Interface out all action log data model operations
This will allow us to reimplement the logs data model against a non-database system in the near future
This commit is contained in:
parent
a156c91962
commit
b773a18ed8
26 changed files with 714 additions and 902 deletions
227
data/logs_model/table_logs_model.py
Normal file
227
data/logs_model/table_logs_model.py
Normal file
|
|
@ -0,0 +1,227 @@
|
|||
# pylint: disable=protected-access
|
||||
|
||||
import logging
|
||||
import json
|
||||
import uuid
|
||||
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
from tzlocal import get_localzone
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
from data import model
|
||||
from data.database import LogEntry, LogEntry2, LogEntry3
|
||||
from data.logs_model.interface import ActionLogsDataInterface, LogsIterationTimeout
|
||||
from data.logs_model.datatypes import Log, AggregatedLogCount, LogEntriesPage, _format_date
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MINIMUM_RANGE_SIZE = 1000
|
||||
MAXIMUM_RANGE_SIZE = 100000
|
||||
EXPECTED_ITERATION_LOG_COUNT = 1000
|
||||
|
||||
|
||||
LOG_MODELS = [LogEntry3, LogEntry2, LogEntry]
|
||||
|
||||
|
||||
class TableLogsModel(ActionLogsDataInterface):
|
||||
"""
|
||||
TableLogsModel implements the data model for the logs API backed by a single table
|
||||
in the database.
|
||||
"""
|
||||
def lookup_logs(self, start_datetime, end_datetime, performer_name=None, repository_name=None,
|
||||
namespace_name=None, filter_kinds=None, page_token=None, max_page_count=None):
|
||||
assert start_datetime is not None
|
||||
assert end_datetime is not None
|
||||
|
||||
repository = None
|
||||
if repository_name and namespace_name:
|
||||
repository = model.repository.get_repository(namespace_name, repository_name)
|
||||
|
||||
performer = None
|
||||
if performer_name:
|
||||
performer = model.user.get_user(performer_name)
|
||||
|
||||
def get_logs(m):
|
||||
logs_query = model.log.get_logs_query(start_datetime, end_datetime, performer=performer,
|
||||
repository=repository, namespace=namespace_name,
|
||||
ignore=filter_kinds, model=m)
|
||||
|
||||
logs, next_page_token = model.modelutil.paginate(logs_query, m,
|
||||
descending=True, page_token=page_token,
|
||||
limit=20,
|
||||
max_page=max_page_count)
|
||||
return LogEntriesPage([Log.for_logentry(log) for log in logs], next_page_token)
|
||||
|
||||
# First check the LogEntry3 table for the most recent logs, unless we've been expressly told
|
||||
# to look inside the other tables.
|
||||
TOKEN_TABLE_ID = 'tti'
|
||||
|
||||
table_index = 0
|
||||
table_specified = page_token is not None and page_token.get(TOKEN_TABLE_ID) is not None
|
||||
if table_specified:
|
||||
table_index = page_token.get(TOKEN_TABLE_ID)
|
||||
|
||||
page_result = get_logs(LOG_MODELS[table_index])
|
||||
if page_result.next_page_token is None and table_index < len(LOG_MODELS) - 1:
|
||||
page_result = page_result._replace(next_page_token={TOKEN_TABLE_ID: table_index + 1})
|
||||
|
||||
return page_result
|
||||
|
||||
def get_aggregated_log_counts(self, start_datetime, end_datetime, performer_name=None,
|
||||
repository_name=None, namespace_name=None, filter_kinds=None):
|
||||
if end_datetime - start_datetime >= timedelta(weeks=4):
|
||||
raise Exception('Cannot lookup aggregated logs over a period longer than a month')
|
||||
|
||||
repository = None
|
||||
if repository_name and namespace_name:
|
||||
repository = model.repository.get_repository(namespace_name, repository_name)
|
||||
|
||||
performer = None
|
||||
if performer_name:
|
||||
performer = model.user.get_user(performer_name)
|
||||
|
||||
entries = {}
|
||||
for log_model in LOG_MODELS:
|
||||
aggregated = model.log.get_aggregated_logs(start_datetime, end_datetime,
|
||||
performer=performer,
|
||||
repository=repository,
|
||||
namespace=namespace_name,
|
||||
ignore=filter_kinds,
|
||||
model=log_model)
|
||||
|
||||
for entry in aggregated:
|
||||
synthetic_date = datetime(start_datetime.year, start_datetime.month, int(entry.day),
|
||||
tzinfo=get_localzone())
|
||||
if synthetic_date.day < start_datetime.day:
|
||||
synthetic_date = synthetic_date + relativedelta(months=1)
|
||||
|
||||
key = '%s-%s' % (entry.kind_id, entry.day)
|
||||
|
||||
if key in entries:
|
||||
entries[key] = AggregatedLogCount(entry.kind_id, entry.count + entries[key].count,
|
||||
synthetic_date)
|
||||
else:
|
||||
entries[key] = AggregatedLogCount(entry.kind_id, entry.count, synthetic_date)
|
||||
|
||||
return entries.values()
|
||||
|
||||
def count_repository_actions(self, repository, day):
|
||||
return model.repositoryactioncount.count_repository_actions(repository, day)
|
||||
|
||||
def log_action(self, kind_name, namespace_name=None, performer=None, ip=None, metadata=None,
|
||||
repository=None, repository_name=None, timestamp=None):
|
||||
if repository_name is not None:
|
||||
assert repository is None
|
||||
assert namespace_name is not None
|
||||
repository = model.repository.get_repository(namespace_name, repository_name)
|
||||
|
||||
model.log.log_action(kind_name, namespace_name, performer=performer, repository=repository,
|
||||
ip=ip, metadata=metadata or {}, timestamp=timestamp)
|
||||
|
||||
def queue_logs_export(self, start_datetime, end_datetime, export_action_logs_queue,
|
||||
namespace_name=None, repository_name=None, callback_url=None,
|
||||
callback_email=None, filter_kinds=None):
|
||||
export_id = str(uuid.uuid4())
|
||||
namespace = model.user.get_namespace_user(namespace_name)
|
||||
if namespace is None:
|
||||
return None
|
||||
|
||||
repository = None
|
||||
if repository_name is not None:
|
||||
repository = model.repository.get_repository(namespace_name, repository_name)
|
||||
if repository is None:
|
||||
return None
|
||||
|
||||
export_action_logs_queue.put([namespace_name], json.dumps({
|
||||
'export_id': export_id,
|
||||
'repository_id': repository.id if repository else None,
|
||||
'namespace_id': namespace.id,
|
||||
'namespace_name': namespace.username,
|
||||
'repository_name': repository.name if repository else None,
|
||||
'start_time': _format_date(start_datetime),
|
||||
'end_time': _format_date(end_datetime),
|
||||
'callback_url': callback_url,
|
||||
'callback_email': callback_email,
|
||||
}), retries_remaining=3)
|
||||
|
||||
return export_id
|
||||
|
||||
def yield_logs_for_export(self, start_datetime, end_datetime, repository_id=None,
|
||||
namespace_id=None, max_query_time=None):
|
||||
# Lookup the starting and ending IDs for the log range in the table. This operation is quite
|
||||
# quick, so we use it as a bounding box for the later lookups.
|
||||
min_id, elapsed = _run_and_time(lambda: model.log.get_minimum_id_for_logs(start_datetime,
|
||||
repository_id,
|
||||
namespace_id))
|
||||
if elapsed > max_query_time:
|
||||
logger.error('Retrieval of min ID for export logs `%s/%s` timed out with time of `%s`',
|
||||
namespace_id, repository_id, elapsed)
|
||||
raise LogsIterationTimeout()
|
||||
|
||||
max_id, elapsed = _run_and_time(lambda: model.log.get_maximum_id_for_logs(end_datetime,
|
||||
repository_id,
|
||||
namespace_id))
|
||||
if elapsed > max_query_time:
|
||||
logger.error('Retrieval of max ID for export logs `%s/%s` timed out with time of `%s`',
|
||||
namespace_id, repository_id, elapsed)
|
||||
raise LogsIterationTimeout()
|
||||
|
||||
min_id = min_id or 1
|
||||
max_id = max_id or 1
|
||||
|
||||
logger.info('Found log range of %s to %s for export logs `%s/%s`', min_id, max_id,
|
||||
namespace_id, repository_id)
|
||||
|
||||
# Using an adjusting scale, start downloading log rows in batches, starting at
|
||||
# MINIMUM_RANGE_SIZE and doubling until we've reached EXPECTED_ITERATION_LOG_COUNT or
|
||||
# the lookup range has reached MAXIMUM_RANGE_SIZE. If at any point this operation takes
|
||||
# longer than the MAXIMUM_WORK_PERIOD_SECONDS, terminate the batch operation as timed out.
|
||||
batch_start_time = datetime.utcnow()
|
||||
|
||||
current_start_id = min_id
|
||||
current_batch_size = MINIMUM_RANGE_SIZE
|
||||
|
||||
while current_start_id <= max_id:
|
||||
# Verify we haven't been working for too long.
|
||||
work_elapsed = datetime.utcnow() - batch_start_time
|
||||
if work_elapsed > max_query_time:
|
||||
logger.error('Retrieval of logs `%s/%s` timed out with time of `%s`',
|
||||
namespace_id, repository_id, work_elapsed)
|
||||
raise LogsIterationTimeout()
|
||||
|
||||
id_range = [current_start_id, min(max_id, current_start_id + current_batch_size)]
|
||||
|
||||
# Load the next set of logs.
|
||||
def load_logs():
|
||||
logger.debug('Retrieving logs over range %s with namespace %s and repository %s',
|
||||
id_range, namespace_id, repository_id)
|
||||
|
||||
logs_query = model.log.get_logs_query(namespace=namespace_id,
|
||||
repository=repository_id,
|
||||
id_range=id_range)
|
||||
return [Log.for_logentry(log) for log in logs_query]
|
||||
|
||||
logs, elapsed = _run_and_time(load_logs)
|
||||
if elapsed > max_query_time:
|
||||
logger.error('Retrieval of logs for export logs `%s/%s` with range `%s` timed out at `%s`',
|
||||
namespace_id, repository_id, id_range, elapsed)
|
||||
raise LogsIterationTimeout()
|
||||
|
||||
yield logs
|
||||
|
||||
# Move forward.
|
||||
current_start_id = id_range[1] + 1
|
||||
|
||||
# Increase the batch size if necessary.
|
||||
if len(logs) < EXPECTED_ITERATION_LOG_COUNT:
|
||||
current_batch_size = min(MAXIMUM_RANGE_SIZE, current_batch_size * 2)
|
||||
|
||||
|
||||
def _run_and_time(fn):
|
||||
start_time = datetime.utcnow()
|
||||
result = fn()
|
||||
return result, datetime.utcnow() - start_time
|
||||
|
||||
|
||||
table_logs_model = TableLogsModel()
|
||||
Reference in a new issue