42 lines
1.3 KiB
Python
42 lines
1.3 KiB
Python
from math import log10
|
|
|
|
from data.model.repo_mirror import (get_eligible_mirrors, get_max_id_for_repo_mirror_config,
|
|
get_min_id_for_repo_mirror_config)
|
|
from data.database import RepoMirrorConfig
|
|
from util.migrate.allocator import yield_random_entries
|
|
|
|
from workers.repomirrorworker.models_interface import (RepoMirrorToken, RepoMirrorWorkerDataInterface)
|
|
|
|
|
|
class RepoMirrorModel(RepoMirrorWorkerDataInterface):
|
|
def repositories_to_mirror(self, start_token=None):
|
|
def batch_query():
|
|
return get_eligible_mirrors()
|
|
|
|
# Find the minimum ID.
|
|
if start_token is not None:
|
|
min_id = start_token.min_id
|
|
else:
|
|
min_id = get_min_id_for_repo_mirror_config()
|
|
|
|
# Get the ID of the last repository mirror config. Will be None if there are none in the database.
|
|
max_id = get_max_id_for_repo_mirror_config()
|
|
if max_id is None:
|
|
return (None, None)
|
|
|
|
if min_id is None or min_id > max_id:
|
|
return (None, None)
|
|
|
|
# 4^log10(total) gives us a scalable batch size into the billions.
|
|
batch_size = int(4**log10(max(10, max_id - min_id)))
|
|
|
|
iterator = yield_random_entries(
|
|
batch_query,
|
|
RepoMirrorConfig.id,
|
|
batch_size,
|
|
max_id,
|
|
min_id)
|
|
|
|
return (iterator, RepoMirrorToken(max_id + 1))
|
|
|
|
repo_mirror_model = RepoMirrorModel()
|