This repository has been archived on 2020-03-24. You can view files and clone it, but cannot push or open issues or pull requests.
quay/data/logs_model/test/mock_elasticsearch.py
Kenny Lee Sin Cheong 035541c6f2 Implement logs model using Elasticsearch
- Implement logs model using Elasticsearch with tests
- Implement transition model using both elasticsearch and database model
- Add LOGS_MODEL configuration to choose which to use.

Co-authored-by: Sida Chen <sidchen@redhat.com>
Co-authored-by: Kenny Lee Sin Cheong <kenny.lee@redhat.com>
2019-02-12 16:33:42 -05:00

439 lines
No EOL
9.4 KiB
Python

# -*- coding: utf-8 -*-
import json
from dateutil.parser import parse
from data.logs_model.datatypes import LogEntriesPage, Log, AggregatedLogCount
def _status(d, code=200):
return {"status_code": code, "content": json.dumps(d)}
def _shards(d, total=5, failed=0, successful=5):
d.update({"_shards": {"total": total, "failed": failed, "successful": successful}})
return d
def _hits(hits):
return {"hits": {"total": len(hits), "max_score": None, "hits": hits}}
DEFAULT_TEMPLATE_RESPONSE = _status({"acknowledged": True})
INDEX_RESPONSE_2019_01 = _status(
_shards({
"_index": "logentry_2019-01",
"_type": "_doc",
"_id": "1",
"_version": 1,
"_seq_no": 0,
"_primary_term": 1,
"result": "created"
}))
INDEX_RESPONSE_2017_03 = _status(
_shards({
"_index": "logentry_2017-03",
"_type": "_doc",
"_id": "1",
"_version": 1,
"_seq_no": 0,
"_primary_term": 1,
"result": "created"
}))
FAILURE_400 = _status({}, 400)
INDEX_REQUEST_2019_01 = [
"logentry_2019-01", {
"account_id":
1,
"repository_id":
1,
"ip":
"192.168.1.1",
"random_id":
233,
"datetime":
"2019-01-01T03:30:00",
"metadata_json":
"{\"\\ud83d\\ude02\": \"\\ud83d\\ude02\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\", \"key\": \"value\", \"time\": 1520479800}",
"performer_id":
1,
"kind_id":
1
}
]
INDEX_REQUEST_2017_03 = [
"logentry_2017-03", {
"repository_id":
1,
"account_id":
1,
"ip":
"192.168.1.1",
"random_id":
233,
"datetime":
"2017-03-08T03:30:00",
"metadata_json":
"{\"\\ud83d\\ude02\": \"\\ud83d\\ude02\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\", \"key\": \"value\", \"time\": 1520479800}",
"performer_id":
1,
"kind_id":
2
}
]
_hit1 = {
"_index": "logentry_2018-03",
"_type": "doc",
"_id": "1",
"_score": None,
"_source": {
"random_id":
233,
"kind_id":
1,
"account_id":
1,
"performer_id":
1,
"repository_id":
1,
"ip":
"192.168.1.1",
"metadata_json":
"{\"\\ud83d\\ude02\": \"\\ud83d\\ude02\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\", \"key\": \"value\", \"time\": 1520479800}",
"datetime":
"2018-03-08T03:30",
},
"sort": [1520479800000, 233]
}
_hit2 = {
"_index": "logentry_2018-04",
"_type": "doc",
"_id": "2",
"_score": None,
"_source": {
"random_id":
233,
"kind_id":
2,
"account_id":
2,
"performer_id":
1,
"repository_id":
2,
"ip":
"192.168.1.2",
"metadata_json":
"{\"\\ud83d\\ude02\": \"\\ud83d\\ude02\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\", \"key\": \"value\", \"time\": 1522639800}",
"datetime":
"2018-04-02T03:30",
},
"sort": [1522639800000, 233]
}
_log1 = Log(
"{\"\\ud83d\\ude02\": \"\\ud83d\\ude02\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\", \"key\": \"value\", \"time\": 1520479800}",
"192.168.1.1", parse("2018-03-08T03:30"), "user1.email", "user1.username", "user1.robot",
"user1.organization", "user1.username", "user1.email", "user1.robot", 1)
_log2 = Log(
"{\"\\ud83d\\ude02\": \"\\ud83d\\ude02\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\\ud83d\\udc4c\", \"key\": \"value\", \"time\": 1522639800}",
"192.168.1.2", parse("2018-04-02T03:30"), "user1.email", "user1.username", "user1.robot",
"user2.organization", "user2.username", "user2.email", "user2.robot", 2)
SEARCH_RESPONSE_START = _status(_shards(_hits([_hit1, _hit2])))
SEARCH_RESPONSE_END = _status(_shards(_hits([_hit2])))
SEARCH_REQUEST_START = {
"sort": [{
"datetime": "desc"
}, {
"random_id": "desc"
}],
"query": {
"bool": {
"filter": [{
"term": {
"performer_id": 1
}
}, {
"term": {
"repository_id": 1
}
}, {
"term": {
"account_id": 1
}
}],
"must": [{
"range": {
"datetime": {
"lt": "2018-04-08T03:30:00",
"gte": "2018-03-08T03:30:00"
}
}
}]
}
},
"size": 2
}
SEARCH_REQUEST_END = {
"sort": [{
"datetime": "desc"
}, {
"random_id": "desc"
}],
"query": {
"bool": {
"filter": [{
"term": {
"performer_id": 1
}
}, {
"term": {
"repository_id": 1
}
}, {
"term": {
"account_id": 1
}
}],
"must": [{
"range": {
"datetime": {
"lt": "2018-04-08T03:30:00",
"gte": "2018-03-08T03:30:00"
}
}
}]
}
},
"search_after": [1520479800000, 233],
"size": 2
}
SEARCH_REQUEST_FILTER = {
"sort": [{
"datetime": "desc"
}, {
"random_id": "desc"
}],
"query": {
"bool": {
"filter": [{
"term": {
"performer_id": 1
}
}, {
"term": {
"repository_id": 1
}
}, {
"term": {
"account_id": 1
}
}, {
"bool": {
"must_not": [{
"terms": {
"kind_id": [1]
}
}]
}
}],
"must": [{
"range": {
"datetime": {
"lt": "2018-04-08T03:30:00",
"gte": "2018-03-08T03:30:00"
}
}
}]
}
},
"size": 2
}
SEARCH_PAGE_TOKEN = {"datetime": 1520479800000, "random_id": 233, "page_number": 1}
SEARCH_PAGE_START = LogEntriesPage(logs=[_log1], next_page_token=SEARCH_PAGE_TOKEN)
SEARCH_PAGE_END = LogEntriesPage(logs=[_log2], next_page_token=None)
SEARCH_PAGE_EMPTY = LogEntriesPage([], None)
AGGS_RESPONSE = _status(
_shards({
"hits": {
"total": 4,
"max_score": None,
"hits": []
},
"aggregations": {
"by_id": {
"doc_count_error_upper_bound":
0,
"sum_other_doc_count":
0,
"buckets": [{
"key": 2,
"doc_count": 3,
"by_date": {
"buckets": [{
"key_as_string": "2009-11-12T00:00:00.000Z",
"key": 1257984000000,
"doc_count": 1
}, {
"key_as_string": "2009-11-13T00:00:00.000Z",
"key": 1258070400000,
"doc_count": 0
}, {
"key_as_string": "2009-11-14T00:00:00.000Z",
"key": 1258156800000,
"doc_count": 2
}]
}
}, {
"key": 1,
"doc_count": 1,
"by_date": {
"buckets": [{
"key_as_string": "2009-11-15T00:00:00.000Z",
"key": 1258243200000,
"doc_count": 1
}]
}
}]
}
}
}))
AGGS_REQUEST = {
"query": {
"bool": {
"filter": [{
"term": {
"performer_id": 1
}
}, {
"term": {
"repository_id": 1
}
}, {
"term": {
"account_id": 1
}
}, {
"bool": {
"must_not": [{
"terms": {
"kind_id": [2]
}
}]
}
}],
"must": [{
"range": {
"datetime": {
"lt": "2018-04-08T03:30:00",
"gte": "2018-03-08T03:30:00"
}
}
}]
}
},
"aggs": {
"by_id": {
"terms": {
"field": "kind_id"
},
"aggs": {
"by_date": {
"date_histogram": {
"field": "datetime",
"interval": "day"
}
}
}
}
},
"size": 0
}
AGGS_COUNT = [
AggregatedLogCount(1, 1, parse("2009-11-15T00:00:00.000")),
AggregatedLogCount(2, 1, parse("2009-11-12T00:00:00.000")),
AggregatedLogCount(2, 2, parse("2009-11-14T00:00:00.000"))
]
COUNT_REQUEST = {
"query": {
"bool": {
"filter": [{
"term": {
"repository_id": 1
}
}],
"must": [{
"range": {
"datetime": {
"lt": "2018-03-09T00:00:00",
"gte": "2018-03-08T00:00:00"
}
}
}]
}
}
}
COUNT_RESPONSE = _status(_shards({
"count": 1,
}))
# assume there are 2 pages
_scroll_id = "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAACEmFkk1aGlTRzdSUWllejZmYTlEYTN3SVEAAAAAAAAhJRZJNWhpU0c3UlFpZXo2ZmE5RGEzd0lRAAAAAAAAHtAWLWZpaFZXVzVSTy1OTXA5V3MwcHZrZwAAAAAAAB7RFi1maWhWV1c1Uk8tTk1wOVdzMHB2a2cAAAAAAAAhJxZJNWhpU0c3UlFpZXo2ZmE5RGEzd0lR"
def _scroll(d):
d["_scroll_id"] = _scroll_id
return d
SCROLL_CREATE = _status(_shards(_scroll(_hits([_hit1]))))
SCROLL_GET = _status(_shards(_scroll(_hits([_hit2]))))
SCROLL_GET_2 = _status(_shards(_scroll(_hits([]))))
SCROLL_DELETE = _status({"succeeded": True, "num_freed": 5})
SCROLL_LOGS = [[_log1], [_log2]]
SCROLL_REQUESTS = [
[
"5m", 1, {
"sort": "_doc",
"query": {
"bool": {
"filter": [{
"term": {
"repository_id": 1
}
}, {
"term": {
"account_id": 1
}
}],
"must": [{
"range": {
"datetime": {
"lt": "2018-04-02T00:00:00",
"gte": "2018-03-08T00:00:00"
}
}
}]
}
}
}
],
["5m", {"scroll_id": _scroll_id}],
["5m", {"scroll_id": _scroll_id}],
[{"scroll_id": [_scroll_id]}],
]
SCROLL_RESPONSES = [SCROLL_CREATE, SCROLL_GET, SCROLL_GET_2, SCROLL_DELETE]