||
|
return result, datetime.utcnow() - start_time
|
||
|
|
||
|
|
||
|
table_logs_model = TableLogsModel()
|
||
|
|
||
|
|
||
|
class DatabaseLogRotationContext(LogRotationContextInterface):
|
||
|
"""
|
||
|
DatabaseLogRotationContext represents a batch of logs to be archived together.
|
||
|
i.e A set of logs to be archived in the same file (based on the number of logs per rotation).
|
||
|
|
||
|
When completed without exceptions, this context will delete the stale logs
|
||
|
from rows `start_id` to `end_id`.
|
||
|
"""
|
||
|
def __init__(self, logs, log_model, start_id, end_id):
|
||
|
self.logs = logs
|
||
|
self.log_model = log_model
|
||
|
self.start_id = start_id
|
||
|
self.end_id = end_id
|
||
|
|
||
|
def __enter__(self):
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, ex_type, ex_value, ex_traceback):
|
||
|
if ex_type is None and ex_value is None and ex_traceback is None:
|
||
|
with UseThenDisconnect(config.app_config):
|
||
|
logger.debug('Deleting logs from IDs %s to %s', self.start_id, self.end_id)
|
||
|
delete_stale_logs(self.start_id, self.end_id, self.log_model)
|
||
|
|
||
|
def yield_logs_batch(self):
|
||
|
""" Yield a batch of logs and a filename for that batch. """
|
||
|
filename = '%d-%d-%s.txt.gz' % (self.start_id, self.end_id,
|
||
|
self.log_model.__name__.lower())
|
||
|
yield self.logs, filename
|