diff --git a/auth/token/token.go b/auth/token/token.go index 568b257a..8752afae 100644 --- a/auth/token/token.go +++ b/auth/token/token.go @@ -53,25 +53,11 @@ type ClaimSet struct { // Header describes the header section of a JSON Web Token. type Header struct { - Type string `json:"typ"` - SigningAlg string `json:"alg"` - KeyID string `json:"kid,omitempty"` - RawJWK json.RawMessage `json:"jwk"` - SigningKey libtrust.PublicKey `json:"-"` -} - -// CheckSigningKey parses the `jwk` field of a JOSE header and sets the -// SigningKey field if it is valid. -func (h *Header) CheckSigningKey() (err error) { - if len(h.RawJWK) == 0 { - // No signing key was specified. - return - } - - h.SigningKey, err = libtrust.UnmarshalPublicKeyJWK([]byte(h.RawJWK)) - h.RawJWK = nil // Don't need this anymore! - - return + Type string `json:"typ"` + SigningAlg string `json:"alg"` + KeyID string `json:"kid,omitempty"` + X5c []string `json:"x5c,omitempty"` + RawJWK json.RawMessage `json:"jwk,omitempty"` } // Token describes a JSON Web Token. @@ -135,10 +121,6 @@ func NewToken(rawToken string) (*Token, error) { return nil, ErrMalformedToken } - if err = token.Header.CheckSigningKey(); err != nil { - return nil, ErrMalformedToken - } - if err = json.Unmarshal(claimsJSON, token.Claims); err != nil { return nil, ErrMalformedToken } @@ -174,108 +156,86 @@ func (t *Token) Verify(verifyOpts VerifyOptions) error { return ErrInvalidToken } - // If the token header has a SigningKey field, verify the signature - // using that key and its included x509 certificate chain if necessary. - // If the Header's SigningKey field is nil, try using the KeyID field. - signingKey := t.Header.SigningKey - - if signingKey == nil { - // Find the key in the given collection of trusted keys. - trustedKey, ok := verifyOpts.TrustedKeys[t.Header.KeyID] - if !ok { - log.Errorf("token signed by untrusted key with ID: %q", t.Header.KeyID) - return ErrInvalidToken - } - signingKey = trustedKey + // Verify that the signing key is trusted. + signingKey, err := t.VerifySigningKey(verifyOpts) + if err != nil { + log.Error(err) + return ErrInvalidToken } - // First verify the signature of the token using the key which signed it. + // Finally, verify the signature of the token using the key which signed it. if err := signingKey.Verify(strings.NewReader(t.Raw), t.Header.SigningAlg, t.Signature); err != nil { log.Errorf("unable to verify token signature: %s", err) return ErrInvalidToken } - // Next, check if the signing key is one of the trusted keys. - if _, isTrustedKey := verifyOpts.TrustedKeys[signingKey.KeyID()]; isTrustedKey { - // We're done! The token was signed by - // a trusted key and has been verified! - return nil - } - - // Otherwise, we need to check the sigining keys included certificate chain. - return t.verifyCertificateChain(signingKey, verifyOpts.Roots) + return nil } -// verifyCertificateChain attempts to verify the token using the "x5c" field -// of the given leafKey which was used to sign it. Returns a nil error if -// the key's certificate chain is valid and rooted an one of the given roots. -func (t *Token) verifyCertificateChain(leafKey libtrust.PublicKey, roots *x509.CertPool) error { - // In this case, the token signature is valid, but the key that signed it - // is not in our set of trusted keys. So, we'll need to check if the - // token's signing key included an x509 certificate chain that can be - // verified up to one of our trusted roots. - x5cVal, ok := leafKey.GetExtendedField("x5c").([]interface{}) - if !ok || x5cVal == nil { - log.Error("unable to verify token signature: signed by untrusted key with no valid certificate chain") - return ErrInvalidToken +// VerifySigningKey attempts to get the key which was used to sign this token. +// The token header should contain either of these 3 fields: +// `x5c` - The x509 certificate chain for the signing key. Needs to be +// verified. +// `jwk` - The JSON Web Key representation of the signing key. +// May contain its own `x5c` field which needs to be verified. +// `kid` - The unique identifier for the key. This library interprets it +// as a libtrust fingerprint. The key itself can be looked up in +// the trustedKeys field of the given verify options. +// Each of these methods are tried in that order of preference until the +// signing key is found or an error is returned. +func (t *Token) VerifySigningKey(verifyOpts VerifyOptions) (signingKey libtrust.PublicKey, err error) { + // First attempt to get an x509 certificate chain from the header. + var ( + x5c = t.Header.X5c + rawJWK = t.Header.RawJWK + keyID = t.Header.KeyID + ) + + switch { + case len(x5c) > 0: + signingKey, err = parseAndVerifyCertChain(x5c, verifyOpts.Roots) + case len(rawJWK) > 0: + signingKey, err = parseAndVerifyRawJWK(rawJWK, verifyOpts) + case len(keyID) > 0: + signingKey = verifyOpts.TrustedKeys[keyID] + if signingKey == nil { + err = fmt.Errorf("token signed by untrusted key with ID: %q", keyID) + } + default: + err = errors.New("unable to get token signing key") } - // Ensure each item is of the correct type. - x5c := make([]string, len(x5cVal)) - for i, val := range x5cVal { - certString, ok := val.(string) - if !ok || len(certString) == 0 { - log.Error("unable to verify token signature: signed by untrusted key with malformed certificate chain") - return ErrInvalidToken - } - x5c[i] = certString + return +} + +func parseAndVerifyCertChain(x5c []string, roots *x509.CertPool) (leafKey libtrust.PublicKey, err error) { + if len(x5c) == 0 { + return nil, errors.New("empty x509 certificate chain") } // Ensure the first element is encoded correctly. leafCertDer, err := base64.StdEncoding.DecodeString(x5c[0]) if err != nil { - log.Errorf("unable to decode signing key leaf cert: %s", err) - return ErrInvalidToken + return nil, fmt.Errorf("unable to decode leaf certificate: %s", err) } // And that it is a valid x509 certificate. leafCert, err := x509.ParseCertificate(leafCertDer) if err != nil { - log.Errorf("unable to parse signing key leaf cert: %s", err) - return ErrInvalidToken + return nil, fmt.Errorf("unable to parse leaf certificate: %s", err) } - // Verify that the public key in the leaf cert *is* the signing key. - leafCryptoKey, ok := leafCert.PublicKey.(crypto.PublicKey) - if !ok { - log.Error("unable to get signing key leaf cert public key value") - return ErrInvalidToken - } - - leafPubKey, err := libtrust.FromCryptoPublicKey(leafCryptoKey) - if err != nil { - log.Errorf("unable to make libtrust public key from signing key leaf cert: %s", err) - return ErrInvalidToken - } - - if leafPubKey.KeyID() != leafKey.KeyID() { - log.Error("token signing key ID and leaf certificate public key ID do not match") - return ErrInvalidToken - } - - // The rest of the x5c array are intermediate certificates. + // The rest of the certificate chain are intermediate certificates. intermediates := x509.NewCertPool() for i := 1; i < len(x5c); i++ { intermediateCertDer, err := base64.StdEncoding.DecodeString(x5c[i]) if err != nil { - log.Errorf("unable to decode signing key intermediate cert: %s", err) - return ErrInvalidToken + return nil, fmt.Errorf("unable to decode intermediate certificate: %s", err) } intermediateCert, err := x509.ParseCertificate(intermediateCertDer) if err != nil { - log.Errorf("unable to parse signing key intermediate cert: %s", err) - return ErrInvalidToken + return nil, fmt.Errorf("unable to parse intermediate certificate: %s", err) } intermediates.AddCert(intermediateCert) @@ -290,12 +250,64 @@ func (t *Token) verifyCertificateChain(leafKey libtrust.PublicKey, roots *x509.C // TODO: this call returns certificate chains which we ignore for now, but // we should check them for revocations if we have the ability later. if _, err = leafCert.Verify(verifyOpts); err != nil { - log.Errorf("unable to verify signing key certificate: %s", err) - return ErrInvalidToken + return nil, fmt.Errorf("unable to verify certificate chain: %s", err) } - // The signing key's x509 chain is valid! - return nil + // Get the public key from the leaf certificate. + leafCryptoKey, ok := leafCert.PublicKey.(crypto.PublicKey) + if !ok { + return nil, errors.New("unable to get leaf cert public key value") + } + + leafKey, err = libtrust.FromCryptoPublicKey(leafCryptoKey) + if err != nil { + return nil, fmt.Errorf("unable to make libtrust public key from leaf certificate: %s", err) + } + + return +} + +func parseAndVerifyRawJWK(rawJWK json.RawMessage, verifyOpts VerifyOptions) (pubKey libtrust.PublicKey, err error) { + pubKey, err = libtrust.UnmarshalPublicKeyJWK([]byte(rawJWK)) + if err != nil { + return nil, fmt.Errorf("unable to decode raw JWK value: %s", err) + } + + // Check to see if the key includes a certificate chain. + x5cVal, ok := pubKey.GetExtendedField("x5c").([]interface{}) + if !ok { + // The JWK should be one of the trusted root keys. + if _, trusted := verifyOpts.TrustedKeys[pubKey.KeyID()]; !trusted { + return nil, errors.New("untrusted JWK with no certificate chain") + } + + // The JWK is one of the trusted keys. + return + } + + // Ensure each item in the chain is of the correct type. + x5c := make([]string, len(x5cVal)) + for i, val := range x5cVal { + certString, ok := val.(string) + if !ok || len(certString) == 0 { + return nil, errors.New("malformed certificate chain") + } + x5c[i] = certString + } + + // Ensure that the x509 certificate chain can + // be verified up to one of our trusted roots. + leafKey, err := parseAndVerifyCertChain(x5c, verifyOpts.Roots) + if err != nil { + return nil, fmt.Errorf("could not verify JWK certificate chain: %s", err) + } + + // Verify that the public key in the leaf cert *is* the signing key. + if pubKey.KeyID() != leafKey.KeyID() { + return nil, errors.New("leaf certificate public key ID does not match JWK key ID") + } + + return } // accessSet returns a set of actions available for the resource