Implement a worker for batch exporting of usage logs

This will allow customers to request their usage logs for a repository or an entire namespace, and we can export the logs in a manner that doesn't absolutely destroy the database, with every step along the way timed.
This commit is contained in:
Joseph Schorr 2018-11-27 18:28:32 +02:00
parent b8d2e1be9c
commit 8a212728a3
18 changed files with 768 additions and 15 deletions

View file

@ -0,0 +1,283 @@
import logging
import os.path
import json
import uuid
from datetime import datetime, timedelta
from io import BytesIO
from enum import Enum, unique
from app import app, export_action_logs_queue, storage, get_app_url
from data import model
from endpoints.api import format_date
from endpoints.api.logs_models_pre_oci import create_log
from workers.queueworker import QueueWorker, JobException
from util.log import logfile_path
from util.useremails import send_logs_exported_email
logger = logging.getLogger(__name__)
POLL_PERIOD_SECONDS = 1
EXPORT_LOGS_STORAGE_PATH = app.config.get('EXPORT_ACTION_LOGS_STORAGE_PATH', 'exportedactionlogs')
MAXIMUM_WORK_PERIOD_SECONDS = app.config.get('EXPORT_ACTION_LOGS_MAXIMUM_SECONDS', 60 * 60) # 1 hour
MAXIMUM_QUERY_TIME_SECONDS = app.config.get('EXPORT_ACTION_LOGS_MAXIMUM_QUERY_TIME_SECONDS', 30)
EXPORTED_LOGS_EXPIRATION_SECONDS = app.config.get('EXPORT_ACTION_LOGS_SECONDS', 60 * 60) # 1 hour
MINIMUM_RANGE_SIZE = 1000
MAXIMUM_RANGE_SIZE = 100000
EXPECTED_ITERATION_LOG_COUNT = 1000
@unique
class ExportResult(Enum):
# NOTE: Make sure to handle these in `logsexported.html` in `emails`
INVALID_REQUEST = 'invalidrequest'
OPERATION_TIMEDOUT = 'timedout'
SUCCESSFUL_EXPORT = 'success'
class ExportActionLogsWorker(QueueWorker):
""" Worker which exports action logs for a namespace or a repository based on
a queued request from the API.
"""
def process_queue_item(self, job_details):
logger.info('Got export actions logs queue item: %s', job_details)
# job_details block (as defined in the logs.py API endpoint):
# {
# 'export_id': export_id,
# 'repository_id': repository.id or None,
# 'namespace_id': namespace.id,
# 'namespace_name': namespace.username,
# 'repository_name': repository.name or None,
# 'start_time': start_time,
# 'end_time': end_time,
# 'callback_url': callback_url or None,
# 'callback_email': callback_email or None,
# }
export_id = job_details['export_id']
start_time = _parse_time(job_details['start_time'])
end_time = _parse_time(job_details['end_time'])
# Make sure the end time has the whole day.
if start_time is None or end_time is None:
self._report_results(job_details, ExportResult.INVALID_REQUEST)
return
end_time = end_time + timedelta(days=1) - timedelta(milliseconds=1)
# Select the minimum and maximum IDs for the logs for the repository/namespace
# over the time range.
namespace_id = job_details['namespace_id']
repository_id = job_details['repository_id']
max_query_time = timedelta(seconds=MAXIMUM_QUERY_TIME_SECONDS)
min_id, elapsed = _run_and_time(lambda: model.log.get_minimum_id_for_logs(start_time,
repository_id,
namespace_id))
if elapsed > max_query_time:
logger.error('Retrieval of min ID for export logs `%s` timed out with time of `%s`',
export_id, elapsed)
self._report_results(job_details, ExportResult.OPERATION_TIMEDOUT)
return
max_id, elapsed = _run_and_time(lambda: model.log.get_maximum_id_for_logs(end_time,
repository_id,
namespace_id))
if elapsed > max_query_time:
logger.error('Retrieval of max ID for export logs `%s` timed out with time of `%s`',
export_id, elapsed)
self._report_results(job_details, ExportResult.OPERATION_TIMEDOUT)
return
min_id = min_id or 1
max_id = max_id or 1
logger.info('Found log range of %s to %s for export logs `%s`', min_id, max_id, export_id)
# Generate a file key so that if we return an API URL, it cannot simply be constructed from
# just the export ID.
file_key = str(uuid.uuid4())
exported_filename = '%s-%s' % (export_id, file_key)
# Start a chunked upload for the logs and stream them.
upload_id, upload_metadata = storage.initiate_chunked_upload(storage.preferred_locations)
export_storage_path = os.path.join(EXPORT_LOGS_STORAGE_PATH, exported_filename)
logger.debug('Starting chunked upload to path `%s`', export_storage_path)
# Start with a 'json' header that contains the opening bracket, as well as basic
# information and the start of the `logs` array.
details = {
'start_time': format_date(start_time),
'end_time': format_date(end_time),
'namespace': job_details['namespace_name'],
'repository': job_details['repository_name'],
}
prefix_data = """{
"export_id": "%s",
"details": %s,
"logs": [
""" % (export_id, json.dumps(details))
upload_metadata = storage.stream_upload_chunk(storage.preferred_locations, upload_id, 0, -1,
BytesIO(str(prefix_data)), upload_metadata)
uploaded_byte_count = len(prefix_data)
try:
# Stream the logs to storage as chunks.
updated_metadata, uploaded_byte_count = self._stream_logs(upload_id, upload_metadata,
uploaded_byte_count, min_id, max_id,
job_details)
if updated_metadata is None:
storage.cancel_chunked_upload(upload_id, upload_metadata)
return
# Close the JSON block.
suffix_data = """
{"terminator": true}]
}"""
upload_metadata = storage.stream_upload_chunk(storage.preferred_locations, upload_id,
uploaded_byte_count, -1,
BytesIO(str(suffix_data)),
upload_metadata)
if updated_metadata is None:
storage.cancel_chunked_upload(upload_id, upload_metadata)
return
# Complete the upload.
storage.complete_chunked_upload(storage.preferred_locations, upload_id, export_storage_path,
updated_metadata)
except:
logger.exception('Exception when exporting logs for `%s`', export_id)
storage.cancel_chunked_upload(storage.preferred_locations, upload_id, upload_metadata)
raise JobException
# Invoke the callbacks.
export_url = storage.get_direct_download_url(storage.preferred_locations, export_storage_path,
expires_in=EXPORTED_LOGS_EXPIRATION_SECONDS)
if export_url is None:
export_url = '%s/exportedlogs/%s' % (get_app_url(), exported_filename)
self._report_results(job_details, ExportResult.SUCCESSFUL_EXPORT, export_url)
def _stream_logs(self, upload_id, upload_metadata, uploaded_byte_count, min_id, max_id,
job_details):
export_id = job_details['export_id']
max_work_period = timedelta(seconds=MAXIMUM_WORK_PERIOD_SECONDS)
max_query_time = timedelta(seconds=MAXIMUM_QUERY_TIME_SECONDS)
kinds = model.log.get_log_entry_kinds()
# Using an adjusting scale, start downloading log rows in batches, starting at
# MINIMUM_RANGE_SIZE and doubling until we've reached EXPECTED_ITERATION_LOG_COUNT or
# the lookup range has reached MAXIMUM_RANGE_SIZE. If at any point this operation takes
# longer than the MAXIMUM_WORK_PERIOD_SECONDS, terminate the batch operation as timed out.
batch_start_time = datetime.utcnow()
current_start_id = min_id
current_batch_size = MINIMUM_RANGE_SIZE
while current_start_id <= max_id:
# Verify we haven't been working for too long.
work_elapsed = datetime.utcnow() - batch_start_time
if work_elapsed > max_work_period:
logger.error('Retrieval of logs `%s` timed out with time of `%s`',
export_id, work_elapsed)
self._report_results(job_details, ExportResult.OPERATION_TIMEDOUT)
return None, None
id_range = [current_start_id, min(max_id, current_start_id + current_batch_size)]
# Load the next set of logs.
def retrieve_and_write_logs():
namespace_id = job_details['namespace_id'] if not job_details.get('repository_id') else None
repository_id = job_details.get('repository_id')
logger.debug('Retrieving logs over range %s with namespace %s and repository %s',
id_range, namespace_id, repository_id)
logs_query = model.log.get_logs_query(namespace=namespace_id,
repository=repository_id,
id_range=id_range)
return [create_log(log) for log in logs_query]
logs, elapsed = _run_and_time(retrieve_and_write_logs)
if elapsed > max_query_time:
logger.error('Retrieval of logs for export logs `%s` with range `%s` timed out at `%s`',
export_id, id_range, elapsed)
self._report_results(job_details, ExportResult.OPERATION_TIMEDOUT)
return None, None
# Write the logs to storage.
logger.debug('Writing %s retrieved logs for range %s', len(logs), id_range)
if logs:
logs_data = ','.join([json.dumps(log.to_dict(kinds, False)) for log in logs]) + ','
logs_data = logs_data.encode('utf-8')
upload_metadata = storage.stream_upload_chunk(storage.preferred_locations, upload_id,
uploaded_byte_count, -1,
BytesIO(logs_data),
upload_metadata)
uploaded_byte_count += len(logs_data)
# Move forward.
current_start_id = id_range[1] + 1
# Increase the batch size if necessary.
if len(logs) < EXPECTED_ITERATION_LOG_COUNT:
current_batch_size = min(MAXIMUM_RANGE_SIZE, current_batch_size * 2)
return upload_metadata, uploaded_byte_count
def _report_results(self, job_details, result_status, exported_data_url=None):
logger.info('Reporting result of `%s` for %s; %s', result_status, job_details,
exported_data_url)
if job_details.get('callback_url'):
# Post the results to the callback URL.
client = app.config['HTTPCLIENT']
result = client.post(job_details['callback_url'], json={
'export_id': job_details['export_id'],
'start_time': job_details['start_time'],
'end_time': job_details['end_time'],
'namespace': job_details['namespace_name'],
'repository': job_details['repository_name'],
'exported_data_url': exported_data_url,
'status': result_status.value,
})
if result.status_code != 200:
logger.error('Got `%s` status code for callback URL `%s` for export `%s`',
result.status_code, job_details['callback_url'],
job_details['export_id'])
raise Exception('Got non-200 for batch logs reporting; retrying later')
if job_details.get('callback_email'):
with app.app_context():
send_logs_exported_email(job_details['callback_email'], job_details['export_id'],
result_status, exported_data_url,
EXPORTED_LOGS_EXPIRATION_SECONDS)
def _parse_time(specified_time):
try:
return datetime.strptime(specified_time + ' UTC', '%m/%d/%Y %Z')
except ValueError:
return None
def _run_and_time(fn):
start_time = datetime.utcnow()
result = fn()
return result, datetime.utcnow() - start_time
if __name__ == "__main__":
logging.config.fileConfig(logfile_path(debug=False), disable_existing_loggers=False)
logger.debug('Starting export action logs worker')
worker = ExportActionLogsWorker(export_action_logs_queue,
poll_period_seconds=POLL_PERIOD_SECONDS)
worker.start()

View file

@ -0,0 +1,66 @@
import json
from app import storage
from datetime import datetime, timedelta
from httmock import urlmatch, HTTMock
from data import model, database
from workers.exportactionlogsworker import ExportActionLogsWorker
from test.fixtures import *
@pytest.mark.parametrize('namespace,repo_name,expects_logs', [
('buynlarge', 'orgrepo', True),
('devtable', 'history', False),
])
def test_process_queue_item(namespace, repo_name, expects_logs, app):
end_time = datetime.utcnow() + timedelta(days=365)
start_time = datetime.utcnow() - timedelta(days=365)
repo = model.repository.get_repository(namespace, repo_name)
assert (model.log.get_maximum_id_for_logs(end_time, repository_id=repo.id) is not None) == expects_logs
assert (model.log.get_minimum_id_for_logs(start_time, repository_id=repo.id) is not None) == expects_logs
worker = ExportActionLogsWorker(None)
called = [{}]
@urlmatch(netloc=r'testcallback')
def handle_request(url, request):
called[0] = json.loads(request.body)
return {'status_code': 200, 'content': '{}'}
def format_date(datetime):
return datetime.strftime("%m/%d/%Y")
with HTTMock(handle_request):
worker.process_queue_item({
'export_id': 'someid',
'repository_id': repo.id,
'namespace_id': repo.namespace_user.id,
'namespace_name': namespace,
'repository_name': repo_name,
'start_time': format_date(start_time),
'end_time': format_date(end_time),
'callback_url': 'http://testcallback/',
'callback_email': None,
})
assert called[0]
assert called[0][u'export_id'] == 'someid'
assert called[0][u'status'] == 'success'
url = called[0][u'exported_data_url']
assert url.find('http://localhost:5000/exportedlogs/') == 0
storage_id = url[len('http://localhost:5000/exportedlogs/'):]
created = storage.get_content(storage.preferred_locations, 'exportedactionlogs/' + storage_id)
created_json = json.loads(created)
expected_count = database.LogEntry.select().where(database.LogEntry.repository == repo).count()
assert (expected_count > 1) == expects_logs
assert created_json['export_id'] == 'someid'
assert len(created_json['logs']) == (expected_count + 1)