Vendor letsencrypt packages
Signed-off-by: Derek McGowan <derek@mcgstyle.net> (github: dmcgowan)
This commit is contained in:
parent
feddf6cd4e
commit
1c99939221
83 changed files with 19743 additions and 0 deletions
592
vendor/golang.org/x/crypto/ocsp/ocsp.go
generated
vendored
Normal file
592
vendor/golang.org/x/crypto/ocsp/ocsp.go
generated
vendored
Normal file
|
@ -0,0 +1,592 @@
|
|||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package ocsp parses OCSP responses as specified in RFC 2560. OCSP responses
|
||||
// are signed messages attesting to the validity of a certificate for a small
|
||||
// period of time. This is used to manage revocation for X.509 certificates.
|
||||
package ocsp
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
"crypto/rand"
|
||||
"crypto/rsa"
|
||||
"crypto/sha1"
|
||||
"crypto/x509"
|
||||
"crypto/x509/pkix"
|
||||
"encoding/asn1"
|
||||
"errors"
|
||||
"math/big"
|
||||
"time"
|
||||
)
|
||||
|
||||
var idPKIXOCSPBasic = asn1.ObjectIdentifier([]int{1, 3, 6, 1, 5, 5, 7, 48, 1, 1})
|
||||
|
||||
// These are internal structures that reflect the ASN.1 structure of an OCSP
|
||||
// response. See RFC 2560, section 4.2.
|
||||
|
||||
const (
|
||||
ocspSuccess = 0
|
||||
ocspMalformed = 1
|
||||
ocspInternalError = 2
|
||||
ocspTryLater = 3
|
||||
ocspSigRequired = 4
|
||||
ocspUnauthorized = 5
|
||||
)
|
||||
|
||||
type certID struct {
|
||||
HashAlgorithm pkix.AlgorithmIdentifier
|
||||
NameHash []byte
|
||||
IssuerKeyHash []byte
|
||||
SerialNumber *big.Int
|
||||
}
|
||||
|
||||
// https://tools.ietf.org/html/rfc2560#section-4.1.1
|
||||
type ocspRequest struct {
|
||||
TBSRequest tbsRequest
|
||||
}
|
||||
|
||||
type tbsRequest struct {
|
||||
Version int `asn1:"explicit,tag:0,default:0,optional"`
|
||||
RequestorName pkix.RDNSequence `asn1:"explicit,tag:1,optional"`
|
||||
RequestList []request
|
||||
}
|
||||
|
||||
type request struct {
|
||||
Cert certID
|
||||
}
|
||||
|
||||
type responseASN1 struct {
|
||||
Status asn1.Enumerated
|
||||
Response responseBytes `asn1:"explicit,tag:0"`
|
||||
}
|
||||
|
||||
type responseBytes struct {
|
||||
ResponseType asn1.ObjectIdentifier
|
||||
Response []byte
|
||||
}
|
||||
|
||||
type basicResponse struct {
|
||||
TBSResponseData responseData
|
||||
SignatureAlgorithm pkix.AlgorithmIdentifier
|
||||
Signature asn1.BitString
|
||||
Certificates []asn1.RawValue `asn1:"explicit,tag:0,optional"`
|
||||
}
|
||||
|
||||
type responseData struct {
|
||||
Raw asn1.RawContent
|
||||
Version int `asn1:"optional,default:1,explicit,tag:0"`
|
||||
RawResponderName asn1.RawValue `asn1:"optional,explicit,tag:1"`
|
||||
KeyHash []byte `asn1:"optional,explicit,tag:2"`
|
||||
ProducedAt time.Time `asn1:"generalized"`
|
||||
Responses []singleResponse
|
||||
}
|
||||
|
||||
type singleResponse struct {
|
||||
CertID certID
|
||||
Good asn1.Flag `asn1:"tag:0,optional"`
|
||||
Revoked revokedInfo `asn1:"explicit,tag:1,optional"`
|
||||
Unknown asn1.Flag `asn1:"tag:2,optional"`
|
||||
ThisUpdate time.Time `asn1:"generalized"`
|
||||
NextUpdate time.Time `asn1:"generalized,explicit,tag:0,optional"`
|
||||
}
|
||||
|
||||
type revokedInfo struct {
|
||||
RevocationTime time.Time `asn1:"generalized"`
|
||||
Reason int `asn1:"explicit,tag:0,optional"`
|
||||
}
|
||||
|
||||
var (
|
||||
oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2}
|
||||
oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4}
|
||||
oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5}
|
||||
oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11}
|
||||
oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12}
|
||||
oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13}
|
||||
oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3}
|
||||
oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 4, 3, 2}
|
||||
oidSignatureECDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1}
|
||||
oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2}
|
||||
oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3}
|
||||
oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4}
|
||||
)
|
||||
|
||||
var hashOIDs = map[crypto.Hash]asn1.ObjectIdentifier{
|
||||
crypto.SHA1: asn1.ObjectIdentifier([]int{1, 3, 14, 3, 2, 26}),
|
||||
crypto.SHA256: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 1}),
|
||||
crypto.SHA384: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 2}),
|
||||
crypto.SHA512: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 3}),
|
||||
}
|
||||
|
||||
// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
|
||||
var signatureAlgorithmDetails = []struct {
|
||||
algo x509.SignatureAlgorithm
|
||||
oid asn1.ObjectIdentifier
|
||||
pubKeyAlgo x509.PublicKeyAlgorithm
|
||||
hash crypto.Hash
|
||||
}{
|
||||
{x509.MD2WithRSA, oidSignatureMD2WithRSA, x509.RSA, crypto.Hash(0) /* no value for MD2 */},
|
||||
{x509.MD5WithRSA, oidSignatureMD5WithRSA, x509.RSA, crypto.MD5},
|
||||
{x509.SHA1WithRSA, oidSignatureSHA1WithRSA, x509.RSA, crypto.SHA1},
|
||||
{x509.SHA256WithRSA, oidSignatureSHA256WithRSA, x509.RSA, crypto.SHA256},
|
||||
{x509.SHA384WithRSA, oidSignatureSHA384WithRSA, x509.RSA, crypto.SHA384},
|
||||
{x509.SHA512WithRSA, oidSignatureSHA512WithRSA, x509.RSA, crypto.SHA512},
|
||||
{x509.DSAWithSHA1, oidSignatureDSAWithSHA1, x509.DSA, crypto.SHA1},
|
||||
{x509.DSAWithSHA256, oidSignatureDSAWithSHA256, x509.DSA, crypto.SHA256},
|
||||
{x509.ECDSAWithSHA1, oidSignatureECDSAWithSHA1, x509.ECDSA, crypto.SHA1},
|
||||
{x509.ECDSAWithSHA256, oidSignatureECDSAWithSHA256, x509.ECDSA, crypto.SHA256},
|
||||
{x509.ECDSAWithSHA384, oidSignatureECDSAWithSHA384, x509.ECDSA, crypto.SHA384},
|
||||
{x509.ECDSAWithSHA512, oidSignatureECDSAWithSHA512, x509.ECDSA, crypto.SHA512},
|
||||
}
|
||||
|
||||
// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
|
||||
func signingParamsForPublicKey(pub interface{}, requestedSigAlgo x509.SignatureAlgorithm) (hashFunc crypto.Hash, sigAlgo pkix.AlgorithmIdentifier, err error) {
|
||||
var pubType x509.PublicKeyAlgorithm
|
||||
|
||||
switch pub := pub.(type) {
|
||||
case *rsa.PublicKey:
|
||||
pubType = x509.RSA
|
||||
hashFunc = crypto.SHA256
|
||||
sigAlgo.Algorithm = oidSignatureSHA256WithRSA
|
||||
sigAlgo.Parameters = asn1.RawValue{
|
||||
Tag: 5,
|
||||
}
|
||||
|
||||
case *ecdsa.PublicKey:
|
||||
pubType = x509.ECDSA
|
||||
|
||||
switch pub.Curve {
|
||||
case elliptic.P224(), elliptic.P256():
|
||||
hashFunc = crypto.SHA256
|
||||
sigAlgo.Algorithm = oidSignatureECDSAWithSHA256
|
||||
case elliptic.P384():
|
||||
hashFunc = crypto.SHA384
|
||||
sigAlgo.Algorithm = oidSignatureECDSAWithSHA384
|
||||
case elliptic.P521():
|
||||
hashFunc = crypto.SHA512
|
||||
sigAlgo.Algorithm = oidSignatureECDSAWithSHA512
|
||||
default:
|
||||
err = errors.New("x509: unknown elliptic curve")
|
||||
}
|
||||
|
||||
default:
|
||||
err = errors.New("x509: only RSA and ECDSA keys supported")
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
if requestedSigAlgo == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
found := false
|
||||
for _, details := range signatureAlgorithmDetails {
|
||||
if details.algo == requestedSigAlgo {
|
||||
if details.pubKeyAlgo != pubType {
|
||||
err = errors.New("x509: requested SignatureAlgorithm does not match private key type")
|
||||
return
|
||||
}
|
||||
sigAlgo.Algorithm, hashFunc = details.oid, details.hash
|
||||
if hashFunc == 0 {
|
||||
err = errors.New("x509: cannot sign with hash function requested")
|
||||
return
|
||||
}
|
||||
found = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if !found {
|
||||
err = errors.New("x509: unknown SignatureAlgorithm")
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// TODO(agl): this is taken from crypto/x509 and so should probably be exported
|
||||
// from crypto/x509 or crypto/x509/pkix.
|
||||
func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) x509.SignatureAlgorithm {
|
||||
for _, details := range signatureAlgorithmDetails {
|
||||
if oid.Equal(details.oid) {
|
||||
return details.algo
|
||||
}
|
||||
}
|
||||
return x509.UnknownSignatureAlgorithm
|
||||
}
|
||||
|
||||
// TODO(rlb): This is not taken from crypto/x509, but it's of the same general form.
|
||||
func getHashAlgorithmFromOID(target asn1.ObjectIdentifier) crypto.Hash {
|
||||
for hash, oid := range hashOIDs {
|
||||
if oid.Equal(target) {
|
||||
return hash
|
||||
}
|
||||
}
|
||||
return crypto.Hash(0)
|
||||
}
|
||||
|
||||
// This is the exposed reflection of the internal OCSP structures.
|
||||
|
||||
const (
|
||||
// Good means that the certificate is valid.
|
||||
Good = iota
|
||||
// Revoked means that the certificate has been deliberately revoked.
|
||||
Revoked = iota
|
||||
// Unknown means that the OCSP responder doesn't know about the certificate.
|
||||
Unknown = iota
|
||||
// ServerFailed means that the OCSP responder failed to process the request.
|
||||
ServerFailed = iota
|
||||
)
|
||||
|
||||
// Request represents an OCSP request. See RFC 2560.
|
||||
type Request struct {
|
||||
HashAlgorithm crypto.Hash
|
||||
IssuerNameHash []byte
|
||||
IssuerKeyHash []byte
|
||||
SerialNumber *big.Int
|
||||
}
|
||||
|
||||
// Response represents an OCSP response. See RFC 2560.
|
||||
type Response struct {
|
||||
// Status is one of {Good, Revoked, Unknown, ServerFailed}
|
||||
Status int
|
||||
SerialNumber *big.Int
|
||||
ProducedAt, ThisUpdate, NextUpdate, RevokedAt time.Time
|
||||
RevocationReason int
|
||||
Certificate *x509.Certificate
|
||||
// TBSResponseData contains the raw bytes of the signed response. If
|
||||
// Certificate is nil then this can be used to verify Signature.
|
||||
TBSResponseData []byte
|
||||
Signature []byte
|
||||
SignatureAlgorithm x509.SignatureAlgorithm
|
||||
}
|
||||
|
||||
// These are pre-serialized error responses for the various non-success codes
|
||||
// defined by OCSP. The Unauthorized code in particular can be used by an OCSP
|
||||
// responder that supports only pre-signed responses as a response to requests
|
||||
// for certificates with unknown status. See RFC 5019.
|
||||
var (
|
||||
MalformedRequestErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x01}
|
||||
InternalErrorErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x02}
|
||||
TryLaterErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x03}
|
||||
SigRequredErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x05}
|
||||
UnauthorizedErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x06}
|
||||
)
|
||||
|
||||
// CheckSignatureFrom checks that the signature in resp is a valid signature
|
||||
// from issuer. This should only be used if resp.Certificate is nil. Otherwise,
|
||||
// the OCSP response contained an intermediate certificate that created the
|
||||
// signature. That signature is checked by ParseResponse and only
|
||||
// resp.Certificate remains to be validated.
|
||||
func (resp *Response) CheckSignatureFrom(issuer *x509.Certificate) error {
|
||||
return issuer.CheckSignature(resp.SignatureAlgorithm, resp.TBSResponseData, resp.Signature)
|
||||
}
|
||||
|
||||
// ParseError results from an invalid OCSP response.
|
||||
type ParseError string
|
||||
|
||||
func (p ParseError) Error() string {
|
||||
return string(p)
|
||||
}
|
||||
|
||||
// ParseRequest parses an OCSP request in DER form. It only supports
|
||||
// requests for a single certificate. Signed requests are not supported.
|
||||
// If a request includes a signature, it will result in a ParseError.
|
||||
func ParseRequest(bytes []byte) (*Request, error) {
|
||||
var req ocspRequest
|
||||
rest, err := asn1.Unmarshal(bytes, &req)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if len(rest) > 0 {
|
||||
return nil, ParseError("trailing data in OCSP request")
|
||||
}
|
||||
|
||||
if len(req.TBSRequest.RequestList) == 0 {
|
||||
return nil, ParseError("OCSP request contains no request body")
|
||||
}
|
||||
innerRequest := req.TBSRequest.RequestList[0]
|
||||
|
||||
hashFunc := getHashAlgorithmFromOID(innerRequest.Cert.HashAlgorithm.Algorithm)
|
||||
if hashFunc == crypto.Hash(0) {
|
||||
return nil, ParseError("OCSP request uses unknown hash function")
|
||||
}
|
||||
|
||||
return &Request{
|
||||
HashAlgorithm: hashFunc,
|
||||
IssuerNameHash: innerRequest.Cert.NameHash,
|
||||
IssuerKeyHash: innerRequest.Cert.IssuerKeyHash,
|
||||
SerialNumber: innerRequest.Cert.SerialNumber,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// ParseResponse parses an OCSP response in DER form. It only supports
|
||||
// responses for a single certificate. If the response contains a certificate
|
||||
// then the signature over the response is checked. If issuer is not nil then
|
||||
// it will be used to validate the signature or embedded certificate. Invalid
|
||||
// signatures or parse failures will result in a ParseError.
|
||||
func ParseResponse(bytes []byte, issuer *x509.Certificate) (*Response, error) {
|
||||
var resp responseASN1
|
||||
rest, err := asn1.Unmarshal(bytes, &resp)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if len(rest) > 0 {
|
||||
return nil, ParseError("trailing data in OCSP response")
|
||||
}
|
||||
|
||||
ret := new(Response)
|
||||
if resp.Status != ocspSuccess {
|
||||
ret.Status = ServerFailed
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
if !resp.Response.ResponseType.Equal(idPKIXOCSPBasic) {
|
||||
return nil, ParseError("bad OCSP response type")
|
||||
}
|
||||
|
||||
var basicResp basicResponse
|
||||
rest, err = asn1.Unmarshal(resp.Response.Response, &basicResp)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if len(basicResp.Certificates) > 1 {
|
||||
return nil, ParseError("OCSP response contains bad number of certificates")
|
||||
}
|
||||
|
||||
if len(basicResp.TBSResponseData.Responses) != 1 {
|
||||
return nil, ParseError("OCSP response contains bad number of responses")
|
||||
}
|
||||
|
||||
ret.TBSResponseData = basicResp.TBSResponseData.Raw
|
||||
ret.Signature = basicResp.Signature.RightAlign()
|
||||
ret.SignatureAlgorithm = getSignatureAlgorithmFromOID(basicResp.SignatureAlgorithm.Algorithm)
|
||||
|
||||
if len(basicResp.Certificates) > 0 {
|
||||
ret.Certificate, err = x509.ParseCertificate(basicResp.Certificates[0].FullBytes)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := ret.CheckSignatureFrom(ret.Certificate); err != nil {
|
||||
return nil, ParseError("bad OCSP signature")
|
||||
}
|
||||
|
||||
if issuer != nil {
|
||||
if err := issuer.CheckSignature(ret.Certificate.SignatureAlgorithm, ret.Certificate.RawTBSCertificate, ret.Certificate.Signature); err != nil {
|
||||
return nil, ParseError("bad signature on embedded certificate")
|
||||
}
|
||||
}
|
||||
} else if issuer != nil {
|
||||
if err := ret.CheckSignatureFrom(issuer); err != nil {
|
||||
return nil, ParseError("bad OCSP signature")
|
||||
}
|
||||
}
|
||||
|
||||
r := basicResp.TBSResponseData.Responses[0]
|
||||
|
||||
ret.SerialNumber = r.CertID.SerialNumber
|
||||
|
||||
switch {
|
||||
case bool(r.Good):
|
||||
ret.Status = Good
|
||||
case bool(r.Unknown):
|
||||
ret.Status = Unknown
|
||||
default:
|
||||
ret.Status = Revoked
|
||||
ret.RevokedAt = r.Revoked.RevocationTime
|
||||
ret.RevocationReason = r.Revoked.Reason
|
||||
}
|
||||
|
||||
ret.ProducedAt = basicResp.TBSResponseData.ProducedAt
|
||||
ret.ThisUpdate = r.ThisUpdate
|
||||
ret.NextUpdate = r.NextUpdate
|
||||
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
// RequestOptions contains options for constructing OCSP requests.
|
||||
type RequestOptions struct {
|
||||
// Hash contains the hash function that should be used when
|
||||
// constructing the OCSP request. If zero, SHA-1 will be used.
|
||||
Hash crypto.Hash
|
||||
}
|
||||
|
||||
func (opts *RequestOptions) hash() crypto.Hash {
|
||||
if opts == nil || opts.Hash == 0 {
|
||||
// SHA-1 is nearly universally used in OCSP.
|
||||
return crypto.SHA1
|
||||
}
|
||||
return opts.Hash
|
||||
}
|
||||
|
||||
// CreateRequest returns a DER-encoded, OCSP request for the status of cert. If
|
||||
// opts is nil then sensible defaults are used.
|
||||
func CreateRequest(cert, issuer *x509.Certificate, opts *RequestOptions) ([]byte, error) {
|
||||
hashFunc := opts.hash()
|
||||
|
||||
// OCSP seems to be the only place where these raw hash identifiers are
|
||||
// used. I took the following from
|
||||
// http://msdn.microsoft.com/en-us/library/ff635603.aspx
|
||||
var hashOID asn1.ObjectIdentifier
|
||||
hashOID, ok := hashOIDs[hashFunc]
|
||||
if !ok {
|
||||
return nil, x509.ErrUnsupportedAlgorithm
|
||||
}
|
||||
|
||||
if !hashFunc.Available() {
|
||||
return nil, x509.ErrUnsupportedAlgorithm
|
||||
}
|
||||
h := opts.hash().New()
|
||||
|
||||
var publicKeyInfo struct {
|
||||
Algorithm pkix.AlgorithmIdentifier
|
||||
PublicKey asn1.BitString
|
||||
}
|
||||
if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
h.Write(publicKeyInfo.PublicKey.RightAlign())
|
||||
issuerKeyHash := h.Sum(nil)
|
||||
|
||||
h.Reset()
|
||||
h.Write(issuer.RawSubject)
|
||||
issuerNameHash := h.Sum(nil)
|
||||
|
||||
return asn1.Marshal(ocspRequest{
|
||||
tbsRequest{
|
||||
Version: 0,
|
||||
RequestList: []request{
|
||||
{
|
||||
Cert: certID{
|
||||
pkix.AlgorithmIdentifier{
|
||||
Algorithm: hashOID,
|
||||
Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
|
||||
},
|
||||
issuerNameHash,
|
||||
issuerKeyHash,
|
||||
cert.SerialNumber,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
})
|
||||
}
|
||||
|
||||
// CreateResponse returns a DER-encoded OCSP response with the specified contents.
|
||||
// The fields in the response are populated as follows:
|
||||
//
|
||||
// The responder cert is used to populate the ResponderName field, and the certificate
|
||||
// itself is provided alongside the OCSP response signature.
|
||||
//
|
||||
// The issuer cert is used to puplate the IssuerNameHash and IssuerKeyHash fields.
|
||||
// (SHA-1 is used for the hash function; this is not configurable.)
|
||||
//
|
||||
// The template is used to populate the SerialNumber, RevocationStatus, RevokedAt,
|
||||
// RevocationReason, ThisUpdate, and NextUpdate fields.
|
||||
//
|
||||
// The ProducedAt date is automatically set to the current date, to the nearest minute.
|
||||
func CreateResponse(issuer, responderCert *x509.Certificate, template Response, priv crypto.Signer) ([]byte, error) {
|
||||
var publicKeyInfo struct {
|
||||
Algorithm pkix.AlgorithmIdentifier
|
||||
PublicKey asn1.BitString
|
||||
}
|
||||
if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
h := sha1.New()
|
||||
h.Write(publicKeyInfo.PublicKey.RightAlign())
|
||||
issuerKeyHash := h.Sum(nil)
|
||||
|
||||
h.Reset()
|
||||
h.Write(issuer.RawSubject)
|
||||
issuerNameHash := h.Sum(nil)
|
||||
|
||||
innerResponse := singleResponse{
|
||||
CertID: certID{
|
||||
HashAlgorithm: pkix.AlgorithmIdentifier{
|
||||
Algorithm: hashOIDs[crypto.SHA1],
|
||||
Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
|
||||
},
|
||||
NameHash: issuerNameHash,
|
||||
IssuerKeyHash: issuerKeyHash,
|
||||
SerialNumber: template.SerialNumber,
|
||||
},
|
||||
ThisUpdate: template.ThisUpdate.UTC(),
|
||||
NextUpdate: template.NextUpdate.UTC(),
|
||||
}
|
||||
|
||||
switch template.Status {
|
||||
case Good:
|
||||
innerResponse.Good = true
|
||||
case Unknown:
|
||||
innerResponse.Unknown = true
|
||||
case Revoked:
|
||||
innerResponse.Revoked = revokedInfo{
|
||||
RevocationTime: template.RevokedAt.UTC(),
|
||||
Reason: template.RevocationReason,
|
||||
}
|
||||
}
|
||||
|
||||
responderName := asn1.RawValue{
|
||||
Class: 2, // context-specific
|
||||
Tag: 1, // explicit tag
|
||||
IsCompound: true,
|
||||
Bytes: responderCert.RawSubject,
|
||||
}
|
||||
tbsResponseData := responseData{
|
||||
Version: 0,
|
||||
RawResponderName: responderName,
|
||||
ProducedAt: time.Now().Truncate(time.Minute).UTC(),
|
||||
Responses: []singleResponse{innerResponse},
|
||||
}
|
||||
|
||||
tbsResponseDataDER, err := asn1.Marshal(tbsResponseData)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(priv.Public(), template.SignatureAlgorithm)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
responseHash := hashFunc.New()
|
||||
responseHash.Write(tbsResponseDataDER)
|
||||
signature, err := priv.Sign(rand.Reader, responseHash.Sum(nil), hashFunc)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
response := basicResponse{
|
||||
TBSResponseData: tbsResponseData,
|
||||
SignatureAlgorithm: signatureAlgorithm,
|
||||
Signature: asn1.BitString{
|
||||
Bytes: signature,
|
||||
BitLength: 8 * len(signature),
|
||||
},
|
||||
}
|
||||
if template.Certificate != nil {
|
||||
response.Certificates = []asn1.RawValue{
|
||||
asn1.RawValue{FullBytes: template.Certificate.Raw},
|
||||
}
|
||||
}
|
||||
responseDER, err := asn1.Marshal(response)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return asn1.Marshal(responseASN1{
|
||||
Status: ocspSuccess,
|
||||
Response: responseBytes{
|
||||
ResponseType: idPKIXOCSPBasic,
|
||||
Response: responseDER,
|
||||
},
|
||||
})
|
||||
}
|
27
vendor/golang.org/x/time/LICENSE
generated
vendored
Normal file
27
vendor/golang.org/x/time/LICENSE
generated
vendored
Normal file
|
@ -0,0 +1,27 @@
|
|||
Copyright (c) 2009 The Go Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
22
vendor/golang.org/x/time/PATENTS
generated
vendored
Normal file
22
vendor/golang.org/x/time/PATENTS
generated
vendored
Normal file
|
@ -0,0 +1,22 @@
|
|||
Additional IP Rights Grant (Patents)
|
||||
|
||||
"This implementation" means the copyrightable works distributed by
|
||||
Google as part of the Go project.
|
||||
|
||||
Google hereby grants to You a perpetual, worldwide, non-exclusive,
|
||||
no-charge, royalty-free, irrevocable (except as stated in this section)
|
||||
patent license to make, have made, use, offer to sell, sell, import,
|
||||
transfer and otherwise run, modify and propagate the contents of this
|
||||
implementation of Go, where such license applies only to those patent
|
||||
claims, both currently owned or controlled by Google and acquired in
|
||||
the future, licensable by Google that are necessarily infringed by this
|
||||
implementation of Go. This grant does not include claims that would be
|
||||
infringed only as a consequence of further modification of this
|
||||
implementation. If you or your agent or exclusive licensee institute or
|
||||
order or agree to the institution of patent litigation against any
|
||||
entity (including a cross-claim or counterclaim in a lawsuit) alleging
|
||||
that this implementation of Go or any code incorporated within this
|
||||
implementation of Go constitutes direct or contributory patent
|
||||
infringement, or inducement of patent infringement, then any patent
|
||||
rights granted to you under this License for this implementation of Go
|
||||
shall terminate as of the date such litigation is filed.
|
368
vendor/golang.org/x/time/rate/rate.go
generated
vendored
Normal file
368
vendor/golang.org/x/time/rate/rate.go
generated
vendored
Normal file
|
@ -0,0 +1,368 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package rate provides a rate limiter.
|
||||
package rate
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"golang.org/x/net/context"
|
||||
)
|
||||
|
||||
// Limit defines the maximum frequency of some events.
|
||||
// Limit is represented as number of events per second.
|
||||
// A zero Limit allows no events.
|
||||
type Limit float64
|
||||
|
||||
// Inf is the infinite rate limit; it allows all events (even if burst is zero).
|
||||
const Inf = Limit(math.MaxFloat64)
|
||||
|
||||
// Every converts a minimum time interval between events to a Limit.
|
||||
func Every(interval time.Duration) Limit {
|
||||
if interval <= 0 {
|
||||
return Inf
|
||||
}
|
||||
return 1 / Limit(interval.Seconds())
|
||||
}
|
||||
|
||||
// A Limiter controls how frequently events are allowed to happen.
|
||||
// It implements a "token bucket" of size b, initially full and refilled
|
||||
// at rate r tokens per second.
|
||||
// Informally, in any large enough time interval, the Limiter limits the
|
||||
// rate to r tokens per second, with a maximum burst size of b events.
|
||||
// As a special case, if r == Inf (the infinite rate), b is ignored.
|
||||
// See https://en.wikipedia.org/wiki/Token_bucket for more about token buckets.
|
||||
//
|
||||
// The zero value is a valid Limiter, but it will reject all events.
|
||||
// Use NewLimiter to create non-zero Limiters.
|
||||
//
|
||||
// Limiter has three main methods, Allow, Reserve, and Wait.
|
||||
// Most callers should use Wait.
|
||||
//
|
||||
// Each of the three methods consumes a single token.
|
||||
// They differ in their behavior when no token is available.
|
||||
// If no token is available, Allow returns false.
|
||||
// If no token is available, Reserve returns a reservation for a future token
|
||||
// and the amount of time the caller must wait before using it.
|
||||
// If no token is available, Wait blocks until one can be obtained
|
||||
// or its associated context.Context is canceled.
|
||||
//
|
||||
// The methods AllowN, ReserveN, and WaitN consume n tokens.
|
||||
type Limiter struct {
|
||||
limit Limit
|
||||
burst int
|
||||
|
||||
mu sync.Mutex
|
||||
tokens float64
|
||||
// last is the last time the limiter's tokens field was updated
|
||||
last time.Time
|
||||
// lastEvent is the latest time of a rate-limited event (past or future)
|
||||
lastEvent time.Time
|
||||
}
|
||||
|
||||
// Limit returns the maximum overall event rate.
|
||||
func (lim *Limiter) Limit() Limit {
|
||||
lim.mu.Lock()
|
||||
defer lim.mu.Unlock()
|
||||
return lim.limit
|
||||
}
|
||||
|
||||
// Burst returns the maximum burst size. Burst is the maximum number of tokens
|
||||
// that can be consumed in a single call to Allow, Reserve, or Wait, so higher
|
||||
// Burst values allow more events to happen at once.
|
||||
// A zero Burst allows no events, unless limit == Inf.
|
||||
func (lim *Limiter) Burst() int {
|
||||
return lim.burst
|
||||
}
|
||||
|
||||
// NewLimiter returns a new Limiter that allows events up to rate r and permits
|
||||
// bursts of at most b tokens.
|
||||
func NewLimiter(r Limit, b int) *Limiter {
|
||||
return &Limiter{
|
||||
limit: r,
|
||||
burst: b,
|
||||
}
|
||||
}
|
||||
|
||||
// Allow is shorthand for AllowN(time.Now(), 1).
|
||||
func (lim *Limiter) Allow() bool {
|
||||
return lim.AllowN(time.Now(), 1)
|
||||
}
|
||||
|
||||
// AllowN reports whether n events may happen at time now.
|
||||
// Use this method if you intend to drop / skip events that exceed the rate limit.
|
||||
// Otherwise use Reserve or Wait.
|
||||
func (lim *Limiter) AllowN(now time.Time, n int) bool {
|
||||
return lim.reserveN(now, n, 0).ok
|
||||
}
|
||||
|
||||
// A Reservation holds information about events that are permitted by a Limiter to happen after a delay.
|
||||
// A Reservation may be canceled, which may enable the Limiter to permit additional events.
|
||||
type Reservation struct {
|
||||
ok bool
|
||||
lim *Limiter
|
||||
tokens int
|
||||
timeToAct time.Time
|
||||
// This is the Limit at reservation time, it can change later.
|
||||
limit Limit
|
||||
}
|
||||
|
||||
// OK returns whether the limiter can provide the requested number of tokens
|
||||
// within the maximum wait time. If OK is false, Delay returns InfDuration, and
|
||||
// Cancel does nothing.
|
||||
func (r *Reservation) OK() bool {
|
||||
return r.ok
|
||||
}
|
||||
|
||||
// Delay is shorthand for DelayFrom(time.Now()).
|
||||
func (r *Reservation) Delay() time.Duration {
|
||||
return r.DelayFrom(time.Now())
|
||||
}
|
||||
|
||||
// InfDuration is the duration returned by Delay when a Reservation is not OK.
|
||||
const InfDuration = time.Duration(1<<63 - 1)
|
||||
|
||||
// DelayFrom returns the duration for which the reservation holder must wait
|
||||
// before taking the reserved action. Zero duration means act immediately.
|
||||
// InfDuration means the limiter cannot grant the tokens requested in this
|
||||
// Reservation within the maximum wait time.
|
||||
func (r *Reservation) DelayFrom(now time.Time) time.Duration {
|
||||
if !r.ok {
|
||||
return InfDuration
|
||||
}
|
||||
delay := r.timeToAct.Sub(now)
|
||||
if delay < 0 {
|
||||
return 0
|
||||
}
|
||||
return delay
|
||||
}
|
||||
|
||||
// Cancel is shorthand for CancelAt(time.Now()).
|
||||
func (r *Reservation) Cancel() {
|
||||
r.CancelAt(time.Now())
|
||||
return
|
||||
}
|
||||
|
||||
// CancelAt indicates that the reservation holder will not perform the reserved action
|
||||
// and reverses the effects of this Reservation on the rate limit as much as possible,
|
||||
// considering that other reservations may have already been made.
|
||||
func (r *Reservation) CancelAt(now time.Time) {
|
||||
if !r.ok {
|
||||
return
|
||||
}
|
||||
|
||||
r.lim.mu.Lock()
|
||||
defer r.lim.mu.Unlock()
|
||||
|
||||
if r.lim.limit == Inf || r.tokens == 0 || r.timeToAct.Before(now) {
|
||||
return
|
||||
}
|
||||
|
||||
// calculate tokens to restore
|
||||
// The duration between lim.lastEvent and r.timeToAct tells us how many tokens were reserved
|
||||
// after r was obtained. These tokens should not be restored.
|
||||
restoreTokens := float64(r.tokens) - r.limit.tokensFromDuration(r.lim.lastEvent.Sub(r.timeToAct))
|
||||
if restoreTokens <= 0 {
|
||||
return
|
||||
}
|
||||
// advance time to now
|
||||
now, _, tokens := r.lim.advance(now)
|
||||
// calculate new number of tokens
|
||||
tokens += restoreTokens
|
||||
if burst := float64(r.lim.burst); tokens > burst {
|
||||
tokens = burst
|
||||
}
|
||||
// update state
|
||||
r.lim.last = now
|
||||
r.lim.tokens = tokens
|
||||
if r.timeToAct == r.lim.lastEvent {
|
||||
prevEvent := r.timeToAct.Add(r.limit.durationFromTokens(float64(-r.tokens)))
|
||||
if !prevEvent.Before(now) {
|
||||
r.lim.lastEvent = prevEvent
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// Reserve is shorthand for ReserveN(time.Now(), 1).
|
||||
func (lim *Limiter) Reserve() *Reservation {
|
||||
return lim.ReserveN(time.Now(), 1)
|
||||
}
|
||||
|
||||
// ReserveN returns a Reservation that indicates how long the caller must wait before n events happen.
|
||||
// The Limiter takes this Reservation into account when allowing future events.
|
||||
// ReserveN returns false if n exceeds the Limiter's burst size.
|
||||
// Usage example:
|
||||
// r, ok := lim.ReserveN(time.Now(), 1)
|
||||
// if !ok {
|
||||
// // Not allowed to act! Did you remember to set lim.burst to be > 0 ?
|
||||
// }
|
||||
// time.Sleep(r.Delay())
|
||||
// Act()
|
||||
// Use this method if you wish to wait and slow down in accordance with the rate limit without dropping events.
|
||||
// If you need to respect a deadline or cancel the delay, use Wait instead.
|
||||
// To drop or skip events exceeding rate limit, use Allow instead.
|
||||
func (lim *Limiter) ReserveN(now time.Time, n int) *Reservation {
|
||||
r := lim.reserveN(now, n, InfDuration)
|
||||
return &r
|
||||
}
|
||||
|
||||
// Wait is shorthand for WaitN(ctx, 1).
|
||||
func (lim *Limiter) Wait(ctx context.Context) (err error) {
|
||||
return lim.WaitN(ctx, 1)
|
||||
}
|
||||
|
||||
// WaitN blocks until lim permits n events to happen.
|
||||
// It returns an error if n exceeds the Limiter's burst size, the Context is
|
||||
// canceled, or the expected wait time exceeds the Context's Deadline.
|
||||
func (lim *Limiter) WaitN(ctx context.Context, n int) (err error) {
|
||||
if n > lim.burst {
|
||||
return fmt.Errorf("rate: Wait(n=%d) exceeds limiter's burst %d", n, lim.burst)
|
||||
}
|
||||
// Check if ctx is already cancelled
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
return ctx.Err()
|
||||
default:
|
||||
}
|
||||
// Determine wait limit
|
||||
now := time.Now()
|
||||
waitLimit := InfDuration
|
||||
if deadline, ok := ctx.Deadline(); ok {
|
||||
waitLimit = deadline.Sub(now)
|
||||
}
|
||||
// Reserve
|
||||
r := lim.reserveN(now, n, waitLimit)
|
||||
if !r.ok {
|
||||
return fmt.Errorf("rate: Wait(n=%d) would exceed context deadline", n)
|
||||
}
|
||||
// Wait
|
||||
t := time.NewTimer(r.DelayFrom(now))
|
||||
defer t.Stop()
|
||||
select {
|
||||
case <-t.C:
|
||||
// We can proceed.
|
||||
return nil
|
||||
case <-ctx.Done():
|
||||
// Context was canceled before we could proceed. Cancel the
|
||||
// reservation, which may permit other events to proceed sooner.
|
||||
r.Cancel()
|
||||
return ctx.Err()
|
||||
}
|
||||
}
|
||||
|
||||
// SetLimit is shorthand for SetLimitAt(time.Now(), newLimit).
|
||||
func (lim *Limiter) SetLimit(newLimit Limit) {
|
||||
lim.SetLimitAt(time.Now(), newLimit)
|
||||
}
|
||||
|
||||
// SetLimitAt sets a new Limit for the limiter. The new Limit, and Burst, may be violated
|
||||
// or underutilized by those which reserved (using Reserve or Wait) but did not yet act
|
||||
// before SetLimitAt was called.
|
||||
func (lim *Limiter) SetLimitAt(now time.Time, newLimit Limit) {
|
||||
lim.mu.Lock()
|
||||
defer lim.mu.Unlock()
|
||||
|
||||
now, _, tokens := lim.advance(now)
|
||||
|
||||
lim.last = now
|
||||
lim.tokens = tokens
|
||||
lim.limit = newLimit
|
||||
}
|
||||
|
||||
// reserveN is a helper method for AllowN, ReserveN, and WaitN.
|
||||
// maxFutureReserve specifies the maximum reservation wait duration allowed.
|
||||
// reserveN returns Reservation, not *Reservation, to avoid allocation in AllowN and WaitN.
|
||||
func (lim *Limiter) reserveN(now time.Time, n int, maxFutureReserve time.Duration) Reservation {
|
||||
lim.mu.Lock()
|
||||
defer lim.mu.Unlock()
|
||||
|
||||
if lim.limit == Inf {
|
||||
return Reservation{
|
||||
ok: true,
|
||||
lim: lim,
|
||||
tokens: n,
|
||||
timeToAct: now,
|
||||
}
|
||||
}
|
||||
|
||||
now, last, tokens := lim.advance(now)
|
||||
|
||||
// Calculate the remaining number of tokens resulting from the request.
|
||||
tokens -= float64(n)
|
||||
|
||||
// Calculate the wait duration
|
||||
var waitDuration time.Duration
|
||||
if tokens < 0 {
|
||||
waitDuration = lim.limit.durationFromTokens(-tokens)
|
||||
}
|
||||
|
||||
// Decide result
|
||||
ok := n <= lim.burst && waitDuration <= maxFutureReserve
|
||||
|
||||
// Prepare reservation
|
||||
r := Reservation{
|
||||
ok: ok,
|
||||
lim: lim,
|
||||
limit: lim.limit,
|
||||
}
|
||||
if ok {
|
||||
r.tokens = n
|
||||
r.timeToAct = now.Add(waitDuration)
|
||||
}
|
||||
|
||||
// Update state
|
||||
if ok {
|
||||
lim.last = now
|
||||
lim.tokens = tokens
|
||||
lim.lastEvent = r.timeToAct
|
||||
} else {
|
||||
lim.last = last
|
||||
}
|
||||
|
||||
return r
|
||||
}
|
||||
|
||||
// advance calculates and returns an updated state for lim resulting from the passage of time.
|
||||
// lim is not changed.
|
||||
func (lim *Limiter) advance(now time.Time) (newNow time.Time, newLast time.Time, newTokens float64) {
|
||||
last := lim.last
|
||||
if now.Before(last) {
|
||||
last = now
|
||||
}
|
||||
|
||||
// Avoid making delta overflow below when last is very old.
|
||||
maxElapsed := lim.limit.durationFromTokens(float64(lim.burst) - lim.tokens)
|
||||
elapsed := now.Sub(last)
|
||||
if elapsed > maxElapsed {
|
||||
elapsed = maxElapsed
|
||||
}
|
||||
|
||||
// Calculate the new number of tokens, due to time that passed.
|
||||
delta := lim.limit.tokensFromDuration(elapsed)
|
||||
tokens := lim.tokens + delta
|
||||
if burst := float64(lim.burst); tokens > burst {
|
||||
tokens = burst
|
||||
}
|
||||
|
||||
return now, last, tokens
|
||||
}
|
||||
|
||||
// durationFromTokens is a unit conversion function from the number of tokens to the duration
|
||||
// of time it takes to accumulate them at a rate of limit tokens per second.
|
||||
func (limit Limit) durationFromTokens(tokens float64) time.Duration {
|
||||
seconds := tokens / float64(limit)
|
||||
return time.Nanosecond * time.Duration(1e9*seconds)
|
||||
}
|
||||
|
||||
// tokensFromDuration is a unit conversion function from a time duration to the number of tokens
|
||||
// which could be accumulated during that duration at a rate of limit tokens per second.
|
||||
func (limit Limit) tokensFromDuration(d time.Duration) float64 {
|
||||
return d.Seconds() * float64(limit)
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue