registry/vendor/rsc.io/letsencrypt/lets.go

754 lines
22 KiB
Go
Raw Permalink Normal View History

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package letsencrypt obtains TLS certificates from LetsEncrypt.org.
//
// LetsEncrypt.org is a service that issues free SSL/TLS certificates to servers
// that can prove control over the given domain's DNS records or
// the servers pointed at by those records.
//
// Quick Start
//
// A complete HTTP/HTTPS web server using TLS certificates from LetsEncrypt.org,
// redirecting all HTTP access to HTTPS, and maintaining TLS certificates in a file
// letsencrypt.cache across server restarts.
//
// package main
//
// import (
// "fmt"
// "log"
// "net/http"
// "rsc.io/letsencrypt"
// )
//
// func main() {
// http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
// fmt.Fprintf(w, "Hello, TLS!\n")
// })
// var m letsencrypt.Manager
// if err := m.CacheFile("letsencrypt.cache"); err != nil {
// log.Fatal(err)
// }
// log.Fatal(m.Serve())
// }
//
// Overview
//
// The fundamental type in this package is the Manager, which
// manages obtaining and refreshing a collection of TLS certificates,
// typically for use by an HTTPS server.
// The example above shows the most basic use of a Manager.
// The use can be customized by calling additional methods of the Manager.
//
// Registration
//
// A Manager m registers anonymously with LetsEncrypt.org, including agreeing to
// the letsencrypt.org terms of service, the first time it needs to obtain a certificate.
// To register with a particular email address and with the option of a
// prompt for agreement with the terms of service, call m.Register.
//
// GetCertificate
//
// The Manager's GetCertificate method returns certificates
// from the Manager's cache, filling the cache by requesting certificates
// from LetsEncrypt.org. In this way, a server with a tls.Config.GetCertificate
// set to m.GetCertificate will demand load a certificate for any host name
// it serves. To force loading of certificates ahead of time, install m.GetCertificate
// as before but then call m.Cert for each host name.
//
// A Manager can only obtain a certificate for a given host name if it can prove
// control of that host name to LetsEncrypt.org. By default it proves control by
// answering an HTTPS-based challenge: when
// the LetsEncrypt.org servers connect to the named host on port 443 (HTTPS),
// the TLS SNI handshake must use m.GetCertificate to obtain a per-host certificate.
// The most common way to satisfy this requirement is for the host name to
// resolve to the IP address of a (single) computer running m.ServeHTTPS,
// or at least running a Go TLS server with tls.Config.GetCertificate set to m.GetCertificate.
// However, other configurations are possible. For example, a group of machines
// could use an implementation of tls.Config.GetCertificate that cached
// certificates but handled cache misses by making RPCs to a Manager m
// on an elected leader machine.
//
// In typical usage, then, the setting of tls.Config.GetCertificate to m.GetCertificate
// serves two purposes: it provides certificates to the TLS server for ordinary serving,
// and it also answers challenges to prove ownership of the domains in order to
// obtain those certificates.
//
// To force the loading of a certificate for a given host into the Manager's cache,
// use m.Cert.
//
// Persistent Storage
//
// If a server always starts with a zero Manager m, the server effectively fetches
// a new certificate for each of its host name from LetsEncrypt.org on each restart.
// This is unfortunate both because the server cannot start if LetsEncrypt.org is
// unavailable and because LetsEncrypt.org limits how often it will issue a certificate
// for a given host name (at time of writing, the limit is 5 per week for a given host name).
// To save server state proactively to a cache file and to reload the server state from
// that same file when creating a new manager, call m.CacheFile with the name of
// the file to use.
//
// For alternate storage uses, m.Marshal returns the current state of the Manager
// as an opaque string, m.Unmarshal sets the state of the Manager using a string
// previously returned by m.Marshal (usually a different m), and m.Watch returns
// a channel that receives notifications about state changes.
//
// Limits
//
// To avoid hitting basic rate limits on LetsEncrypt.org, a given Manager limits all its
// interactions to at most one request every minute, with an initial allowed burst of
// 20 requests.
//
// By default, if GetCertificate is asked for a certificate it does not have, it will in turn
// ask LetsEncrypt.org for that certificate. This opens a potential attack where attackers
// connect to a server by IP address and pretend to be asking for an incorrect host name.
// Then GetCertificate will attempt to obtain a certificate for that host, incorrectly,
// eventually hitting LetsEncrypt.org's rate limit for certificate requests and making it
// impossible to obtain actual certificates. Because servers hold certificates for months
// at a time, however, an attack would need to be sustained over a time period
// of at least a month in order to cause real problems.
//
// To mitigate this kind of attack, a given Manager limits
// itself to an average of one certificate request for a new host every three hours,
// with an initial allowed burst of up to 20 requests.
// Long-running servers will therefore stay
// within the LetsEncrypt.org limit of 300 failed requests per month.
// Certificate refreshes are not subject to this limit.
//
// To eliminate the attack entirely, call m.SetHosts to enumerate the exact set
// of hosts that are allowed in certificate requests.
//
// Web Servers
//
// The basic requirement for use of a Manager is that there be an HTTPS server
// running on port 443 and calling m.GetCertificate to obtain TLS certificates.
// Using standard primitives, the way to do this is:
//
// srv := &http.Server{
// Addr: ":https",
// TLSConfig: &tls.Config{
// GetCertificate: m.GetCertificate,
// },
// }
// srv.ListenAndServeTLS("", "")
//
// However, this pattern of serving HTTPS with demand-loaded TLS certificates
// comes up enough to wrap into a single method m.ServeHTTPS.
//
// Similarly, many HTTPS servers prefer to redirect HTTP clients to the HTTPS URLs.
// That functionality is provided by RedirectHTTP.
//
// The combination of serving HTTPS with demand-loaded TLS certificates and
// serving HTTPS redirects to HTTP clients is provided by m.Serve, as used in
// the original example above.
//
package letsencrypt
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/tls"
"crypto/x509"
"encoding/json"
"encoding/pem"
"fmt"
"io/ioutil"
"log"
"net"
"net/http"
"os"
"strings"
"sync"
"time"
"golang.org/x/net/context"
"golang.org/x/time/rate"
"github.com/xenolf/lego/acme"
)
const letsEncryptURL = "https://acme-v01.api.letsencrypt.org/directory"
const debug = false
// A Manager m takes care of obtaining and refreshing a collection of TLS certificates
// obtained by LetsEncrypt.org.
// The zero Manager is not yet registered with LetsEncrypt.org and has no TLS certificates
// but is nonetheless ready for use.
// See the package comment for an overview of how to use a Manager.
type Manager struct {
mu sync.Mutex
state state
rateLimit *rate.Limiter
newHostLimit *rate.Limiter
certCache map[string]*cacheEntry
certTokens map[string]*tls.Certificate
watchChan chan struct{}
}
// Serve runs an HTTP/HTTPS web server using TLS certificates obtained by the manager.
// The HTTP server redirects all requests to the HTTPS server.
// The HTTPS server obtains TLS certificates as needed and responds to requests
// by invoking http.DefaultServeMux.
//
// Serve does not return unitil the HTTPS server fails to start or else stops.
// Either way, Serve can only return a non-nil error, never nil.
func (m *Manager) Serve() error {
l, err := net.Listen("tcp", ":http")
if err != nil {
return err
}
defer l.Close()
go http.Serve(l, http.HandlerFunc(RedirectHTTP))
return m.ServeHTTPS()
}
// ServeHTTPS runs an HTTPS web server using TLS certificates obtained by the manager.
// The HTTPS server obtains TLS certificates as needed and responds to requests
// by invoking http.DefaultServeMux.
// ServeHTTPS does not return unitil the HTTPS server fails to start or else stops.
// Either way, ServeHTTPS can only return a non-nil error, never nil.
func (m *Manager) ServeHTTPS() error {
srv := &http.Server{
Addr: ":https",
TLSConfig: &tls.Config{
GetCertificate: m.GetCertificate,
},
}
return srv.ListenAndServeTLS("", "")
}
// RedirectHTTP is an HTTP handler (suitable for use with http.HandleFunc)
// that responds to all requests by redirecting to the same URL served over HTTPS.
// It should only be invoked for requests received over HTTP.
func RedirectHTTP(w http.ResponseWriter, r *http.Request) {
if r.TLS != nil || r.Host == "" {
http.Error(w, "not found", 404)
}
u := r.URL
u.Host = r.Host
u.Scheme = "https"
http.Redirect(w, r, u.String(), 302)
}
// state is the serializable state for the Manager.
// It also implements acme.User.
type state struct {
Email string
Reg *acme.RegistrationResource
Key string
key *ecdsa.PrivateKey
Hosts []string
Certs map[string]stateCert
}
func (s *state) GetEmail() string { return s.Email }
func (s *state) GetRegistration() *acme.RegistrationResource { return s.Reg }
func (s *state) GetPrivateKey() crypto.PrivateKey { return s.key }
type stateCert struct {
Cert string
Key string
}
func (cert stateCert) toTLS() (*tls.Certificate, error) {
c, err := tls.X509KeyPair([]byte(cert.Cert), []byte(cert.Key))
if err != nil {
return nil, err
}
return &c, err
}
type cacheEntry struct {
host string
m *Manager
mu sync.Mutex
cert *tls.Certificate
timeout time.Time
refreshing bool
err error
}
func (m *Manager) init() {
m.mu.Lock()
if m.certCache == nil {
m.rateLimit = rate.NewLimiter(rate.Every(1*time.Minute), 20)
m.newHostLimit = rate.NewLimiter(rate.Every(3*time.Hour), 20)
m.certCache = map[string]*cacheEntry{}
m.certTokens = map[string]*tls.Certificate{}
m.watchChan = make(chan struct{}, 1)
m.watchChan <- struct{}{}
}
m.mu.Unlock()
}
// Watch returns the manager's watch channel,
// which delivers a notification after every time the
// manager's state (as exposed by Marshal and Unmarshal) changes.
// All calls to Watch return the same watch channel.
//
// The watch channel includes notifications about changes
// before the first call to Watch, so that in the pattern below,
// the range loop executes once immediately, saving
// the result of setup (along with any background updates that
// may have raced in quickly).
//
// m := new(letsencrypt.Manager)
// setup(m)
// go backgroundUpdates(m)
// for range m.Watch() {
// save(m.Marshal())
// }
//
func (m *Manager) Watch() <-chan struct{} {
m.init()
m.updated()
return m.watchChan
}
func (m *Manager) updated() {
select {
case m.watchChan <- struct{}{}:
default:
}
}
func (m *Manager) CacheFile(name string) error {
f, err := os.OpenFile(name, os.O_RDWR|os.O_CREATE, 0600)
if err != nil {
return err
}
f.Close()
data, err := ioutil.ReadFile(name)
if err != nil {
return err
}
if len(data) > 0 {
if err := m.Unmarshal(string(data)); err != nil {
return err
}
}
go func() {
for range m.Watch() {
err := ioutil.WriteFile(name, []byte(m.Marshal()), 0600)
if err != nil {
log.Printf("writing letsencrypt cache: %v", err)
}
}
}()
return nil
}
// Registered reports whether the manager has registered with letsencrypt.org yet.
func (m *Manager) Registered() bool {
m.init()
m.mu.Lock()
defer m.mu.Unlock()
return m.registered()
}
func (m *Manager) registered() bool {
return m.state.Reg != nil && m.state.Reg.Body.Agreement != ""
}
// Register registers the manager with letsencrypt.org, using the given email address.
// Registration may require agreeing to the letsencrypt.org terms of service.
// If so, Register calls prompt(url) where url is the URL of the terms of service.
// Prompt should report whether the caller agrees to the terms.
// A nil prompt func is taken to mean that the user always agrees.
// The email address is sent to LetsEncrypt.org but otherwise unchecked;
// it can be omitted by passing the empty string.
//
// Calling Register is only required to make sure registration uses a
// particular email address or to insert an explicit prompt into the
// registration sequence. If the manager is not registered, it will
// automatically register with no email address and automatic
// agreement to the terms of service at the first call to Cert or GetCertificate.
func (m *Manager) Register(email string, prompt func(string) bool) error {
m.init()
m.mu.Lock()
defer m.mu.Unlock()
return m.register(email, prompt)
}
func (m *Manager) register(email string, prompt func(string) bool) error {
if m.registered() {
return fmt.Errorf("already registered")
}
m.state.Email = email
if m.state.key == nil {
key, err := newKey()
if err != nil {
return fmt.Errorf("generating key: %v", err)
}
Key, err := marshalKey(key)
if err != nil {
return fmt.Errorf("generating key: %v", err)
}
m.state.key = key
m.state.Key = string(Key)
}
c, err := acme.NewClient(letsEncryptURL, &m.state, acme.EC256)
if err != nil {
return fmt.Errorf("create client: %v", err)
}
reg, err := c.Register()
if err != nil {
return fmt.Errorf("register: %v", err)
}
m.state.Reg = reg
if reg.Body.Agreement == "" {
if prompt != nil && !prompt(reg.TosURL) {
return fmt.Errorf("did not agree to TOS")
}
if err := c.AgreeToTOS(); err != nil {
return fmt.Errorf("agreeing to TOS: %v", err)
}
}
m.updated()
return nil
}
// Marshal returns an encoding of the manager's state,
// suitable for writing to disk and reloading by calling Unmarshal.
// The state includes registration status, the configured host list
// from SetHosts, and all known certificates, including their private
// cryptographic keys.
// Consequently, the state should be kept private.
func (m *Manager) Marshal() string {
m.init()
js, err := json.MarshalIndent(&m.state, "", "\t")
if err != nil {
panic("unexpected json.Marshal failure")
}
return string(js)
}
// Unmarshal restores the state encoded by a previous call to Marshal
// (perhaps on a different Manager in a different program).
func (m *Manager) Unmarshal(enc string) error {
m.init()
var st state
if err := json.Unmarshal([]byte(enc), &st); err != nil {
return err
}
if st.Key != "" {
key, err := unmarshalKey(st.Key)
if err != nil {
return err
}
st.key = key
}
m.state = st
for host, cert := range m.state.Certs {
c, err := cert.toTLS()
if err != nil {
log.Printf("letsencrypt: ignoring entry for %s: %v", host, err)
continue
}
m.certCache[host] = &cacheEntry{host: host, m: m, cert: c}
}
m.updated()
return nil
}
// SetHosts sets the manager's list of known host names.
// If the list is non-nil, the manager will only ever attempt to acquire
// certificates for host names on the list.
// If the list is nil, the manager does not restrict the hosts it will
// ask for certificates for.
func (m *Manager) SetHosts(hosts []string) {
m.init()
m.mu.Lock()
m.state.Hosts = append(m.state.Hosts[:0], hosts...)
m.mu.Unlock()
m.updated()
}
// GetCertificate can be placed a tls.Config's GetCertificate field to make
// the TLS server use Let's Encrypt certificates.
// Each time a client connects to the TLS server expecting a new host name,
// the TLS server's call to GetCertificate will trigger an exchange with the
// Let's Encrypt servers to obtain that certificate, subject to the manager rate limits.
//
// As noted in the Manager's documentation comment,
// to obtain a certificate for a given host name, that name
// must resolve to a computer running a TLS server on port 443
// that obtains TLS SNI certificates by calling m.GetCertificate.
// In the standard usage, then, installing m.GetCertificate in the tls.Config
// both automatically provisions the TLS certificates needed for
// ordinary HTTPS service and answers the challenges from LetsEncrypt.org.
func (m *Manager) GetCertificate(clientHello *tls.ClientHelloInfo) (*tls.Certificate, error) {
m.init()
host := clientHello.ServerName
if debug {
log.Printf("GetCertificate %s", host)
}
if strings.HasSuffix(host, ".acme.invalid") {
m.mu.Lock()
cert := m.certTokens[host]
m.mu.Unlock()
if cert == nil {
return nil, fmt.Errorf("unknown host")
}
return cert, nil
}
return m.Cert(host)
}
// Cert returns the certificate for the given host name, obtaining a new one if necessary.
//
// As noted in the documentation for Manager and for the GetCertificate method,
// obtaining a certificate requires that m.GetCertificate be associated with host.
// In most servers, simply starting a TLS server with a configuration referring
// to m.GetCertificate is sufficient, and Cert need not be called.
//
// The main use of Cert is to force the manager to obtain a certificate
// for a particular host name ahead of time.
func (m *Manager) Cert(host string) (*tls.Certificate, error) {
host = strings.ToLower(host)
if debug {
log.Printf("Cert %s", host)
}
m.init()
m.mu.Lock()
if !m.registered() {
m.register("", nil)
}
ok := false
if m.state.Hosts == nil {
ok = true
} else {
for _, h := range m.state.Hosts {
if host == h {
ok = true
break
}
}
}
if !ok {
m.mu.Unlock()
return nil, fmt.Errorf("unknown host")
}
// Otherwise look in our cert cache.
entry, ok := m.certCache[host]
if !ok {
r := m.rateLimit.Reserve()
ok := r.OK()
if ok {
ok = m.newHostLimit.Allow()
if !ok {
r.Cancel()
}
}
if !ok {
m.mu.Unlock()
return nil, fmt.Errorf("rate limited")
}
entry = &cacheEntry{host: host, m: m}
m.certCache[host] = entry
}
m.mu.Unlock()
entry.mu.Lock()
defer entry.mu.Unlock()
entry.init()
if entry.err != nil {
return nil, entry.err
}
return entry.cert, nil
}
func (e *cacheEntry) init() {
if e.err != nil && time.Now().Before(e.timeout) {
return
}
if e.cert != nil {
if e.timeout.IsZero() {
t, err := certRefreshTime(e.cert)
if err != nil {
e.err = err
e.timeout = time.Now().Add(1 * time.Minute)
e.cert = nil
return
}
e.timeout = t
}
if time.Now().After(e.timeout) && !e.refreshing {
e.refreshing = true
go e.refresh()
}
return
}
cert, refreshTime, err := e.m.verify(e.host)
e.m.mu.Lock()
e.m.certCache[e.host] = e
e.m.mu.Unlock()
e.install(cert, refreshTime, err)
}
func (e *cacheEntry) install(cert *tls.Certificate, refreshTime time.Time, err error) {
e.cert = nil
e.timeout = time.Time{}
e.err = nil
if err != nil {
e.err = err
e.timeout = time.Now().Add(1 * time.Minute)
return
}
e.cert = cert
e.timeout = refreshTime
}
func (e *cacheEntry) refresh() {
e.m.rateLimit.Wait(context.Background())
cert, refreshTime, err := e.m.verify(e.host)
e.mu.Lock()
defer e.mu.Unlock()
e.refreshing = false
if err == nil {
e.install(cert, refreshTime, nil)
}
}
func (m *Manager) verify(host string) (cert *tls.Certificate, refreshTime time.Time, err error) {
c, err := acme.NewClient(letsEncryptURL, &m.state, acme.EC256)
if err != nil {
return
}
if err = c.SetChallengeProvider(acme.TLSSNI01, tlsProvider{m}); err != nil {
return
}
c.SetChallengeProvider(acme.TLSSNI01, tlsProvider{m})
c.ExcludeChallenges([]acme.Challenge{acme.HTTP01})
acmeCert, errmap := c.ObtainCertificate([]string{host}, true, nil)
if len(errmap) > 0 {
if debug {
log.Printf("ObtainCertificate %v => %v", host, errmap)
}
err = fmt.Errorf("%v", errmap)
return
}
entryCert := stateCert{
Cert: string(acmeCert.Certificate),
Key: string(acmeCert.PrivateKey),
}
cert, err = entryCert.toTLS()
if err != nil {
if debug {
log.Printf("ObtainCertificate %v toTLS failure: %v", host, err)
}
err = err
return
}
if refreshTime, err = certRefreshTime(cert); err != nil {
return
}
m.mu.Lock()
if m.state.Certs == nil {
m.state.Certs = make(map[string]stateCert)
}
m.state.Certs[host] = entryCert
m.mu.Unlock()
m.updated()
return cert, refreshTime, nil
}
func certRefreshTime(cert *tls.Certificate) (time.Time, error) {
xc, err := x509.ParseCertificate(cert.Certificate[0])
if err != nil {
if debug {
log.Printf("ObtainCertificate to X.509 failure: %v", err)
}
return time.Time{}, err
}
t := xc.NotBefore.Add(xc.NotAfter.Sub(xc.NotBefore) / 2)
monthEarly := xc.NotAfter.Add(-30 * 24 * time.Hour)
if t.Before(monthEarly) {
t = monthEarly
}
return t, nil
}
// tlsProvider implements acme.ChallengeProvider for TLS handshake challenges.
type tlsProvider struct {
m *Manager
}
func (p tlsProvider) Present(domain, token, keyAuth string) error {
cert, dom, err := acme.TLSSNI01ChallengeCertDomain(keyAuth)
if err != nil {
return err
}
p.m.mu.Lock()
p.m.certTokens[dom] = &cert
p.m.mu.Unlock()
return nil
}
func (p tlsProvider) CleanUp(domain, token, keyAuth string) error {
_, dom, err := acme.TLSSNI01ChallengeCertDomain(keyAuth)
if err != nil {
return err
}
p.m.mu.Lock()
delete(p.m.certTokens, dom)
p.m.mu.Unlock()
return nil
}
func marshalKey(key *ecdsa.PrivateKey) ([]byte, error) {
data, err := x509.MarshalECPrivateKey(key)
if err != nil {
return nil, err
}
return pem.EncodeToMemory(&pem.Block{Type: "EC PRIVATE KEY", Bytes: data}), nil
}
func unmarshalKey(text string) (*ecdsa.PrivateKey, error) {
b, _ := pem.Decode([]byte(text))
if b == nil {
return nil, fmt.Errorf("unmarshalKey: missing key")
}
if b.Type != "EC PRIVATE KEY" {
return nil, fmt.Errorf("unmarshalKey: found %q, not %q", b.Type, "EC PRIVATE KEY")
}
k, err := x509.ParseECPrivateKey(b.Bytes)
if err != nil {
return nil, fmt.Errorf("unmarshalKey: %v", err)
}
return k, nil
}
func newKey() (*ecdsa.PrivateKey, error) {
return ecdsa.GenerateKey(elliptic.P384(), rand.Reader)
}