Merge pull request #2926 from tariq1890/no_rsc

replace rsc.io/letsencrypt in favour of golang.org/x/crypto
This commit is contained in:
Ryan Abrams 2019-06-05 15:34:28 -07:00 committed by GitHub
commit dcfe05ce6c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
129 changed files with 6555 additions and 37728 deletions

View file

@ -848,7 +848,9 @@ TLS certificates provided by
> to the `docker run` command or using a similar setting in a cloud
> configuration. You should also set the `hosts` option to the list of hostnames
> that are valid for this registry to avoid trying to get certificates for random
> hostnames due to malicious clients connecting with bogus SNI hostnames.
> hostnames due to malicious clients connecting with bogus SNI hostnames. Please
> ensure that you have the `ca-certificates` package installed in order to verify
> letsencrypt certificates.
| Parameter | Required | Description |
|-----------|----------|-------------------------------------------------------|

View file

@ -12,11 +12,17 @@ import (
"syscall"
"time"
"rsc.io/letsencrypt"
"github.com/Shopify/logrus-bugsnag"
logstash "github.com/bshuster-repo/logrus-logstash-hook"
"github.com/bugsnag/bugsnag-go"
"github.com/docker/go-metrics"
gorhandlers "github.com/gorilla/handlers"
log "github.com/sirupsen/logrus"
"github.com/spf13/cobra"
"github.com/yvasiyarov/gorelic"
"golang.org/x/crypto/acme"
"golang.org/x/crypto/acme/autocert"
"github.com/docker/distribution/configuration"
dcontext "github.com/docker/distribution/context"
"github.com/docker/distribution/health"
@ -24,11 +30,6 @@ import (
"github.com/docker/distribution/registry/listener"
"github.com/docker/distribution/uuid"
"github.com/docker/distribution/version"
"github.com/docker/go-metrics"
gorhandlers "github.com/gorilla/handlers"
log "github.com/sirupsen/logrus"
"github.com/spf13/cobra"
"github.com/yvasiyarov/gorelic"
)
// this channel gets notified when process receives signal. It is global to ease unit testing
@ -170,19 +171,14 @@ func (registry *Registry) ListenAndServe() error {
if config.HTTP.TLS.Certificate != "" {
return fmt.Errorf("cannot specify both certificate and Let's Encrypt")
}
var m letsencrypt.Manager
if err := m.CacheFile(config.HTTP.TLS.LetsEncrypt.CacheFile); err != nil {
return err
}
if !m.Registered() {
if err := m.Register(config.HTTP.TLS.LetsEncrypt.Email, nil); err != nil {
return err
}
}
if len(config.HTTP.TLS.LetsEncrypt.Hosts) > 0 {
m.SetHosts(config.HTTP.TLS.LetsEncrypt.Hosts)
m := &autocert.Manager{
HostPolicy: autocert.HostWhitelist(config.HTTP.TLS.LetsEncrypt.Hosts...),
Cache: autocert.DirCache(config.HTTP.TLS.LetsEncrypt.CacheFile),
Email: config.HTTP.TLS.LetsEncrypt.Email,
Prompt: autocert.AcceptTOS,
}
tlsConf.GetCertificate = m.GetCertificate
tlsConf.NextProtos = append(tlsConf.NextProtos, acme.ALPNProto)
} else {
tlsConf.Certificates = make([]tls.Certificate, 1)
tlsConf.Certificates[0], err = tls.LoadX509KeyPair(config.HTTP.TLS.Certificate, config.HTTP.TLS.Key)

View file

@ -21,7 +21,6 @@ github.com/jmespath/go-jmespath bd40a432e4c76585ef6b72d3fd96fb9b6dc7b68d
github.com/marstr/guid 8bd9a64bf37eb297b492a4101fb28e80ac0b290f
github.com/satori/go.uuid f58768cc1a7a7e77a3bd49e98cdd21419399b6a3
github.com/matttproud/golang_protobuf_extensions c12348ce28de40eed0136aa2b644d0ee0650e56c
github.com/miekg/dns 271c58e0c14f552178ea321a545ff9af38930f39
github.com/mitchellh/mapstructure 482a9fd5fa83e8c4e7817413b80f3eb8feec03ef
github.com/ncw/swift a0320860b16212c2b59b4912bb6508cda1d7cee6
github.com/prometheus/client_golang c332b6f63c0658a65eca15c0e5247ded801cf564
@ -31,21 +30,17 @@ github.com/prometheus/procfs cb4147076ac75738c9a7d279075a253c0cc5acbd
github.com/Shopify/logrus-bugsnag 577dee27f20dd8f1a529f82210094af593be12bd
github.com/spf13/cobra 312092086bed4968099259622145a0c9ae280064
github.com/spf13/pflag 5644820622454e71517561946e3d94b9f9db6842
github.com/xenolf/lego a9d8cec0e6563575e5868a005359ac97911b5985
github.com/yvasiyarov/go-metrics 57bccd1ccd43f94bb17fdd8bf3007059b802f85e
github.com/yvasiyarov/gorelic a9bba5b9ab508a086f9a12b8c51fab68478e2128
github.com/yvasiyarov/newrelic_platform_go b21fdbd4370f3717f3bbd2bf41c223bc273068e6
golang.org/x/crypto c10c31b5e94b6f7a0283272dc2bb27163dcea24b
golang.org/x/crypto e84da0312774c21d64ee2317962ef669b27ffb41
golang.org/x/net 4876518f9e71663000c348837735820161a42df7
golang.org/x/oauth2 045497edb6234273d67dbc25da3f2ddbc4c4cacf
golang.org/x/time a4bde12657593d5e90d0533a3e4fd95e635124cb
google.golang.org/api 9bf6e6e569ff057f75d9604a46c52928f17d2b54
google.golang.org/appengine 12d5545dc1cfa6047a286d5e853841b6471f4c19
google.golang.org/cloud 975617b05ea8a58727e6c1a06b6161ff4185a9f2
google.golang.org/grpc d3ddb4469d5a1b949fc7a7da7c1d6a0d1b6de994
gopkg.in/check.v1 64131543e7896d5bcc6bd5a76287eb75ea96c673
gopkg.in/square/go-jose.v1 40d457b439244b546f023d056628e5184136899b
gopkg.in/yaml.v2 v2.2.1
rsc.io/letsencrypt e770c10b0f1a64775ae91d240407ce00d1a5bdeb https://github.com/dmcgowan/letsencrypt.git
github.com/opencontainers/go-digest a6d0ee40d4207ea02364bd3b9e8e77b9159ba1eb
github.com/opencontainers/image-spec ab7389ef9f50030c9b245bc16b981c7ddf192882

6
vendor/github.com/aws/aws-sdk-go/go.mod generated vendored Normal file
View file

@ -0,0 +1,6 @@
module github.com/aws/aws-sdk-go
require (
github.com/go-ini/ini v1.25.4
github.com/jmespath/go-jmespath v0.0.0-20160202185014-0b12d6b521d8
)

32
vendor/github.com/miekg/dns/LICENSE generated vendored
View file

@ -1,32 +0,0 @@
Extensions of the original work are copyright (c) 2011 Miek Gieben
As this is fork of the official Go code the same license applies:
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

154
vendor/github.com/miekg/dns/README.md generated vendored
View file

@ -1,154 +0,0 @@
[![Build Status](https://travis-ci.org/miekg/dns.svg?branch=master)](https://travis-ci.org/miekg/dns) [![](https://godoc.org/github.com/miekg/dns?status.svg)](https://godoc.org/github.com/miekg/dns)
# Alternative (more granular) approach to a DNS library
> Less is more.
Complete and usable DNS library. All widely used Resource Records are
supported, including the DNSSEC types. It follows a lean and mean philosophy.
If there is stuff you should know as a DNS programmer there isn't a convenience
function for it. Server side and client side programming is supported, i.e. you
can build servers and resolvers with it.
We try to keep the "master" branch as sane as possible and at the bleeding edge
of standards, avoiding breaking changes wherever reasonable. We support the last
two versions of Go, currently: 1.5 and 1.6.
# Goals
* KISS;
* Fast;
* Small API, if its easy to code in Go, don't make a function for it.
# Users
A not-so-up-to-date-list-that-may-be-actually-current:
* https://cloudflare.com
* https://github.com/abh/geodns
* http://www.statdns.com/
* http://www.dnsinspect.com/
* https://github.com/chuangbo/jianbing-dictionary-dns
* http://www.dns-lg.com/
* https://github.com/fcambus/rrda
* https://github.com/kenshinx/godns
* https://github.com/skynetservices/skydns
* https://github.com/hashicorp/consul
* https://github.com/DevelopersPL/godnsagent
* https://github.com/duedil-ltd/discodns
* https://github.com/StalkR/dns-reverse-proxy
* https://github.com/tianon/rawdns
* https://mesosphere.github.io/mesos-dns/
* https://pulse.turbobytes.com/
* https://play.google.com/store/apps/details?id=com.turbobytes.dig
* https://github.com/fcambus/statzone
* https://github.com/benschw/dns-clb-go
* https://github.com/corny/dnscheck for http://public-dns.info/
* https://namesmith.io
* https://github.com/miekg/unbound
* https://github.com/miekg/exdns
* https://dnslookup.org
* https://github.com/looterz/grimd
* https://github.com/phamhongviet/serf-dns
* https://github.com/mehrdadrad/mylg
* https://github.com/bamarni/dockness
* https://github.com/fffaraz/microdns
Send pull request if you want to be listed here.
# Features
* UDP/TCP queries, IPv4 and IPv6;
* RFC 1035 zone file parsing ($INCLUDE, $ORIGIN, $TTL and $GENERATE (for all record types) are supported;
* Fast:
* Reply speed around ~ 80K qps (faster hardware results in more qps);
* Parsing RRs ~ 100K RR/s, that's 5M records in about 50 seconds;
* Server side programming (mimicking the net/http package);
* Client side programming;
* DNSSEC: signing, validating and key generation for DSA, RSA and ECDSA;
* EDNS0, NSID, Cookies;
* AXFR/IXFR;
* TSIG, SIG(0);
* DNS over TLS: optional encrypted connection between client and server;
* DNS name compression;
* Depends only on the standard library.
Have fun!
Miek Gieben - 2010-2012 - <miek@miek.nl>
# Building
Building is done with the `go` tool. If you have setup your GOPATH
correctly, the following should work:
go get github.com/miekg/dns
go build github.com/miekg/dns
## Examples
A short "how to use the API" is at the beginning of doc.go (this also will show
when you call `godoc github.com/miekg/dns`).
Example programs can be found in the `github.com/miekg/exdns` repository.
## Supported RFCs
*all of them*
* 103{4,5} - DNS standard
* 1348 - NSAP record (removed the record)
* 1982 - Serial Arithmetic
* 1876 - LOC record
* 1995 - IXFR
* 1996 - DNS notify
* 2136 - DNS Update (dynamic updates)
* 2181 - RRset definition - there is no RRset type though, just []RR
* 2537 - RSAMD5 DNS keys
* 2065 - DNSSEC (updated in later RFCs)
* 2671 - EDNS record
* 2782 - SRV record
* 2845 - TSIG record
* 2915 - NAPTR record
* 2929 - DNS IANA Considerations
* 3110 - RSASHA1 DNS keys
* 3225 - DO bit (DNSSEC OK)
* 340{1,2,3} - NAPTR record
* 3445 - Limiting the scope of (DNS)KEY
* 3597 - Unknown RRs
* 403{3,4,5} - DNSSEC + validation functions
* 4255 - SSHFP record
* 4343 - Case insensitivity
* 4408 - SPF record
* 4509 - SHA256 Hash in DS
* 4592 - Wildcards in the DNS
* 4635 - HMAC SHA TSIG
* 4701 - DHCID
* 4892 - id.server
* 5001 - NSID
* 5155 - NSEC3 record
* 5205 - HIP record
* 5702 - SHA2 in the DNS
* 5936 - AXFR
* 5966 - TCP implementation recommendations
* 6605 - ECDSA
* 6725 - IANA Registry Update
* 6742 - ILNP DNS
* 6840 - Clarifications and Implementation Notes for DNS Security
* 6844 - CAA record
* 6891 - EDNS0 update
* 6895 - DNS IANA considerations
* 6975 - Algorithm Understanding in DNSSEC
* 7043 - EUI48/EUI64 records
* 7314 - DNS (EDNS) EXPIRE Option
* 7553 - URI record
* 7858 - DNS over TLS: Initiation and Performance Considerations (draft)
* 7873 - Domain Name System (DNS) Cookies (draft-ietf-dnsop-cookies)
* xxxx - EDNS0 DNS Update Lease (draft)
## Loosely based upon
* `ldns`
* `NSD`
* `Net::DNS`
* `GRONG`

455
vendor/github.com/miekg/dns/client.go generated vendored
View file

@ -1,455 +0,0 @@
package dns
// A client implementation.
import (
"bytes"
"crypto/tls"
"encoding/binary"
"io"
"net"
"time"
)
const dnsTimeout time.Duration = 2 * time.Second
const tcpIdleTimeout time.Duration = 8 * time.Second
// A Conn represents a connection to a DNS server.
type Conn struct {
net.Conn // a net.Conn holding the connection
UDPSize uint16 // minimum receive buffer for UDP messages
TsigSecret map[string]string // secret(s) for Tsig map[<zonename>]<base64 secret>, zonename must be fully qualified
rtt time.Duration
t time.Time
tsigRequestMAC string
}
// A Client defines parameters for a DNS client.
type Client struct {
Net string // if "tcp" or "tcp-tls" (DNS over TLS) a TCP query will be initiated, otherwise an UDP one (default is "" for UDP)
UDPSize uint16 // minimum receive buffer for UDP messages
TLSConfig *tls.Config // TLS connection configuration
Timeout time.Duration // a cumulative timeout for dial, write and read, defaults to 0 (disabled) - overrides DialTimeout, ReadTimeout and WriteTimeout when non-zero
DialTimeout time.Duration // net.DialTimeout, defaults to 2 seconds - overridden by Timeout when that value is non-zero
ReadTimeout time.Duration // net.Conn.SetReadTimeout value for connections, defaults to 2 seconds - overridden by Timeout when that value is non-zero
WriteTimeout time.Duration // net.Conn.SetWriteTimeout value for connections, defaults to 2 seconds - overridden by Timeout when that value is non-zero
TsigSecret map[string]string // secret(s) for Tsig map[<zonename>]<base64 secret>, zonename must be fully qualified
SingleInflight bool // if true suppress multiple outstanding queries for the same Qname, Qtype and Qclass
group singleflight
}
// Exchange performs a synchronous UDP query. It sends the message m to the address
// contained in a and waits for a reply. Exchange does not retry a failed query, nor
// will it fall back to TCP in case of truncation.
// See client.Exchange for more information on setting larger buffer sizes.
func Exchange(m *Msg, a string) (r *Msg, err error) {
var co *Conn
co, err = DialTimeout("udp", a, dnsTimeout)
if err != nil {
return nil, err
}
defer co.Close()
opt := m.IsEdns0()
// If EDNS0 is used use that for size.
if opt != nil && opt.UDPSize() >= MinMsgSize {
co.UDPSize = opt.UDPSize()
}
co.SetWriteDeadline(time.Now().Add(dnsTimeout))
if err = co.WriteMsg(m); err != nil {
return nil, err
}
co.SetReadDeadline(time.Now().Add(dnsTimeout))
r, err = co.ReadMsg()
if err == nil && r.Id != m.Id {
err = ErrId
}
return r, err
}
// ExchangeConn performs a synchronous query. It sends the message m via the connection
// c and waits for a reply. The connection c is not closed by ExchangeConn.
// This function is going away, but can easily be mimicked:
//
// co := &dns.Conn{Conn: c} // c is your net.Conn
// co.WriteMsg(m)
// in, _ := co.ReadMsg()
// co.Close()
//
func ExchangeConn(c net.Conn, m *Msg) (r *Msg, err error) {
println("dns: this function is deprecated")
co := new(Conn)
co.Conn = c
if err = co.WriteMsg(m); err != nil {
return nil, err
}
r, err = co.ReadMsg()
if err == nil && r.Id != m.Id {
err = ErrId
}
return r, err
}
// Exchange performs a synchronous query. It sends the message m to the address
// contained in a and waits for a reply. Basic use pattern with a *dns.Client:
//
// c := new(dns.Client)
// in, rtt, err := c.Exchange(message, "127.0.0.1:53")
//
// Exchange does not retry a failed query, nor will it fall back to TCP in
// case of truncation.
// It is up to the caller to create a message that allows for larger responses to be
// returned. Specifically this means adding an EDNS0 OPT RR that will advertise a larger
// buffer, see SetEdns0. Messsages without an OPT RR will fallback to the historic limit
// of 512 bytes.
func (c *Client) Exchange(m *Msg, a string) (r *Msg, rtt time.Duration, err error) {
if !c.SingleInflight {
return c.exchange(m, a)
}
// This adds a bunch of garbage, TODO(miek).
t := "nop"
if t1, ok := TypeToString[m.Question[0].Qtype]; ok {
t = t1
}
cl := "nop"
if cl1, ok := ClassToString[m.Question[0].Qclass]; ok {
cl = cl1
}
r, rtt, err, shared := c.group.Do(m.Question[0].Name+t+cl, func() (*Msg, time.Duration, error) {
return c.exchange(m, a)
})
if err != nil {
return r, rtt, err
}
if shared {
return r.Copy(), rtt, nil
}
return r, rtt, nil
}
func (c *Client) dialTimeout() time.Duration {
if c.Timeout != 0 {
return c.Timeout
}
if c.DialTimeout != 0 {
return c.DialTimeout
}
return dnsTimeout
}
func (c *Client) readTimeout() time.Duration {
if c.ReadTimeout != 0 {
return c.ReadTimeout
}
return dnsTimeout
}
func (c *Client) writeTimeout() time.Duration {
if c.WriteTimeout != 0 {
return c.WriteTimeout
}
return dnsTimeout
}
func (c *Client) exchange(m *Msg, a string) (r *Msg, rtt time.Duration, err error) {
var co *Conn
network := "udp"
tls := false
switch c.Net {
case "tcp-tls":
network = "tcp"
tls = true
case "tcp4-tls":
network = "tcp4"
tls = true
case "tcp6-tls":
network = "tcp6"
tls = true
default:
if c.Net != "" {
network = c.Net
}
}
var deadline time.Time
if c.Timeout != 0 {
deadline = time.Now().Add(c.Timeout)
}
if tls {
co, err = DialTimeoutWithTLS(network, a, c.TLSConfig, c.dialTimeout())
} else {
co, err = DialTimeout(network, a, c.dialTimeout())
}
if err != nil {
return nil, 0, err
}
defer co.Close()
opt := m.IsEdns0()
// If EDNS0 is used use that for size.
if opt != nil && opt.UDPSize() >= MinMsgSize {
co.UDPSize = opt.UDPSize()
}
// Otherwise use the client's configured UDP size.
if opt == nil && c.UDPSize >= MinMsgSize {
co.UDPSize = c.UDPSize
}
co.TsigSecret = c.TsigSecret
co.SetWriteDeadline(deadlineOrTimeout(deadline, c.writeTimeout()))
if err = co.WriteMsg(m); err != nil {
return nil, 0, err
}
co.SetReadDeadline(deadlineOrTimeout(deadline, c.readTimeout()))
r, err = co.ReadMsg()
if err == nil && r.Id != m.Id {
err = ErrId
}
return r, co.rtt, err
}
// ReadMsg reads a message from the connection co.
// If the received message contains a TSIG record the transaction
// signature is verified.
func (co *Conn) ReadMsg() (*Msg, error) {
p, err := co.ReadMsgHeader(nil)
if err != nil {
return nil, err
}
m := new(Msg)
if err := m.Unpack(p); err != nil {
// If ErrTruncated was returned, we still want to allow the user to use
// the message, but naively they can just check err if they don't want
// to use a truncated message
if err == ErrTruncated {
return m, err
}
return nil, err
}
if t := m.IsTsig(); t != nil {
if _, ok := co.TsigSecret[t.Hdr.Name]; !ok {
return m, ErrSecret
}
// Need to work on the original message p, as that was used to calculate the tsig.
err = TsigVerify(p, co.TsigSecret[t.Hdr.Name], co.tsigRequestMAC, false)
}
return m, err
}
// ReadMsgHeader reads a DNS message, parses and populates hdr (when hdr is not nil).
// Returns message as a byte slice to be parsed with Msg.Unpack later on.
// Note that error handling on the message body is not possible as only the header is parsed.
func (co *Conn) ReadMsgHeader(hdr *Header) ([]byte, error) {
var (
p []byte
n int
err error
)
switch t := co.Conn.(type) {
case *net.TCPConn, *tls.Conn:
r := t.(io.Reader)
// First two bytes specify the length of the entire message.
l, err := tcpMsgLen(r)
if err != nil {
return nil, err
}
p = make([]byte, l)
n, err = tcpRead(r, p)
co.rtt = time.Since(co.t)
default:
if co.UDPSize > MinMsgSize {
p = make([]byte, co.UDPSize)
} else {
p = make([]byte, MinMsgSize)
}
n, err = co.Read(p)
co.rtt = time.Since(co.t)
}
if err != nil {
return nil, err
} else if n < headerSize {
return nil, ErrShortRead
}
p = p[:n]
if hdr != nil {
dh, _, err := unpackMsgHdr(p, 0)
if err != nil {
return nil, err
}
*hdr = dh
}
return p, err
}
// tcpMsgLen is a helper func to read first two bytes of stream as uint16 packet length.
func tcpMsgLen(t io.Reader) (int, error) {
p := []byte{0, 0}
n, err := t.Read(p)
if err != nil {
return 0, err
}
if n != 2 {
return 0, ErrShortRead
}
l := binary.BigEndian.Uint16(p)
if l == 0 {
return 0, ErrShortRead
}
return int(l), nil
}
// tcpRead calls TCPConn.Read enough times to fill allocated buffer.
func tcpRead(t io.Reader, p []byte) (int, error) {
n, err := t.Read(p)
if err != nil {
return n, err
}
for n < len(p) {
j, err := t.Read(p[n:])
if err != nil {
return n, err
}
n += j
}
return n, err
}
// Read implements the net.Conn read method.
func (co *Conn) Read(p []byte) (n int, err error) {
if co.Conn == nil {
return 0, ErrConnEmpty
}
if len(p) < 2 {
return 0, io.ErrShortBuffer
}
switch t := co.Conn.(type) {
case *net.TCPConn, *tls.Conn:
r := t.(io.Reader)
l, err := tcpMsgLen(r)
if err != nil {
return 0, err
}
if l > len(p) {
return int(l), io.ErrShortBuffer
}
return tcpRead(r, p[:l])
}
// UDP connection
n, err = co.Conn.Read(p)
if err != nil {
return n, err
}
return n, err
}
// WriteMsg sends a message through the connection co.
// If the message m contains a TSIG record the transaction
// signature is calculated.
func (co *Conn) WriteMsg(m *Msg) (err error) {
var out []byte
if t := m.IsTsig(); t != nil {
mac := ""
if _, ok := co.TsigSecret[t.Hdr.Name]; !ok {
return ErrSecret
}
out, mac, err = TsigGenerate(m, co.TsigSecret[t.Hdr.Name], co.tsigRequestMAC, false)
// Set for the next read, although only used in zone transfers
co.tsigRequestMAC = mac
} else {
out, err = m.Pack()
}
if err != nil {
return err
}
co.t = time.Now()
if _, err = co.Write(out); err != nil {
return err
}
return nil
}
// Write implements the net.Conn Write method.
func (co *Conn) Write(p []byte) (n int, err error) {
switch t := co.Conn.(type) {
case *net.TCPConn, *tls.Conn:
w := t.(io.Writer)
lp := len(p)
if lp < 2 {
return 0, io.ErrShortBuffer
}
if lp > MaxMsgSize {
return 0, &Error{err: "message too large"}
}
l := make([]byte, 2, lp+2)
binary.BigEndian.PutUint16(l, uint16(lp))
p = append(l, p...)
n, err := io.Copy(w, bytes.NewReader(p))
return int(n), err
}
n, err = co.Conn.(*net.UDPConn).Write(p)
return n, err
}
// Dial connects to the address on the named network.
func Dial(network, address string) (conn *Conn, err error) {
conn = new(Conn)
conn.Conn, err = net.Dial(network, address)
if err != nil {
return nil, err
}
return conn, nil
}
// DialTimeout acts like Dial but takes a timeout.
func DialTimeout(network, address string, timeout time.Duration) (conn *Conn, err error) {
conn = new(Conn)
conn.Conn, err = net.DialTimeout(network, address, timeout)
if err != nil {
return nil, err
}
return conn, nil
}
// DialWithTLS connects to the address on the named network with TLS.
func DialWithTLS(network, address string, tlsConfig *tls.Config) (conn *Conn, err error) {
conn = new(Conn)
conn.Conn, err = tls.Dial(network, address, tlsConfig)
if err != nil {
return nil, err
}
return conn, nil
}
// DialTimeoutWithTLS acts like DialWithTLS but takes a timeout.
func DialTimeoutWithTLS(network, address string, tlsConfig *tls.Config, timeout time.Duration) (conn *Conn, err error) {
var dialer net.Dialer
dialer.Timeout = timeout
conn = new(Conn)
conn.Conn, err = tls.DialWithDialer(&dialer, network, address, tlsConfig)
if err != nil {
return nil, err
}
return conn, nil
}
func deadlineOrTimeout(deadline time.Time, timeout time.Duration) time.Time {
if deadline.IsZero() {
return time.Now().Add(timeout)
}
return deadline
}

View file

@ -1,99 +0,0 @@
package dns
import (
"bufio"
"os"
"strconv"
"strings"
)
// ClientConfig wraps the contents of the /etc/resolv.conf file.
type ClientConfig struct {
Servers []string // servers to use
Search []string // suffixes to append to local name
Port string // what port to use
Ndots int // number of dots in name to trigger absolute lookup
Timeout int // seconds before giving up on packet
Attempts int // lost packets before giving up on server, not used in the package dns
}
// ClientConfigFromFile parses a resolv.conf(5) like file and returns
// a *ClientConfig.
func ClientConfigFromFile(resolvconf string) (*ClientConfig, error) {
file, err := os.Open(resolvconf)
if err != nil {
return nil, err
}
defer file.Close()
c := new(ClientConfig)
scanner := bufio.NewScanner(file)
c.Servers = make([]string, 0)
c.Search = make([]string, 0)
c.Port = "53"
c.Ndots = 1
c.Timeout = 5
c.Attempts = 2
for scanner.Scan() {
if err := scanner.Err(); err != nil {
return nil, err
}
line := scanner.Text()
f := strings.Fields(line)
if len(f) < 1 {
continue
}
switch f[0] {
case "nameserver": // add one name server
if len(f) > 1 {
// One more check: make sure server name is
// just an IP address. Otherwise we need DNS
// to look it up.
name := f[1]
c.Servers = append(c.Servers, name)
}
case "domain": // set search path to just this domain
if len(f) > 1 {
c.Search = make([]string, 1)
c.Search[0] = f[1]
} else {
c.Search = make([]string, 0)
}
case "search": // set search path to given servers
c.Search = make([]string, len(f)-1)
for i := 0; i < len(c.Search); i++ {
c.Search[i] = f[i+1]
}
case "options": // magic options
for i := 1; i < len(f); i++ {
s := f[i]
switch {
case len(s) >= 6 && s[:6] == "ndots:":
n, _ := strconv.Atoi(s[6:])
if n < 1 {
n = 1
}
c.Ndots = n
case len(s) >= 8 && s[:8] == "timeout:":
n, _ := strconv.Atoi(s[8:])
if n < 1 {
n = 1
}
c.Timeout = n
case len(s) >= 8 && s[:9] == "attempts:":
n, _ := strconv.Atoi(s[9:])
if n < 1 {
n = 1
}
c.Attempts = n
case s == "rotate":
/* not imp */
}
}
}
}
return c, nil
}

44
vendor/github.com/miekg/dns/dane.go generated vendored
View file

@ -1,44 +0,0 @@
package dns
import (
"crypto/sha256"
"crypto/sha512"
"crypto/x509"
"encoding/hex"
"errors"
"io"
)
// CertificateToDANE converts a certificate to a hex string as used in the TLSA or SMIMEA records.
func CertificateToDANE(selector, matchingType uint8, cert *x509.Certificate) (string, error) {
switch matchingType {
case 0:
switch selector {
case 0:
return hex.EncodeToString(cert.Raw), nil
case 1:
return hex.EncodeToString(cert.RawSubjectPublicKeyInfo), nil
}
case 1:
h := sha256.New()
switch selector {
case 0:
io.WriteString(h, string(cert.Raw))
return hex.EncodeToString(h.Sum(nil)), nil
case 1:
io.WriteString(h, string(cert.RawSubjectPublicKeyInfo))
return hex.EncodeToString(h.Sum(nil)), nil
}
case 2:
h := sha512.New()
switch selector {
case 0:
io.WriteString(h, string(cert.Raw))
return hex.EncodeToString(h.Sum(nil)), nil
case 1:
io.WriteString(h, string(cert.RawSubjectPublicKeyInfo))
return hex.EncodeToString(h.Sum(nil)), nil
}
}
return "", errors.New("dns: bad MatchingType or Selector")
}

View file

@ -1,282 +0,0 @@
package dns
import (
"errors"
"net"
"strconv"
)
const hexDigit = "0123456789abcdef"
// Everything is assumed in ClassINET.
// SetReply creates a reply message from a request message.
func (dns *Msg) SetReply(request *Msg) *Msg {
dns.Id = request.Id
dns.RecursionDesired = request.RecursionDesired // Copy rd bit
dns.Response = true
dns.Opcode = OpcodeQuery
dns.Rcode = RcodeSuccess
if len(request.Question) > 0 {
dns.Question = make([]Question, 1)
dns.Question[0] = request.Question[0]
}
return dns
}
// SetQuestion creates a question message, it sets the Question
// section, generates an Id and sets the RecursionDesired (RD)
// bit to true.
func (dns *Msg) SetQuestion(z string, t uint16) *Msg {
dns.Id = Id()
dns.RecursionDesired = true
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, t, ClassINET}
return dns
}
// SetNotify creates a notify message, it sets the Question
// section, generates an Id and sets the Authoritative (AA)
// bit to true.
func (dns *Msg) SetNotify(z string) *Msg {
dns.Opcode = OpcodeNotify
dns.Authoritative = true
dns.Id = Id()
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, TypeSOA, ClassINET}
return dns
}
// SetRcode creates an error message suitable for the request.
func (dns *Msg) SetRcode(request *Msg, rcode int) *Msg {
dns.SetReply(request)
dns.Rcode = rcode
return dns
}
// SetRcodeFormatError creates a message with FormError set.
func (dns *Msg) SetRcodeFormatError(request *Msg) *Msg {
dns.Rcode = RcodeFormatError
dns.Opcode = OpcodeQuery
dns.Response = true
dns.Authoritative = false
dns.Id = request.Id
return dns
}
// SetUpdate makes the message a dynamic update message. It
// sets the ZONE section to: z, TypeSOA, ClassINET.
func (dns *Msg) SetUpdate(z string) *Msg {
dns.Id = Id()
dns.Response = false
dns.Opcode = OpcodeUpdate
dns.Compress = false // BIND9 cannot handle compression
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, TypeSOA, ClassINET}
return dns
}
// SetIxfr creates message for requesting an IXFR.
func (dns *Msg) SetIxfr(z string, serial uint32, ns, mbox string) *Msg {
dns.Id = Id()
dns.Question = make([]Question, 1)
dns.Ns = make([]RR, 1)
s := new(SOA)
s.Hdr = RR_Header{z, TypeSOA, ClassINET, defaultTtl, 0}
s.Serial = serial
s.Ns = ns
s.Mbox = mbox
dns.Question[0] = Question{z, TypeIXFR, ClassINET}
dns.Ns[0] = s
return dns
}
// SetAxfr creates message for requesting an AXFR.
func (dns *Msg) SetAxfr(z string) *Msg {
dns.Id = Id()
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, TypeAXFR, ClassINET}
return dns
}
// SetTsig appends a TSIG RR to the message.
// This is only a skeleton TSIG RR that is added as the last RR in the
// additional section. The Tsig is calculated when the message is being send.
func (dns *Msg) SetTsig(z, algo string, fudge, timesigned int64) *Msg {
t := new(TSIG)
t.Hdr = RR_Header{z, TypeTSIG, ClassANY, 0, 0}
t.Algorithm = algo
t.Fudge = 300
t.TimeSigned = uint64(timesigned)
t.OrigId = dns.Id
dns.Extra = append(dns.Extra, t)
return dns
}
// SetEdns0 appends a EDNS0 OPT RR to the message.
// TSIG should always the last RR in a message.
func (dns *Msg) SetEdns0(udpsize uint16, do bool) *Msg {
e := new(OPT)
e.Hdr.Name = "."
e.Hdr.Rrtype = TypeOPT
e.SetUDPSize(udpsize)
if do {
e.SetDo()
}
dns.Extra = append(dns.Extra, e)
return dns
}
// IsTsig checks if the message has a TSIG record as the last record
// in the additional section. It returns the TSIG record found or nil.
func (dns *Msg) IsTsig() *TSIG {
if len(dns.Extra) > 0 {
if dns.Extra[len(dns.Extra)-1].Header().Rrtype == TypeTSIG {
return dns.Extra[len(dns.Extra)-1].(*TSIG)
}
}
return nil
}
// IsEdns0 checks if the message has a EDNS0 (OPT) record, any EDNS0
// record in the additional section will do. It returns the OPT record
// found or nil.
func (dns *Msg) IsEdns0() *OPT {
// EDNS0 is at the end of the additional section, start there.
// We might want to change this to *only* look at the last two
// records. So we see TSIG and/or OPT - this a slightly bigger
// change though.
for i := len(dns.Extra) - 1; i >= 0; i-- {
if dns.Extra[i].Header().Rrtype == TypeOPT {
return dns.Extra[i].(*OPT)
}
}
return nil
}
// IsDomainName checks if s is a valid domain name, it returns the number of
// labels and true, when a domain name is valid. Note that non fully qualified
// domain name is considered valid, in this case the last label is counted in
// the number of labels. When false is returned the number of labels is not
// defined. Also note that this function is extremely liberal; almost any
// string is a valid domain name as the DNS is 8 bit protocol. It checks if each
// label fits in 63 characters, but there is no length check for the entire
// string s. I.e. a domain name longer than 255 characters is considered valid.
func IsDomainName(s string) (labels int, ok bool) {
_, labels, err := packDomainName(s, nil, 0, nil, false)
return labels, err == nil
}
// IsSubDomain checks if child is indeed a child of the parent. If child and parent
// are the same domain true is returned as well.
func IsSubDomain(parent, child string) bool {
// Entire child is contained in parent
return CompareDomainName(parent, child) == CountLabel(parent)
}
// IsMsg sanity checks buf and returns an error if it isn't a valid DNS packet.
// The checking is performed on the binary payload.
func IsMsg(buf []byte) error {
// Header
if len(buf) < 12 {
return errors.New("dns: bad message header")
}
// Header: Opcode
// TODO(miek): more checks here, e.g. check all header bits.
return nil
}
// IsFqdn checks if a domain name is fully qualified.
func IsFqdn(s string) bool {
l := len(s)
if l == 0 {
return false
}
return s[l-1] == '.'
}
// IsRRset checks if a set of RRs is a valid RRset as defined by RFC 2181.
// This means the RRs need to have the same type, name, and class. Returns true
// if the RR set is valid, otherwise false.
func IsRRset(rrset []RR) bool {
if len(rrset) == 0 {
return false
}
if len(rrset) == 1 {
return true
}
rrHeader := rrset[0].Header()
rrType := rrHeader.Rrtype
rrClass := rrHeader.Class
rrName := rrHeader.Name
for _, rr := range rrset[1:] {
curRRHeader := rr.Header()
if curRRHeader.Rrtype != rrType || curRRHeader.Class != rrClass || curRRHeader.Name != rrName {
// Mismatch between the records, so this is not a valid rrset for
//signing/verifying
return false
}
}
return true
}
// Fqdn return the fully qualified domain name from s.
// If s is already fully qualified, it behaves as the identity function.
func Fqdn(s string) string {
if IsFqdn(s) {
return s
}
return s + "."
}
// Copied from the official Go code.
// ReverseAddr returns the in-addr.arpa. or ip6.arpa. hostname of the IP
// address suitable for reverse DNS (PTR) record lookups or an error if it fails
// to parse the IP address.
func ReverseAddr(addr string) (arpa string, err error) {
ip := net.ParseIP(addr)
if ip == nil {
return "", &Error{err: "unrecognized address: " + addr}
}
if ip.To4() != nil {
return strconv.Itoa(int(ip[15])) + "." + strconv.Itoa(int(ip[14])) + "." + strconv.Itoa(int(ip[13])) + "." +
strconv.Itoa(int(ip[12])) + ".in-addr.arpa.", nil
}
// Must be IPv6
buf := make([]byte, 0, len(ip)*4+len("ip6.arpa."))
// Add it, in reverse, to the buffer
for i := len(ip) - 1; i >= 0; i-- {
v := ip[i]
buf = append(buf, hexDigit[v&0xF])
buf = append(buf, '.')
buf = append(buf, hexDigit[v>>4])
buf = append(buf, '.')
}
// Append "ip6.arpa." and return (buf already has the final .)
buf = append(buf, "ip6.arpa."...)
return string(buf), nil
}
// String returns the string representation for the type t.
func (t Type) String() string {
if t1, ok := TypeToString[uint16(t)]; ok {
return t1
}
return "TYPE" + strconv.Itoa(int(t))
}
// String returns the string representation for the class c.
func (c Class) String() string {
if c1, ok := ClassToString[uint16(c)]; ok {
return c1
}
return "CLASS" + strconv.Itoa(int(c))
}
// String returns the string representation for the name n.
func (n Name) String() string {
return sprintName(string(n))
}

104
vendor/github.com/miekg/dns/dns.go generated vendored
View file

@ -1,104 +0,0 @@
package dns
import "strconv"
const (
year68 = 1 << 31 // For RFC1982 (Serial Arithmetic) calculations in 32 bits.
defaultTtl = 3600 // Default internal TTL.
DefaultMsgSize = 4096 // DefaultMsgSize is the standard default for messages larger than 512 bytes.
MinMsgSize = 512 // MinMsgSize is the minimal size of a DNS packet.
MaxMsgSize = 65535 // MaxMsgSize is the largest possible DNS packet.
)
// Error represents a DNS error.
type Error struct{ err string }
func (e *Error) Error() string {
if e == nil {
return "dns: <nil>"
}
return "dns: " + e.err
}
// An RR represents a resource record.
type RR interface {
// Header returns the header of an resource record. The header contains
// everything up to the rdata.
Header() *RR_Header
// String returns the text representation of the resource record.
String() string
// copy returns a copy of the RR
copy() RR
// len returns the length (in octets) of the uncompressed RR in wire format.
len() int
// pack packs an RR into wire format.
pack([]byte, int, map[string]int, bool) (int, error)
}
// RR_Header is the header all DNS resource records share.
type RR_Header struct {
Name string `dns:"cdomain-name"`
Rrtype uint16
Class uint16
Ttl uint32
Rdlength uint16 // Length of data after header.
}
// Header returns itself. This is here to make RR_Header implements the RR interface.
func (h *RR_Header) Header() *RR_Header { return h }
// Just to implement the RR interface.
func (h *RR_Header) copy() RR { return nil }
func (h *RR_Header) copyHeader() *RR_Header {
r := new(RR_Header)
r.Name = h.Name
r.Rrtype = h.Rrtype
r.Class = h.Class
r.Ttl = h.Ttl
r.Rdlength = h.Rdlength
return r
}
func (h *RR_Header) String() string {
var s string
if h.Rrtype == TypeOPT {
s = ";"
// and maybe other things
}
s += sprintName(h.Name) + "\t"
s += strconv.FormatInt(int64(h.Ttl), 10) + "\t"
s += Class(h.Class).String() + "\t"
s += Type(h.Rrtype).String() + "\t"
return s
}
func (h *RR_Header) len() int {
l := len(h.Name) + 1
l += 10 // rrtype(2) + class(2) + ttl(4) + rdlength(2)
return l
}
// ToRFC3597 converts a known RR to the unknown RR representation from RFC 3597.
func (rr *RFC3597) ToRFC3597(r RR) error {
buf := make([]byte, r.len()*2)
off, err := PackRR(r, buf, 0, nil, false)
if err != nil {
return err
}
buf = buf[:off]
if int(r.Header().Rdlength) > off {
return ErrBuf
}
rfc3597, _, err := unpackRFC3597(*r.Header(), buf, off-int(r.Header().Rdlength))
if err != nil {
return err
}
*rr = *rfc3597.(*RFC3597)
return nil
}

721
vendor/github.com/miekg/dns/dnssec.go generated vendored
View file

@ -1,721 +0,0 @@
package dns
import (
"bytes"
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
_ "crypto/md5"
"crypto/rand"
"crypto/rsa"
_ "crypto/sha1"
_ "crypto/sha256"
_ "crypto/sha512"
"encoding/asn1"
"encoding/binary"
"encoding/hex"
"math/big"
"sort"
"strings"
"time"
)
// DNSSEC encryption algorithm codes.
const (
_ uint8 = iota
RSAMD5
DH
DSA
_ // Skip 4, RFC 6725, section 2.1
RSASHA1
DSANSEC3SHA1
RSASHA1NSEC3SHA1
RSASHA256
_ // Skip 9, RFC 6725, section 2.1
RSASHA512
_ // Skip 11, RFC 6725, section 2.1
ECCGOST
ECDSAP256SHA256
ECDSAP384SHA384
INDIRECT uint8 = 252
PRIVATEDNS uint8 = 253 // Private (experimental keys)
PRIVATEOID uint8 = 254
)
// Map for algorithm names.
var AlgorithmToString = map[uint8]string{
RSAMD5: "RSAMD5",
DH: "DH",
DSA: "DSA",
RSASHA1: "RSASHA1",
DSANSEC3SHA1: "DSA-NSEC3-SHA1",
RSASHA1NSEC3SHA1: "RSASHA1-NSEC3-SHA1",
RSASHA256: "RSASHA256",
RSASHA512: "RSASHA512",
ECCGOST: "ECC-GOST",
ECDSAP256SHA256: "ECDSAP256SHA256",
ECDSAP384SHA384: "ECDSAP384SHA384",
INDIRECT: "INDIRECT",
PRIVATEDNS: "PRIVATEDNS",
PRIVATEOID: "PRIVATEOID",
}
// Map of algorithm strings.
var StringToAlgorithm = reverseInt8(AlgorithmToString)
// Map of algorithm crypto hashes.
var AlgorithmToHash = map[uint8]crypto.Hash{
RSAMD5: crypto.MD5, // Deprecated in RFC 6725
RSASHA1: crypto.SHA1,
RSASHA1NSEC3SHA1: crypto.SHA1,
RSASHA256: crypto.SHA256,
ECDSAP256SHA256: crypto.SHA256,
ECDSAP384SHA384: crypto.SHA384,
RSASHA512: crypto.SHA512,
}
// DNSSEC hashing algorithm codes.
const (
_ uint8 = iota
SHA1 // RFC 4034
SHA256 // RFC 4509
GOST94 // RFC 5933
SHA384 // Experimental
SHA512 // Experimental
)
// Map for hash names.
var HashToString = map[uint8]string{
SHA1: "SHA1",
SHA256: "SHA256",
GOST94: "GOST94",
SHA384: "SHA384",
SHA512: "SHA512",
}
// Map of hash strings.
var StringToHash = reverseInt8(HashToString)
// DNSKEY flag values.
const (
SEP = 1
REVOKE = 1 << 7
ZONE = 1 << 8
)
// The RRSIG needs to be converted to wireformat with some of the rdata (the signature) missing.
type rrsigWireFmt struct {
TypeCovered uint16
Algorithm uint8
Labels uint8
OrigTtl uint32
Expiration uint32
Inception uint32
KeyTag uint16
SignerName string `dns:"domain-name"`
/* No Signature */
}
// Used for converting DNSKEY's rdata to wirefmt.
type dnskeyWireFmt struct {
Flags uint16
Protocol uint8
Algorithm uint8
PublicKey string `dns:"base64"`
/* Nothing is left out */
}
func divRoundUp(a, b int) int {
return (a + b - 1) / b
}
// KeyTag calculates the keytag (or key-id) of the DNSKEY.
func (k *DNSKEY) KeyTag() uint16 {
if k == nil {
return 0
}
var keytag int
switch k.Algorithm {
case RSAMD5:
// Look at the bottom two bytes of the modules, which the last
// item in the pubkey. We could do this faster by looking directly
// at the base64 values. But I'm lazy.
modulus, _ := fromBase64([]byte(k.PublicKey))
if len(modulus) > 1 {
x := binary.BigEndian.Uint16(modulus[len(modulus)-2:])
keytag = int(x)
}
default:
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
wire := make([]byte, DefaultMsgSize)
n, err := packKeyWire(keywire, wire)
if err != nil {
return 0
}
wire = wire[:n]
for i, v := range wire {
if i&1 != 0 {
keytag += int(v) // must be larger than uint32
} else {
keytag += int(v) << 8
}
}
keytag += (keytag >> 16) & 0xFFFF
keytag &= 0xFFFF
}
return uint16(keytag)
}
// ToDS converts a DNSKEY record to a DS record.
func (k *DNSKEY) ToDS(h uint8) *DS {
if k == nil {
return nil
}
ds := new(DS)
ds.Hdr.Name = k.Hdr.Name
ds.Hdr.Class = k.Hdr.Class
ds.Hdr.Rrtype = TypeDS
ds.Hdr.Ttl = k.Hdr.Ttl
ds.Algorithm = k.Algorithm
ds.DigestType = h
ds.KeyTag = k.KeyTag()
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
wire := make([]byte, DefaultMsgSize)
n, err := packKeyWire(keywire, wire)
if err != nil {
return nil
}
wire = wire[:n]
owner := make([]byte, 255)
off, err1 := PackDomainName(strings.ToLower(k.Hdr.Name), owner, 0, nil, false)
if err1 != nil {
return nil
}
owner = owner[:off]
// RFC4034:
// digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
// "|" denotes concatenation
// DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
// digest buffer
digest := append(owner, wire...) // another copy
var hash crypto.Hash
switch h {
case SHA1:
hash = crypto.SHA1
case SHA256:
hash = crypto.SHA256
case SHA384:
hash = crypto.SHA384
case SHA512:
hash = crypto.SHA512
default:
return nil
}
s := hash.New()
s.Write(digest)
ds.Digest = hex.EncodeToString(s.Sum(nil))
return ds
}
// ToCDNSKEY converts a DNSKEY record to a CDNSKEY record.
func (k *DNSKEY) ToCDNSKEY() *CDNSKEY {
c := &CDNSKEY{DNSKEY: *k}
c.Hdr = *k.Hdr.copyHeader()
c.Hdr.Rrtype = TypeCDNSKEY
return c
}
// ToCDS converts a DS record to a CDS record.
func (d *DS) ToCDS() *CDS {
c := &CDS{DS: *d}
c.Hdr = *d.Hdr.copyHeader()
c.Hdr.Rrtype = TypeCDS
return c
}
// Sign signs an RRSet. The signature needs to be filled in with the values:
// Inception, Expiration, KeyTag, SignerName and Algorithm. The rest is copied
// from the RRset. Sign returns a non-nill error when the signing went OK.
// There is no check if RRSet is a proper (RFC 2181) RRSet. If OrigTTL is non
// zero, it is used as-is, otherwise the TTL of the RRset is used as the
// OrigTTL.
func (rr *RRSIG) Sign(k crypto.Signer, rrset []RR) error {
if k == nil {
return ErrPrivKey
}
// s.Inception and s.Expiration may be 0 (rollover etc.), the rest must be set
if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
return ErrKey
}
rr.Hdr.Rrtype = TypeRRSIG
rr.Hdr.Name = rrset[0].Header().Name
rr.Hdr.Class = rrset[0].Header().Class
if rr.OrigTtl == 0 { // If set don't override
rr.OrigTtl = rrset[0].Header().Ttl
}
rr.TypeCovered = rrset[0].Header().Rrtype
rr.Labels = uint8(CountLabel(rrset[0].Header().Name))
if strings.HasPrefix(rrset[0].Header().Name, "*") {
rr.Labels-- // wildcard, remove from label count
}
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = rr.TypeCovered
sigwire.Algorithm = rr.Algorithm
sigwire.Labels = rr.Labels
sigwire.OrigTtl = rr.OrigTtl
sigwire.Expiration = rr.Expiration
sigwire.Inception = rr.Inception
sigwire.KeyTag = rr.KeyTag
// For signing, lowercase this name
sigwire.SignerName = strings.ToLower(rr.SignerName)
// Create the desired binary blob
signdata := make([]byte, DefaultMsgSize)
n, err := packSigWire(sigwire, signdata)
if err != nil {
return err
}
signdata = signdata[:n]
wire, err := rawSignatureData(rrset, rr)
if err != nil {
return err
}
signdata = append(signdata, wire...)
hash, ok := AlgorithmToHash[rr.Algorithm]
if !ok {
return ErrAlg
}
h := hash.New()
h.Write(signdata)
signature, err := sign(k, h.Sum(nil), hash, rr.Algorithm)
if err != nil {
return err
}
rr.Signature = toBase64(signature)
return nil
}
func sign(k crypto.Signer, hashed []byte, hash crypto.Hash, alg uint8) ([]byte, error) {
signature, err := k.Sign(rand.Reader, hashed, hash)
if err != nil {
return nil, err
}
switch alg {
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512:
return signature, nil
case ECDSAP256SHA256, ECDSAP384SHA384:
ecdsaSignature := &struct {
R, S *big.Int
}{}
if _, err := asn1.Unmarshal(signature, ecdsaSignature); err != nil {
return nil, err
}
var intlen int
switch alg {
case ECDSAP256SHA256:
intlen = 32
case ECDSAP384SHA384:
intlen = 48
}
signature := intToBytes(ecdsaSignature.R, intlen)
signature = append(signature, intToBytes(ecdsaSignature.S, intlen)...)
return signature, nil
// There is no defined interface for what a DSA backed crypto.Signer returns
case DSA, DSANSEC3SHA1:
// t := divRoundUp(divRoundUp(p.PublicKey.Y.BitLen(), 8)-64, 8)
// signature := []byte{byte(t)}
// signature = append(signature, intToBytes(r1, 20)...)
// signature = append(signature, intToBytes(s1, 20)...)
// rr.Signature = signature
}
return nil, ErrAlg
}
// Verify validates an RRSet with the signature and key. This is only the
// cryptographic test, the signature validity period must be checked separately.
// This function copies the rdata of some RRs (to lowercase domain names) for the validation to work.
func (rr *RRSIG) Verify(k *DNSKEY, rrset []RR) error {
// First the easy checks
if !IsRRset(rrset) {
return ErrRRset
}
if rr.KeyTag != k.KeyTag() {
return ErrKey
}
if rr.Hdr.Class != k.Hdr.Class {
return ErrKey
}
if rr.Algorithm != k.Algorithm {
return ErrKey
}
if strings.ToLower(rr.SignerName) != strings.ToLower(k.Hdr.Name) {
return ErrKey
}
if k.Protocol != 3 {
return ErrKey
}
// IsRRset checked that we have at least one RR and that the RRs in
// the set have consistent type, class, and name. Also check that type and
// class matches the RRSIG record.
if rrset[0].Header().Class != rr.Hdr.Class {
return ErrRRset
}
if rrset[0].Header().Rrtype != rr.TypeCovered {
return ErrRRset
}
// RFC 4035 5.3.2. Reconstructing the Signed Data
// Copy the sig, except the rrsig data
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = rr.TypeCovered
sigwire.Algorithm = rr.Algorithm
sigwire.Labels = rr.Labels
sigwire.OrigTtl = rr.OrigTtl
sigwire.Expiration = rr.Expiration
sigwire.Inception = rr.Inception
sigwire.KeyTag = rr.KeyTag
sigwire.SignerName = strings.ToLower(rr.SignerName)
// Create the desired binary blob
signeddata := make([]byte, DefaultMsgSize)
n, err := packSigWire(sigwire, signeddata)
if err != nil {
return err
}
signeddata = signeddata[:n]
wire, err := rawSignatureData(rrset, rr)
if err != nil {
return err
}
signeddata = append(signeddata, wire...)
sigbuf := rr.sigBuf() // Get the binary signature data
if rr.Algorithm == PRIVATEDNS { // PRIVATEOID
// TODO(miek)
// remove the domain name and assume its ours?
}
hash, ok := AlgorithmToHash[rr.Algorithm]
if !ok {
return ErrAlg
}
switch rr.Algorithm {
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512, RSAMD5:
// TODO(mg): this can be done quicker, ie. cache the pubkey data somewhere??
pubkey := k.publicKeyRSA() // Get the key
if pubkey == nil {
return ErrKey
}
h := hash.New()
h.Write(signeddata)
return rsa.VerifyPKCS1v15(pubkey, hash, h.Sum(nil), sigbuf)
case ECDSAP256SHA256, ECDSAP384SHA384:
pubkey := k.publicKeyECDSA()
if pubkey == nil {
return ErrKey
}
// Split sigbuf into the r and s coordinates
r := new(big.Int).SetBytes(sigbuf[:len(sigbuf)/2])
s := new(big.Int).SetBytes(sigbuf[len(sigbuf)/2:])
h := hash.New()
h.Write(signeddata)
if ecdsa.Verify(pubkey, h.Sum(nil), r, s) {
return nil
}
return ErrSig
default:
return ErrAlg
}
}
// ValidityPeriod uses RFC1982 serial arithmetic to calculate
// if a signature period is valid. If t is the zero time, the
// current time is taken other t is. Returns true if the signature
// is valid at the given time, otherwise returns false.
func (rr *RRSIG) ValidityPeriod(t time.Time) bool {
var utc int64
if t.IsZero() {
utc = time.Now().UTC().Unix()
} else {
utc = t.UTC().Unix()
}
modi := (int64(rr.Inception) - utc) / year68
mode := (int64(rr.Expiration) - utc) / year68
ti := int64(rr.Inception) + (modi * year68)
te := int64(rr.Expiration) + (mode * year68)
return ti <= utc && utc <= te
}
// Return the signatures base64 encodedig sigdata as a byte slice.
func (rr *RRSIG) sigBuf() []byte {
sigbuf, err := fromBase64([]byte(rr.Signature))
if err != nil {
return nil
}
return sigbuf
}
// publicKeyRSA returns the RSA public key from a DNSKEY record.
func (k *DNSKEY) publicKeyRSA() *rsa.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
// RFC 2537/3110, section 2. RSA Public KEY Resource Records
// Length is in the 0th byte, unless its zero, then it
// it in bytes 1 and 2 and its a 16 bit number
explen := uint16(keybuf[0])
keyoff := 1
if explen == 0 {
explen = uint16(keybuf[1])<<8 | uint16(keybuf[2])
keyoff = 3
}
pubkey := new(rsa.PublicKey)
pubkey.N = big.NewInt(0)
shift := uint64((explen - 1) * 8)
expo := uint64(0)
for i := int(explen - 1); i > 0; i-- {
expo += uint64(keybuf[keyoff+i]) << shift
shift -= 8
}
// Remainder
expo += uint64(keybuf[keyoff])
if expo > 2<<31 {
// Larger expo than supported.
// println("dns: F5 primes (or larger) are not supported")
return nil
}
pubkey.E = int(expo)
pubkey.N.SetBytes(keybuf[keyoff+int(explen):])
return pubkey
}
// publicKeyECDSA returns the Curve public key from the DNSKEY record.
func (k *DNSKEY) publicKeyECDSA() *ecdsa.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
pubkey := new(ecdsa.PublicKey)
switch k.Algorithm {
case ECDSAP256SHA256:
pubkey.Curve = elliptic.P256()
if len(keybuf) != 64 {
// wrongly encoded key
return nil
}
case ECDSAP384SHA384:
pubkey.Curve = elliptic.P384()
if len(keybuf) != 96 {
// Wrongly encoded key
return nil
}
}
pubkey.X = big.NewInt(0)
pubkey.X.SetBytes(keybuf[:len(keybuf)/2])
pubkey.Y = big.NewInt(0)
pubkey.Y.SetBytes(keybuf[len(keybuf)/2:])
return pubkey
}
func (k *DNSKEY) publicKeyDSA() *dsa.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
if len(keybuf) < 22 {
return nil
}
t, keybuf := int(keybuf[0]), keybuf[1:]
size := 64 + t*8
q, keybuf := keybuf[:20], keybuf[20:]
if len(keybuf) != 3*size {
return nil
}
p, keybuf := keybuf[:size], keybuf[size:]
g, y := keybuf[:size], keybuf[size:]
pubkey := new(dsa.PublicKey)
pubkey.Parameters.Q = big.NewInt(0).SetBytes(q)
pubkey.Parameters.P = big.NewInt(0).SetBytes(p)
pubkey.Parameters.G = big.NewInt(0).SetBytes(g)
pubkey.Y = big.NewInt(0).SetBytes(y)
return pubkey
}
type wireSlice [][]byte
func (p wireSlice) Len() int { return len(p) }
func (p wireSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p wireSlice) Less(i, j int) bool {
_, ioff, _ := UnpackDomainName(p[i], 0)
_, joff, _ := UnpackDomainName(p[j], 0)
return bytes.Compare(p[i][ioff+10:], p[j][joff+10:]) < 0
}
// Return the raw signature data.
func rawSignatureData(rrset []RR, s *RRSIG) (buf []byte, err error) {
wires := make(wireSlice, len(rrset))
for i, r := range rrset {
r1 := r.copy()
r1.Header().Ttl = s.OrigTtl
labels := SplitDomainName(r1.Header().Name)
// 6.2. Canonical RR Form. (4) - wildcards
if len(labels) > int(s.Labels) {
// Wildcard
r1.Header().Name = "*." + strings.Join(labels[len(labels)-int(s.Labels):], ".") + "."
}
// RFC 4034: 6.2. Canonical RR Form. (2) - domain name to lowercase
r1.Header().Name = strings.ToLower(r1.Header().Name)
// 6.2. Canonical RR Form. (3) - domain rdata to lowercase.
// NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
// HINFO, MINFO, MX, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX,
// SRV, DNAME, A6
//
// RFC 6840 - Clarifications and Implementation Notes for DNS Security (DNSSEC):
// Section 6.2 of [RFC4034] also erroneously lists HINFO as a record
// that needs conversion to lowercase, and twice at that. Since HINFO
// records contain no domain names, they are not subject to case
// conversion.
switch x := r1.(type) {
case *NS:
x.Ns = strings.ToLower(x.Ns)
case *CNAME:
x.Target = strings.ToLower(x.Target)
case *SOA:
x.Ns = strings.ToLower(x.Ns)
x.Mbox = strings.ToLower(x.Mbox)
case *MB:
x.Mb = strings.ToLower(x.Mb)
case *MG:
x.Mg = strings.ToLower(x.Mg)
case *MR:
x.Mr = strings.ToLower(x.Mr)
case *PTR:
x.Ptr = strings.ToLower(x.Ptr)
case *MINFO:
x.Rmail = strings.ToLower(x.Rmail)
x.Email = strings.ToLower(x.Email)
case *MX:
x.Mx = strings.ToLower(x.Mx)
case *NAPTR:
x.Replacement = strings.ToLower(x.Replacement)
case *KX:
x.Exchanger = strings.ToLower(x.Exchanger)
case *SRV:
x.Target = strings.ToLower(x.Target)
case *DNAME:
x.Target = strings.ToLower(x.Target)
}
// 6.2. Canonical RR Form. (5) - origTTL
wire := make([]byte, r1.len()+1) // +1 to be safe(r)
off, err1 := PackRR(r1, wire, 0, nil, false)
if err1 != nil {
return nil, err1
}
wire = wire[:off]
wires[i] = wire
}
sort.Sort(wires)
for i, wire := range wires {
if i > 0 && bytes.Equal(wire, wires[i-1]) {
continue
}
buf = append(buf, wire...)
}
return buf, nil
}
func packSigWire(sw *rrsigWireFmt, msg []byte) (int, error) {
// copied from zmsg.go RRSIG packing
off, err := packUint16(sw.TypeCovered, msg, 0)
if err != nil {
return off, err
}
off, err = packUint8(sw.Algorithm, msg, off)
if err != nil {
return off, err
}
off, err = packUint8(sw.Labels, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(sw.OrigTtl, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(sw.Expiration, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(sw.Inception, msg, off)
if err != nil {
return off, err
}
off, err = packUint16(sw.KeyTag, msg, off)
if err != nil {
return off, err
}
off, err = PackDomainName(sw.SignerName, msg, off, nil, false)
if err != nil {
return off, err
}
return off, nil
}
func packKeyWire(dw *dnskeyWireFmt, msg []byte) (int, error) {
// copied from zmsg.go DNSKEY packing
off, err := packUint16(dw.Flags, msg, 0)
if err != nil {
return off, err
}
off, err = packUint8(dw.Protocol, msg, off)
if err != nil {
return off, err
}
off, err = packUint8(dw.Algorithm, msg, off)
if err != nil {
return off, err
}
off, err = packStringBase64(dw.PublicKey, msg, off)
if err != nil {
return off, err
}
return off, nil
}

View file

@ -1,156 +0,0 @@
package dns
import (
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"math/big"
)
// Generate generates a DNSKEY of the given bit size.
// The public part is put inside the DNSKEY record.
// The Algorithm in the key must be set as this will define
// what kind of DNSKEY will be generated.
// The ECDSA algorithms imply a fixed keysize, in that case
// bits should be set to the size of the algorithm.
func (k *DNSKEY) Generate(bits int) (crypto.PrivateKey, error) {
switch k.Algorithm {
case DSA, DSANSEC3SHA1:
if bits != 1024 {
return nil, ErrKeySize
}
case RSAMD5, RSASHA1, RSASHA256, RSASHA1NSEC3SHA1:
if bits < 512 || bits > 4096 {
return nil, ErrKeySize
}
case RSASHA512:
if bits < 1024 || bits > 4096 {
return nil, ErrKeySize
}
case ECDSAP256SHA256:
if bits != 256 {
return nil, ErrKeySize
}
case ECDSAP384SHA384:
if bits != 384 {
return nil, ErrKeySize
}
}
switch k.Algorithm {
case DSA, DSANSEC3SHA1:
params := new(dsa.Parameters)
if err := dsa.GenerateParameters(params, rand.Reader, dsa.L1024N160); err != nil {
return nil, err
}
priv := new(dsa.PrivateKey)
priv.PublicKey.Parameters = *params
err := dsa.GenerateKey(priv, rand.Reader)
if err != nil {
return nil, err
}
k.setPublicKeyDSA(params.Q, params.P, params.G, priv.PublicKey.Y)
return priv, nil
case RSAMD5, RSASHA1, RSASHA256, RSASHA512, RSASHA1NSEC3SHA1:
priv, err := rsa.GenerateKey(rand.Reader, bits)
if err != nil {
return nil, err
}
k.setPublicKeyRSA(priv.PublicKey.E, priv.PublicKey.N)
return priv, nil
case ECDSAP256SHA256, ECDSAP384SHA384:
var c elliptic.Curve
switch k.Algorithm {
case ECDSAP256SHA256:
c = elliptic.P256()
case ECDSAP384SHA384:
c = elliptic.P384()
}
priv, err := ecdsa.GenerateKey(c, rand.Reader)
if err != nil {
return nil, err
}
k.setPublicKeyECDSA(priv.PublicKey.X, priv.PublicKey.Y)
return priv, nil
default:
return nil, ErrAlg
}
}
// Set the public key (the value E and N)
func (k *DNSKEY) setPublicKeyRSA(_E int, _N *big.Int) bool {
if _E == 0 || _N == nil {
return false
}
buf := exponentToBuf(_E)
buf = append(buf, _N.Bytes()...)
k.PublicKey = toBase64(buf)
return true
}
// Set the public key for Elliptic Curves
func (k *DNSKEY) setPublicKeyECDSA(_X, _Y *big.Int) bool {
if _X == nil || _Y == nil {
return false
}
var intlen int
switch k.Algorithm {
case ECDSAP256SHA256:
intlen = 32
case ECDSAP384SHA384:
intlen = 48
}
k.PublicKey = toBase64(curveToBuf(_X, _Y, intlen))
return true
}
// Set the public key for DSA
func (k *DNSKEY) setPublicKeyDSA(_Q, _P, _G, _Y *big.Int) bool {
if _Q == nil || _P == nil || _G == nil || _Y == nil {
return false
}
buf := dsaToBuf(_Q, _P, _G, _Y)
k.PublicKey = toBase64(buf)
return true
}
// Set the public key (the values E and N) for RSA
// RFC 3110: Section 2. RSA Public KEY Resource Records
func exponentToBuf(_E int) []byte {
var buf []byte
i := big.NewInt(int64(_E))
if len(i.Bytes()) < 256 {
buf = make([]byte, 1)
buf[0] = uint8(len(i.Bytes()))
} else {
buf = make([]byte, 3)
buf[0] = 0
buf[1] = uint8(len(i.Bytes()) >> 8)
buf[2] = uint8(len(i.Bytes()))
}
buf = append(buf, i.Bytes()...)
return buf
}
// Set the public key for X and Y for Curve. The two
// values are just concatenated.
func curveToBuf(_X, _Y *big.Int, intlen int) []byte {
buf := intToBytes(_X, intlen)
buf = append(buf, intToBytes(_Y, intlen)...)
return buf
}
// Set the public key for X and Y for Curve. The two
// values are just concatenated.
func dsaToBuf(_Q, _P, _G, _Y *big.Int) []byte {
t := divRoundUp(divRoundUp(_G.BitLen(), 8)-64, 8)
buf := []byte{byte(t)}
buf = append(buf, intToBytes(_Q, 20)...)
buf = append(buf, intToBytes(_P, 64+t*8)...)
buf = append(buf, intToBytes(_G, 64+t*8)...)
buf = append(buf, intToBytes(_Y, 64+t*8)...)
return buf
}

View file

@ -1,249 +0,0 @@
package dns
import (
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"io"
"math/big"
"strconv"
"strings"
)
// NewPrivateKey returns a PrivateKey by parsing the string s.
// s should be in the same form of the BIND private key files.
func (k *DNSKEY) NewPrivateKey(s string) (crypto.PrivateKey, error) {
if s == "" || s[len(s)-1] != '\n' { // We need a closing newline
return k.ReadPrivateKey(strings.NewReader(s+"\n"), "")
}
return k.ReadPrivateKey(strings.NewReader(s), "")
}
// ReadPrivateKey reads a private key from the io.Reader q. The string file is
// only used in error reporting.
// The public key must be known, because some cryptographic algorithms embed
// the public inside the privatekey.
func (k *DNSKEY) ReadPrivateKey(q io.Reader, file string) (crypto.PrivateKey, error) {
m, err := parseKey(q, file)
if m == nil {
return nil, err
}
if _, ok := m["private-key-format"]; !ok {
return nil, ErrPrivKey
}
if m["private-key-format"] != "v1.2" && m["private-key-format"] != "v1.3" {
return nil, ErrPrivKey
}
// TODO(mg): check if the pubkey matches the private key
algo, err := strconv.Atoi(strings.SplitN(m["algorithm"], " ", 2)[0])
if err != nil {
return nil, ErrPrivKey
}
switch uint8(algo) {
case DSA:
priv, err := readPrivateKeyDSA(m)
if err != nil {
return nil, err
}
pub := k.publicKeyDSA()
if pub == nil {
return nil, ErrKey
}
priv.PublicKey = *pub
return priv, nil
case RSAMD5:
fallthrough
case RSASHA1:
fallthrough
case RSASHA1NSEC3SHA1:
fallthrough
case RSASHA256:
fallthrough
case RSASHA512:
priv, err := readPrivateKeyRSA(m)
if err != nil {
return nil, err
}
pub := k.publicKeyRSA()
if pub == nil {
return nil, ErrKey
}
priv.PublicKey = *pub
return priv, nil
case ECCGOST:
return nil, ErrPrivKey
case ECDSAP256SHA256:
fallthrough
case ECDSAP384SHA384:
priv, err := readPrivateKeyECDSA(m)
if err != nil {
return nil, err
}
pub := k.publicKeyECDSA()
if pub == nil {
return nil, ErrKey
}
priv.PublicKey = *pub
return priv, nil
default:
return nil, ErrPrivKey
}
}
// Read a private key (file) string and create a public key. Return the private key.
func readPrivateKeyRSA(m map[string]string) (*rsa.PrivateKey, error) {
p := new(rsa.PrivateKey)
p.Primes = []*big.Int{nil, nil}
for k, v := range m {
switch k {
case "modulus", "publicexponent", "privateexponent", "prime1", "prime2":
v1, err := fromBase64([]byte(v))
if err != nil {
return nil, err
}
switch k {
case "modulus":
p.PublicKey.N = big.NewInt(0)
p.PublicKey.N.SetBytes(v1)
case "publicexponent":
i := big.NewInt(0)
i.SetBytes(v1)
p.PublicKey.E = int(i.Int64()) // int64 should be large enough
case "privateexponent":
p.D = big.NewInt(0)
p.D.SetBytes(v1)
case "prime1":
p.Primes[0] = big.NewInt(0)
p.Primes[0].SetBytes(v1)
case "prime2":
p.Primes[1] = big.NewInt(0)
p.Primes[1].SetBytes(v1)
}
case "exponent1", "exponent2", "coefficient":
// not used in Go (yet)
case "created", "publish", "activate":
// not used in Go (yet)
}
}
return p, nil
}
func readPrivateKeyDSA(m map[string]string) (*dsa.PrivateKey, error) {
p := new(dsa.PrivateKey)
p.X = big.NewInt(0)
for k, v := range m {
switch k {
case "private_value(x)":
v1, err := fromBase64([]byte(v))
if err != nil {
return nil, err
}
p.X.SetBytes(v1)
case "created", "publish", "activate":
/* not used in Go (yet) */
}
}
return p, nil
}
func readPrivateKeyECDSA(m map[string]string) (*ecdsa.PrivateKey, error) {
p := new(ecdsa.PrivateKey)
p.D = big.NewInt(0)
// TODO: validate that the required flags are present
for k, v := range m {
switch k {
case "privatekey":
v1, err := fromBase64([]byte(v))
if err != nil {
return nil, err
}
p.D.SetBytes(v1)
case "created", "publish", "activate":
/* not used in Go (yet) */
}
}
return p, nil
}
// parseKey reads a private key from r. It returns a map[string]string,
// with the key-value pairs, or an error when the file is not correct.
func parseKey(r io.Reader, file string) (map[string]string, error) {
s := scanInit(r)
m := make(map[string]string)
c := make(chan lex)
k := ""
// Start the lexer
go klexer(s, c)
for l := range c {
// It should alternate
switch l.value {
case zKey:
k = l.token
case zValue:
if k == "" {
return nil, &ParseError{file, "no private key seen", l}
}
//println("Setting", strings.ToLower(k), "to", l.token, "b")
m[strings.ToLower(k)] = l.token
k = ""
}
}
return m, nil
}
// klexer scans the sourcefile and returns tokens on the channel c.
func klexer(s *scan, c chan lex) {
var l lex
str := "" // Hold the current read text
commt := false
key := true
x, err := s.tokenText()
defer close(c)
for err == nil {
l.column = s.position.Column
l.line = s.position.Line
switch x {
case ':':
if commt {
break
}
l.token = str
if key {
l.value = zKey
c <- l
// Next token is a space, eat it
s.tokenText()
key = false
str = ""
} else {
l.value = zValue
}
case ';':
commt = true
case '\n':
if commt {
// Reset a comment
commt = false
}
l.value = zValue
l.token = str
c <- l
str = ""
commt = false
key = true
default:
if commt {
break
}
str += string(x)
}
x, err = s.tokenText()
}
if len(str) > 0 {
// Send remainder
l.token = str
l.value = zValue
c <- l
}
}

View file

@ -1,85 +0,0 @@
package dns
import (
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"math/big"
"strconv"
)
const format = "Private-key-format: v1.3\n"
// PrivateKeyString converts a PrivateKey to a string. This string has the same
// format as the private-key-file of BIND9 (Private-key-format: v1.3).
// It needs some info from the key (the algorithm), so its a method of the DNSKEY
// It supports rsa.PrivateKey, ecdsa.PrivateKey and dsa.PrivateKey
func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
algorithm := strconv.Itoa(int(r.Algorithm))
algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
switch p := p.(type) {
case *rsa.PrivateKey:
modulus := toBase64(p.PublicKey.N.Bytes())
e := big.NewInt(int64(p.PublicKey.E))
publicExponent := toBase64(e.Bytes())
privateExponent := toBase64(p.D.Bytes())
prime1 := toBase64(p.Primes[0].Bytes())
prime2 := toBase64(p.Primes[1].Bytes())
// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
// and from: http://code.google.com/p/go/issues/detail?id=987
one := big.NewInt(1)
p1 := big.NewInt(0).Sub(p.Primes[0], one)
q1 := big.NewInt(0).Sub(p.Primes[1], one)
exp1 := big.NewInt(0).Mod(p.D, p1)
exp2 := big.NewInt(0).Mod(p.D, q1)
coeff := big.NewInt(0).ModInverse(p.Primes[1], p.Primes[0])
exponent1 := toBase64(exp1.Bytes())
exponent2 := toBase64(exp2.Bytes())
coefficient := toBase64(coeff.Bytes())
return format +
"Algorithm: " + algorithm + "\n" +
"Modulus: " + modulus + "\n" +
"PublicExponent: " + publicExponent + "\n" +
"PrivateExponent: " + privateExponent + "\n" +
"Prime1: " + prime1 + "\n" +
"Prime2: " + prime2 + "\n" +
"Exponent1: " + exponent1 + "\n" +
"Exponent2: " + exponent2 + "\n" +
"Coefficient: " + coefficient + "\n"
case *ecdsa.PrivateKey:
var intlen int
switch r.Algorithm {
case ECDSAP256SHA256:
intlen = 32
case ECDSAP384SHA384:
intlen = 48
}
private := toBase64(intToBytes(p.D, intlen))
return format +
"Algorithm: " + algorithm + "\n" +
"PrivateKey: " + private + "\n"
case *dsa.PrivateKey:
T := divRoundUp(divRoundUp(p.PublicKey.Parameters.G.BitLen(), 8)-64, 8)
prime := toBase64(intToBytes(p.PublicKey.Parameters.P, 64+T*8))
subprime := toBase64(intToBytes(p.PublicKey.Parameters.Q, 20))
base := toBase64(intToBytes(p.PublicKey.Parameters.G, 64+T*8))
priv := toBase64(intToBytes(p.X, 20))
pub := toBase64(intToBytes(p.PublicKey.Y, 64+T*8))
return format +
"Algorithm: " + algorithm + "\n" +
"Prime(p): " + prime + "\n" +
"Subprime(q): " + subprime + "\n" +
"Base(g): " + base + "\n" +
"Private_value(x): " + priv + "\n" +
"Public_value(y): " + pub + "\n"
default:
return ""
}
}

251
vendor/github.com/miekg/dns/doc.go generated vendored
View file

@ -1,251 +0,0 @@
/*
Package dns implements a full featured interface to the Domain Name System.
Server- and client-side programming is supported.
The package allows complete control over what is send out to the DNS. The package
API follows the less-is-more principle, by presenting a small, clean interface.
The package dns supports (asynchronous) querying/replying, incoming/outgoing zone transfers,
TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing.
Note that domain names MUST be fully qualified, before sending them, unqualified
names in a message will result in a packing failure.
Resource records are native types. They are not stored in wire format.
Basic usage pattern for creating a new resource record:
r := new(dns.MX)
r.Hdr = dns.RR_Header{Name: "miek.nl.", Rrtype: dns.TypeMX,
Class: dns.ClassINET, Ttl: 3600}
r.Preference = 10
r.Mx = "mx.miek.nl."
Or directly from a string:
mx, err := dns.NewRR("miek.nl. 3600 IN MX 10 mx.miek.nl.")
Or when the default TTL (3600) and class (IN) suit you:
mx, err := dns.NewRR("miek.nl. MX 10 mx.miek.nl.")
Or even:
mx, err := dns.NewRR("$ORIGIN nl.\nmiek 1H IN MX 10 mx.miek")
In the DNS messages are exchanged, these messages contain resource
records (sets). Use pattern for creating a message:
m := new(dns.Msg)
m.SetQuestion("miek.nl.", dns.TypeMX)
Or when not certain if the domain name is fully qualified:
m.SetQuestion(dns.Fqdn("miek.nl"), dns.TypeMX)
The message m is now a message with the question section set to ask
the MX records for the miek.nl. zone.
The following is slightly more verbose, but more flexible:
m1 := new(dns.Msg)
m1.Id = dns.Id()
m1.RecursionDesired = true
m1.Question = make([]dns.Question, 1)
m1.Question[0] = dns.Question{"miek.nl.", dns.TypeMX, dns.ClassINET}
After creating a message it can be send.
Basic use pattern for synchronous querying the DNS at a
server configured on 127.0.0.1 and port 53:
c := new(dns.Client)
in, rtt, err := c.Exchange(m1, "127.0.0.1:53")
Suppressing multiple outstanding queries (with the same question, type and
class) is as easy as setting:
c.SingleInflight = true
If these "advanced" features are not needed, a simple UDP query can be send,
with:
in, err := dns.Exchange(m1, "127.0.0.1:53")
When this functions returns you will get dns message. A dns message consists
out of four sections.
The question section: in.Question, the answer section: in.Answer,
the authority section: in.Ns and the additional section: in.Extra.
Each of these sections (except the Question section) contain a []RR. Basic
use pattern for accessing the rdata of a TXT RR as the first RR in
the Answer section:
if t, ok := in.Answer[0].(*dns.TXT); ok {
// do something with t.Txt
}
Domain Name and TXT Character String Representations
Both domain names and TXT character strings are converted to presentation
form both when unpacked and when converted to strings.
For TXT character strings, tabs, carriage returns and line feeds will be
converted to \t, \r and \n respectively. Back slashes and quotations marks
will be escaped. Bytes below 32 and above 127 will be converted to \DDD
form.
For domain names, in addition to the above rules brackets, periods,
spaces, semicolons and the at symbol are escaped.
DNSSEC
DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It
uses public key cryptography to sign resource records. The
public keys are stored in DNSKEY records and the signatures in RRSIG records.
Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit
to a request.
m := new(dns.Msg)
m.SetEdns0(4096, true)
Signature generation, signature verification and key generation are all supported.
DYNAMIC UPDATES
Dynamic updates reuses the DNS message format, but renames three of
the sections. Question is Zone, Answer is Prerequisite, Authority is
Update, only the Additional is not renamed. See RFC 2136 for the gory details.
You can set a rather complex set of rules for the existence of absence of
certain resource records or names in a zone to specify if resource records
should be added or removed. The table from RFC 2136 supplemented with the Go
DNS function shows which functions exist to specify the prerequisites.
3.2.4 - Table Of Metavalues Used In Prerequisite Section
CLASS TYPE RDATA Meaning Function
--------------------------------------------------------------
ANY ANY empty Name is in use dns.NameUsed
ANY rrset empty RRset exists (value indep) dns.RRsetUsed
NONE ANY empty Name is not in use dns.NameNotUsed
NONE rrset empty RRset does not exist dns.RRsetNotUsed
zone rrset rr RRset exists (value dep) dns.Used
The prerequisite section can also be left empty.
If you have decided on the prerequisites you can tell what RRs should
be added or deleted. The next table shows the options you have and
what functions to call.
3.4.2.6 - Table Of Metavalues Used In Update Section
CLASS TYPE RDATA Meaning Function
---------------------------------------------------------------
ANY ANY empty Delete all RRsets from name dns.RemoveName
ANY rrset empty Delete an RRset dns.RemoveRRset
NONE rrset rr Delete an RR from RRset dns.Remove
zone rrset rr Add to an RRset dns.Insert
TRANSACTION SIGNATURE
An TSIG or transaction signature adds a HMAC TSIG record to each message sent.
The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512.
Basic use pattern when querying with a TSIG name "axfr." (note that these key names
must be fully qualified - as they are domain names) and the base64 secret
"so6ZGir4GPAqINNh9U5c3A==":
c := new(dns.Client)
c.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="}
m := new(dns.Msg)
m.SetQuestion("miek.nl.", dns.TypeMX)
m.SetTsig("axfr.", dns.HmacMD5, 300, time.Now().Unix())
...
// When sending the TSIG RR is calculated and filled in before sending
When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with
TSIG, this is the basic use pattern. In this example we request an AXFR for
miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A=="
and using the server 176.58.119.54:
t := new(dns.Transfer)
m := new(dns.Msg)
t.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="}
m.SetAxfr("miek.nl.")
m.SetTsig("axfr.", dns.HmacMD5, 300, time.Now().Unix())
c, err := t.In(m, "176.58.119.54:53")
for r := range c { ... }
You can now read the records from the transfer as they come in. Each envelope is checked with TSIG.
If something is not correct an error is returned.
Basic use pattern validating and replying to a message that has TSIG set.
server := &dns.Server{Addr: ":53", Net: "udp"}
server.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="}
go server.ListenAndServe()
dns.HandleFunc(".", handleRequest)
func handleRequest(w dns.ResponseWriter, r *dns.Msg) {
m := new(dns.Msg)
m.SetReply(r)
if r.IsTsig() != nil {
if w.TsigStatus() == nil {
// *Msg r has an TSIG record and it was validated
m.SetTsig("axfr.", dns.HmacMD5, 300, time.Now().Unix())
} else {
// *Msg r has an TSIG records and it was not valided
}
}
w.WriteMsg(m)
}
PRIVATE RRS
RFC 6895 sets aside a range of type codes for private use. This range
is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these
can be used, before requesting an official type code from IANA.
see http://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more
information.
EDNS0
EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated
by RFC 6891. It defines an new RR type, the OPT RR, which is then completely
abused.
Basic use pattern for creating an (empty) OPT RR:
o := new(dns.OPT)
o.Hdr.Name = "." // MUST be the root zone, per definition.
o.Hdr.Rrtype = dns.TypeOPT
The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891)
interfaces. Currently only a few have been standardized: EDNS0_NSID
(RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note
that these options may be combined in an OPT RR.
Basic use pattern for a server to check if (and which) options are set:
// o is a dns.OPT
for _, s := range o.Option {
switch e := s.(type) {
case *dns.EDNS0_NSID:
// do stuff with e.Nsid
case *dns.EDNS0_SUBNET:
// access e.Family, e.Address, etc.
}
}
SIG(0)
From RFC 2931:
SIG(0) provides protection for DNS transactions and requests ....
... protection for glue records, DNS requests, protection for message headers
on requests and responses, and protection of the overall integrity of a response.
It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared
secret approach in TSIG.
Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and
RSASHA512.
Signing subsequent messages in multi-message sessions is not implemented.
*/
package dns

597
vendor/github.com/miekg/dns/edns.go generated vendored
View file

@ -1,597 +0,0 @@
package dns
import (
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"net"
"strconv"
)
// EDNS0 Option codes.
const (
EDNS0LLQ = 0x1 // long lived queries: http://tools.ietf.org/html/draft-sekar-dns-llq-01
EDNS0UL = 0x2 // update lease draft: http://files.dns-sd.org/draft-sekar-dns-ul.txt
EDNS0NSID = 0x3 // nsid (RFC5001)
EDNS0DAU = 0x5 // DNSSEC Algorithm Understood
EDNS0DHU = 0x6 // DS Hash Understood
EDNS0N3U = 0x7 // NSEC3 Hash Understood
EDNS0SUBNET = 0x8 // client-subnet (RFC6891)
EDNS0EXPIRE = 0x9 // EDNS0 expire
EDNS0COOKIE = 0xa // EDNS0 Cookie
EDNS0TCPKEEPALIVE = 0xb // EDNS0 tcp keep alive (RFC7828)
EDNS0SUBNETDRAFT = 0x50fa // Don't use! Use EDNS0SUBNET
EDNS0LOCALSTART = 0xFDE9 // Beginning of range reserved for local/experimental use (RFC6891)
EDNS0LOCALEND = 0xFFFE // End of range reserved for local/experimental use (RFC6891)
_DO = 1 << 15 // dnssec ok
)
// OPT is the EDNS0 RR appended to messages to convey extra (meta) information.
// See RFC 6891.
type OPT struct {
Hdr RR_Header
Option []EDNS0 `dns:"opt"`
}
func (rr *OPT) String() string {
s := "\n;; OPT PSEUDOSECTION:\n; EDNS: version " + strconv.Itoa(int(rr.Version())) + "; "
if rr.Do() {
s += "flags: do; "
} else {
s += "flags: ; "
}
s += "udp: " + strconv.Itoa(int(rr.UDPSize()))
for _, o := range rr.Option {
switch o.(type) {
case *EDNS0_NSID:
s += "\n; NSID: " + o.String()
h, e := o.pack()
var r string
if e == nil {
for _, c := range h {
r += "(" + string(c) + ")"
}
s += " " + r
}
case *EDNS0_SUBNET:
s += "\n; SUBNET: " + o.String()
if o.(*EDNS0_SUBNET).DraftOption {
s += " (draft)"
}
case *EDNS0_COOKIE:
s += "\n; COOKIE: " + o.String()
case *EDNS0_UL:
s += "\n; UPDATE LEASE: " + o.String()
case *EDNS0_LLQ:
s += "\n; LONG LIVED QUERIES: " + o.String()
case *EDNS0_DAU:
s += "\n; DNSSEC ALGORITHM UNDERSTOOD: " + o.String()
case *EDNS0_DHU:
s += "\n; DS HASH UNDERSTOOD: " + o.String()
case *EDNS0_N3U:
s += "\n; NSEC3 HASH UNDERSTOOD: " + o.String()
case *EDNS0_LOCAL:
s += "\n; LOCAL OPT: " + o.String()
}
}
return s
}
func (rr *OPT) len() int {
l := rr.Hdr.len()
for i := 0; i < len(rr.Option); i++ {
l += 4 // Account for 2-byte option code and 2-byte option length.
lo, _ := rr.Option[i].pack()
l += len(lo)
}
return l
}
// return the old value -> delete SetVersion?
// Version returns the EDNS version used. Only zero is defined.
func (rr *OPT) Version() uint8 {
return uint8((rr.Hdr.Ttl & 0x00FF0000) >> 16)
}
// SetVersion sets the version of EDNS. This is usually zero.
func (rr *OPT) SetVersion(v uint8) {
rr.Hdr.Ttl = rr.Hdr.Ttl&0xFF00FFFF | (uint32(v) << 16)
}
// ExtendedRcode returns the EDNS extended RCODE field (the upper 8 bits of the TTL).
func (rr *OPT) ExtendedRcode() int {
return int((rr.Hdr.Ttl&0xFF000000)>>24) + 15
}
// SetExtendedRcode sets the EDNS extended RCODE field.
func (rr *OPT) SetExtendedRcode(v uint8) {
if v < RcodeBadVers { // Smaller than 16.. Use the 4 bits you have!
return
}
rr.Hdr.Ttl = rr.Hdr.Ttl&0x00FFFFFF | (uint32(v-15) << 24)
}
// UDPSize returns the UDP buffer size.
func (rr *OPT) UDPSize() uint16 {
return rr.Hdr.Class
}
// SetUDPSize sets the UDP buffer size.
func (rr *OPT) SetUDPSize(size uint16) {
rr.Hdr.Class = size
}
// Do returns the value of the DO (DNSSEC OK) bit.
func (rr *OPT) Do() bool {
return rr.Hdr.Ttl&_DO == _DO
}
// SetDo sets the DO (DNSSEC OK) bit.
// If we pass an argument, set the DO bit to that value.
// It is possible to pass 2 or more arguments. Any arguments after the 1st is silently ignored.
func (rr *OPT) SetDo(do ...bool) {
if len(do) == 1 {
if do[0] {
rr.Hdr.Ttl |= _DO
} else {
rr.Hdr.Ttl &^= _DO
}
} else {
rr.Hdr.Ttl |= _DO
}
}
// EDNS0 defines an EDNS0 Option. An OPT RR can have multiple options appended to it.
type EDNS0 interface {
// Option returns the option code for the option.
Option() uint16
// pack returns the bytes of the option data.
pack() ([]byte, error)
// unpack sets the data as found in the buffer. Is also sets
// the length of the slice as the length of the option data.
unpack([]byte) error
// String returns the string representation of the option.
String() string
}
// The nsid EDNS0 option is used to retrieve a nameserver
// identifier. When sending a request Nsid must be set to the empty string
// The identifier is an opaque string encoded as hex.
// Basic use pattern for creating an nsid option:
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_NSID)
// e.Code = dns.EDNS0NSID
// e.Nsid = "AA"
// o.Option = append(o.Option, e)
type EDNS0_NSID struct {
Code uint16 // Always EDNS0NSID
Nsid string // This string needs to be hex encoded
}
func (e *EDNS0_NSID) pack() ([]byte, error) {
h, err := hex.DecodeString(e.Nsid)
if err != nil {
return nil, err
}
return h, nil
}
func (e *EDNS0_NSID) Option() uint16 { return EDNS0NSID }
func (e *EDNS0_NSID) unpack(b []byte) error { e.Nsid = hex.EncodeToString(b); return nil }
func (e *EDNS0_NSID) String() string { return string(e.Nsid) }
// EDNS0_SUBNET is the subnet option that is used to give the remote nameserver
// an idea of where the client lives. It can then give back a different
// answer depending on the location or network topology.
// Basic use pattern for creating an subnet option:
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_SUBNET)
// e.Code = dns.EDNS0SUBNET
// e.Family = 1 // 1 for IPv4 source address, 2 for IPv6
// e.NetMask = 32 // 32 for IPV4, 128 for IPv6
// e.SourceScope = 0
// e.Address = net.ParseIP("127.0.0.1").To4() // for IPv4
// // e.Address = net.ParseIP("2001:7b8:32a::2") // for IPV6
// o.Option = append(o.Option, e)
//
// Note: the spec (draft-ietf-dnsop-edns-client-subnet-00) has some insane logic
// for which netmask applies to the address. This code will parse all the
// available bits when unpacking (up to optlen). When packing it will apply
// SourceNetmask. If you need more advanced logic, patches welcome and good luck.
type EDNS0_SUBNET struct {
Code uint16 // Always EDNS0SUBNET
Family uint16 // 1 for IP, 2 for IP6
SourceNetmask uint8
SourceScope uint8
Address net.IP
DraftOption bool // Set to true if using the old (0x50fa) option code
}
func (e *EDNS0_SUBNET) Option() uint16 {
if e.DraftOption {
return EDNS0SUBNETDRAFT
}
return EDNS0SUBNET
}
func (e *EDNS0_SUBNET) pack() ([]byte, error) {
b := make([]byte, 4)
binary.BigEndian.PutUint16(b[0:], e.Family)
b[2] = e.SourceNetmask
b[3] = e.SourceScope
switch e.Family {
case 1:
if e.SourceNetmask > net.IPv4len*8 {
return nil, errors.New("dns: bad netmask")
}
if len(e.Address.To4()) != net.IPv4len {
return nil, errors.New("dns: bad address")
}
ip := e.Address.To4().Mask(net.CIDRMask(int(e.SourceNetmask), net.IPv4len*8))
needLength := (e.SourceNetmask + 8 - 1) / 8 // division rounding up
b = append(b, ip[:needLength]...)
case 2:
if e.SourceNetmask > net.IPv6len*8 {
return nil, errors.New("dns: bad netmask")
}
if len(e.Address) != net.IPv6len {
return nil, errors.New("dns: bad address")
}
ip := e.Address.Mask(net.CIDRMask(int(e.SourceNetmask), net.IPv6len*8))
needLength := (e.SourceNetmask + 8 - 1) / 8 // division rounding up
b = append(b, ip[:needLength]...)
default:
return nil, errors.New("dns: bad address family")
}
return b, nil
}
func (e *EDNS0_SUBNET) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Family = binary.BigEndian.Uint16(b)
e.SourceNetmask = b[2]
e.SourceScope = b[3]
switch e.Family {
case 1:
if e.SourceNetmask > net.IPv4len*8 || e.SourceScope > net.IPv4len*8 {
return errors.New("dns: bad netmask")
}
addr := make([]byte, net.IPv4len)
for i := 0; i < net.IPv4len && 4+i < len(b); i++ {
addr[i] = b[4+i]
}
e.Address = net.IPv4(addr[0], addr[1], addr[2], addr[3])
case 2:
if e.SourceNetmask > net.IPv6len*8 || e.SourceScope > net.IPv6len*8 {
return errors.New("dns: bad netmask")
}
addr := make([]byte, net.IPv6len)
for i := 0; i < net.IPv6len && 4+i < len(b); i++ {
addr[i] = b[4+i]
}
e.Address = net.IP{addr[0], addr[1], addr[2], addr[3], addr[4],
addr[5], addr[6], addr[7], addr[8], addr[9], addr[10],
addr[11], addr[12], addr[13], addr[14], addr[15]}
default:
return errors.New("dns: bad address family")
}
return nil
}
func (e *EDNS0_SUBNET) String() (s string) {
if e.Address == nil {
s = "<nil>"
} else if e.Address.To4() != nil {
s = e.Address.String()
} else {
s = "[" + e.Address.String() + "]"
}
s += "/" + strconv.Itoa(int(e.SourceNetmask)) + "/" + strconv.Itoa(int(e.SourceScope))
return
}
// The Cookie EDNS0 option
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_COOKIE)
// e.Code = dns.EDNS0COOKIE
// e.Cookie = "24a5ac.."
// o.Option = append(o.Option, e)
//
// The Cookie field consists out of a client cookie (RFC 7873 Section 4), that is
// always 8 bytes. It may then optionally be followed by the server cookie. The server
// cookie is of variable length, 8 to a maximum of 32 bytes. In other words:
//
// cCookie := o.Cookie[:16]
// sCookie := o.Cookie[16:]
//
// There is no guarantee that the Cookie string has a specific length.
type EDNS0_COOKIE struct {
Code uint16 // Always EDNS0COOKIE
Cookie string // Hex-encoded cookie data
}
func (e *EDNS0_COOKIE) pack() ([]byte, error) {
h, err := hex.DecodeString(e.Cookie)
if err != nil {
return nil, err
}
return h, nil
}
func (e *EDNS0_COOKIE) Option() uint16 { return EDNS0COOKIE }
func (e *EDNS0_COOKIE) unpack(b []byte) error { e.Cookie = hex.EncodeToString(b); return nil }
func (e *EDNS0_COOKIE) String() string { return e.Cookie }
// The EDNS0_UL (Update Lease) (draft RFC) option is used to tell the server to set
// an expiration on an update RR. This is helpful for clients that cannot clean
// up after themselves. This is a draft RFC and more information can be found at
// http://files.dns-sd.org/draft-sekar-dns-ul.txt
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_UL)
// e.Code = dns.EDNS0UL
// e.Lease = 120 // in seconds
// o.Option = append(o.Option, e)
type EDNS0_UL struct {
Code uint16 // Always EDNS0UL
Lease uint32
}
func (e *EDNS0_UL) Option() uint16 { return EDNS0UL }
func (e *EDNS0_UL) String() string { return strconv.FormatUint(uint64(e.Lease), 10) }
// Copied: http://golang.org/src/pkg/net/dnsmsg.go
func (e *EDNS0_UL) pack() ([]byte, error) {
b := make([]byte, 4)
binary.BigEndian.PutUint32(b, e.Lease)
return b, nil
}
func (e *EDNS0_UL) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Lease = binary.BigEndian.Uint32(b)
return nil
}
// EDNS0_LLQ stands for Long Lived Queries: http://tools.ietf.org/html/draft-sekar-dns-llq-01
// Implemented for completeness, as the EDNS0 type code is assigned.
type EDNS0_LLQ struct {
Code uint16 // Always EDNS0LLQ
Version uint16
Opcode uint16
Error uint16
Id uint64
LeaseLife uint32
}
func (e *EDNS0_LLQ) Option() uint16 { return EDNS0LLQ }
func (e *EDNS0_LLQ) pack() ([]byte, error) {
b := make([]byte, 18)
binary.BigEndian.PutUint16(b[0:], e.Version)
binary.BigEndian.PutUint16(b[2:], e.Opcode)
binary.BigEndian.PutUint16(b[4:], e.Error)
binary.BigEndian.PutUint64(b[6:], e.Id)
binary.BigEndian.PutUint32(b[14:], e.LeaseLife)
return b, nil
}
func (e *EDNS0_LLQ) unpack(b []byte) error {
if len(b) < 18 {
return ErrBuf
}
e.Version = binary.BigEndian.Uint16(b[0:])
e.Opcode = binary.BigEndian.Uint16(b[2:])
e.Error = binary.BigEndian.Uint16(b[4:])
e.Id = binary.BigEndian.Uint64(b[6:])
e.LeaseLife = binary.BigEndian.Uint32(b[14:])
return nil
}
func (e *EDNS0_LLQ) String() string {
s := strconv.FormatUint(uint64(e.Version), 10) + " " + strconv.FormatUint(uint64(e.Opcode), 10) +
" " + strconv.FormatUint(uint64(e.Error), 10) + " " + strconv.FormatUint(uint64(e.Id), 10) +
" " + strconv.FormatUint(uint64(e.LeaseLife), 10)
return s
}
type EDNS0_DAU struct {
Code uint16 // Always EDNS0DAU
AlgCode []uint8
}
func (e *EDNS0_DAU) Option() uint16 { return EDNS0DAU }
func (e *EDNS0_DAU) pack() ([]byte, error) { return e.AlgCode, nil }
func (e *EDNS0_DAU) unpack(b []byte) error { e.AlgCode = b; return nil }
func (e *EDNS0_DAU) String() string {
s := ""
for i := 0; i < len(e.AlgCode); i++ {
if a, ok := AlgorithmToString[e.AlgCode[i]]; ok {
s += " " + a
} else {
s += " " + strconv.Itoa(int(e.AlgCode[i]))
}
}
return s
}
type EDNS0_DHU struct {
Code uint16 // Always EDNS0DHU
AlgCode []uint8
}
func (e *EDNS0_DHU) Option() uint16 { return EDNS0DHU }
func (e *EDNS0_DHU) pack() ([]byte, error) { return e.AlgCode, nil }
func (e *EDNS0_DHU) unpack(b []byte) error { e.AlgCode = b; return nil }
func (e *EDNS0_DHU) String() string {
s := ""
for i := 0; i < len(e.AlgCode); i++ {
if a, ok := HashToString[e.AlgCode[i]]; ok {
s += " " + a
} else {
s += " " + strconv.Itoa(int(e.AlgCode[i]))
}
}
return s
}
type EDNS0_N3U struct {
Code uint16 // Always EDNS0N3U
AlgCode []uint8
}
func (e *EDNS0_N3U) Option() uint16 { return EDNS0N3U }
func (e *EDNS0_N3U) pack() ([]byte, error) { return e.AlgCode, nil }
func (e *EDNS0_N3U) unpack(b []byte) error { e.AlgCode = b; return nil }
func (e *EDNS0_N3U) String() string {
// Re-use the hash map
s := ""
for i := 0; i < len(e.AlgCode); i++ {
if a, ok := HashToString[e.AlgCode[i]]; ok {
s += " " + a
} else {
s += " " + strconv.Itoa(int(e.AlgCode[i]))
}
}
return s
}
type EDNS0_EXPIRE struct {
Code uint16 // Always EDNS0EXPIRE
Expire uint32
}
func (e *EDNS0_EXPIRE) Option() uint16 { return EDNS0EXPIRE }
func (e *EDNS0_EXPIRE) String() string { return strconv.FormatUint(uint64(e.Expire), 10) }
func (e *EDNS0_EXPIRE) pack() ([]byte, error) {
b := make([]byte, 4)
b[0] = byte(e.Expire >> 24)
b[1] = byte(e.Expire >> 16)
b[2] = byte(e.Expire >> 8)
b[3] = byte(e.Expire)
return b, nil
}
func (e *EDNS0_EXPIRE) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Expire = binary.BigEndian.Uint32(b)
return nil
}
// The EDNS0_LOCAL option is used for local/experimental purposes. The option
// code is recommended to be within the range [EDNS0LOCALSTART, EDNS0LOCALEND]
// (RFC6891), although any unassigned code can actually be used. The content of
// the option is made available in Data, unaltered.
// Basic use pattern for creating a local option:
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_LOCAL)
// e.Code = dns.EDNS0LOCALSTART
// e.Data = []byte{72, 82, 74}
// o.Option = append(o.Option, e)
type EDNS0_LOCAL struct {
Code uint16
Data []byte
}
func (e *EDNS0_LOCAL) Option() uint16 { return e.Code }
func (e *EDNS0_LOCAL) String() string {
return strconv.FormatInt(int64(e.Code), 10) + ":0x" + hex.EncodeToString(e.Data)
}
func (e *EDNS0_LOCAL) pack() ([]byte, error) {
b := make([]byte, len(e.Data))
copied := copy(b, e.Data)
if copied != len(e.Data) {
return nil, ErrBuf
}
return b, nil
}
func (e *EDNS0_LOCAL) unpack(b []byte) error {
e.Data = make([]byte, len(b))
copied := copy(e.Data, b)
if copied != len(b) {
return ErrBuf
}
return nil
}
type EDNS0_TCP_KEEPALIVE struct {
Code uint16 // Always EDNSTCPKEEPALIVE
Length uint16 // the value 0 if the TIMEOUT is omitted, the value 2 if it is present;
Timeout uint16 // an idle timeout value for the TCP connection, specified in units of 100 milliseconds, encoded in network byte order.
}
func (e *EDNS0_TCP_KEEPALIVE) Option() uint16 {
return EDNS0TCPKEEPALIVE
}
func (e *EDNS0_TCP_KEEPALIVE) pack() ([]byte, error) {
if e.Timeout != 0 && e.Length != 2 {
return nil, errors.New("dns: timeout specified but length is not 2")
}
if e.Timeout == 0 && e.Length != 0 {
return nil, errors.New("dns: timeout not specified but length is not 0")
}
b := make([]byte, 4+e.Length)
binary.BigEndian.PutUint16(b[0:], e.Code)
binary.BigEndian.PutUint16(b[2:], e.Length)
if e.Length == 2 {
binary.BigEndian.PutUint16(b[4:], e.Timeout)
}
return b, nil
}
func (e *EDNS0_TCP_KEEPALIVE) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Length = binary.BigEndian.Uint16(b[2:4])
if e.Length != 0 && e.Length != 2 {
return errors.New("dns: length mismatch, want 0/2 but got " + strconv.FormatUint(uint64(e.Length), 10))
}
if e.Length == 2 {
if len(b) < 6 {
return ErrBuf
}
e.Timeout = binary.BigEndian.Uint16(b[4:6])
}
return nil
}
func (e *EDNS0_TCP_KEEPALIVE) String() (s string) {
s = "use tcp keep-alive"
if e.Length == 0 {
s += ", timeout omitted"
} else {
s += fmt.Sprintf(", timeout %dms", e.Timeout*100)
}
return
}

View file

@ -1,87 +0,0 @@
package dns
import (
"net"
"reflect"
"strconv"
)
// NumField returns the number of rdata fields r has.
func NumField(r RR) int {
return reflect.ValueOf(r).Elem().NumField() - 1 // Remove RR_Header
}
// Field returns the rdata field i as a string. Fields are indexed starting from 1.
// RR types that holds slice data, for instance the NSEC type bitmap will return a single
// string where the types are concatenated using a space.
// Accessing non existing fields will cause a panic.
func Field(r RR, i int) string {
if i == 0 {
return ""
}
d := reflect.ValueOf(r).Elem().Field(i)
switch k := d.Kind(); k {
case reflect.String:
return d.String()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return strconv.FormatInt(d.Int(), 10)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return strconv.FormatUint(d.Uint(), 10)
case reflect.Slice:
switch reflect.ValueOf(r).Elem().Type().Field(i).Tag {
case `dns:"a"`:
// TODO(miek): Hmm store this as 16 bytes
if d.Len() < net.IPv6len {
return net.IPv4(byte(d.Index(0).Uint()),
byte(d.Index(1).Uint()),
byte(d.Index(2).Uint()),
byte(d.Index(3).Uint())).String()
}
return net.IPv4(byte(d.Index(12).Uint()),
byte(d.Index(13).Uint()),
byte(d.Index(14).Uint()),
byte(d.Index(15).Uint())).String()
case `dns:"aaaa"`:
return net.IP{
byte(d.Index(0).Uint()),
byte(d.Index(1).Uint()),
byte(d.Index(2).Uint()),
byte(d.Index(3).Uint()),
byte(d.Index(4).Uint()),
byte(d.Index(5).Uint()),
byte(d.Index(6).Uint()),
byte(d.Index(7).Uint()),
byte(d.Index(8).Uint()),
byte(d.Index(9).Uint()),
byte(d.Index(10).Uint()),
byte(d.Index(11).Uint()),
byte(d.Index(12).Uint()),
byte(d.Index(13).Uint()),
byte(d.Index(14).Uint()),
byte(d.Index(15).Uint()),
}.String()
case `dns:"nsec"`:
if d.Len() == 0 {
return ""
}
s := Type(d.Index(0).Uint()).String()
for i := 1; i < d.Len(); i++ {
s += " " + Type(d.Index(i).Uint()).String()
}
return s
default:
// if it does not have a tag its a string slice
fallthrough
case `dns:"txt"`:
if d.Len() == 0 {
return ""
}
s := d.Index(0).String()
for i := 1; i < d.Len(); i++ {
s += " " + d.Index(i).String()
}
return s
}
}
return ""
}

View file

@ -1,159 +0,0 @@
package dns
import (
"bytes"
"errors"
"fmt"
"strconv"
"strings"
)
// Parse the $GENERATE statement as used in BIND9 zones.
// See http://www.zytrax.com/books/dns/ch8/generate.html for instance.
// We are called after '$GENERATE '. After which we expect:
// * the range (12-24/2)
// * lhs (ownername)
// * [[ttl][class]]
// * type
// * rhs (rdata)
// But we are lazy here, only the range is parsed *all* occurrences
// of $ after that are interpreted.
// Any error are returned as a string value, the empty string signals
// "no error".
func generate(l lex, c chan lex, t chan *Token, o string) string {
step := 1
if i := strings.IndexAny(l.token, "/"); i != -1 {
if i+1 == len(l.token) {
return "bad step in $GENERATE range"
}
if s, err := strconv.Atoi(l.token[i+1:]); err == nil {
if s < 0 {
return "bad step in $GENERATE range"
}
step = s
} else {
return "bad step in $GENERATE range"
}
l.token = l.token[:i]
}
sx := strings.SplitN(l.token, "-", 2)
if len(sx) != 2 {
return "bad start-stop in $GENERATE range"
}
start, err := strconv.Atoi(sx[0])
if err != nil {
return "bad start in $GENERATE range"
}
end, err := strconv.Atoi(sx[1])
if err != nil {
return "bad stop in $GENERATE range"
}
if end < 0 || start < 0 || end < start {
return "bad range in $GENERATE range"
}
<-c // _BLANK
// Create a complete new string, which we then parse again.
s := ""
BuildRR:
l = <-c
if l.value != zNewline && l.value != zEOF {
s += l.token
goto BuildRR
}
for i := start; i <= end; i += step {
var (
escape bool
dom bytes.Buffer
mod string
err error
offset int
)
for j := 0; j < len(s); j++ { // No 'range' because we need to jump around
switch s[j] {
case '\\':
if escape {
dom.WriteByte('\\')
escape = false
continue
}
escape = true
case '$':
mod = "%d"
offset = 0
if escape {
dom.WriteByte('$')
escape = false
continue
}
escape = false
if j+1 >= len(s) { // End of the string
dom.WriteString(fmt.Sprintf(mod, i+offset))
continue
} else {
if s[j+1] == '$' {
dom.WriteByte('$')
j++
continue
}
}
// Search for { and }
if s[j+1] == '{' { // Modifier block
sep := strings.Index(s[j+2:], "}")
if sep == -1 {
return "bad modifier in $GENERATE"
}
mod, offset, err = modToPrintf(s[j+2 : j+2+sep])
if err != nil {
return err.Error()
}
j += 2 + sep // Jump to it
}
dom.WriteString(fmt.Sprintf(mod, i+offset))
default:
if escape { // Pretty useless here
escape = false
continue
}
dom.WriteByte(s[j])
}
}
// Re-parse the RR and send it on the current channel t
rx, err := NewRR("$ORIGIN " + o + "\n" + dom.String())
if err != nil {
return err.Error()
}
t <- &Token{RR: rx}
// Its more efficient to first built the rrlist and then parse it in
// one go! But is this a problem?
}
return ""
}
// Convert a $GENERATE modifier 0,0,d to something Printf can deal with.
func modToPrintf(s string) (string, int, error) {
xs := strings.SplitN(s, ",", 3)
if len(xs) != 3 {
return "", 0, errors.New("bad modifier in $GENERATE")
}
// xs[0] is offset, xs[1] is width, xs[2] is base
if xs[2] != "o" && xs[2] != "d" && xs[2] != "x" && xs[2] != "X" {
return "", 0, errors.New("bad base in $GENERATE")
}
offset, err := strconv.Atoi(xs[0])
if err != nil || offset > 255 {
return "", 0, errors.New("bad offset in $GENERATE")
}
width, err := strconv.Atoi(xs[1])
if err != nil || width > 255 {
return "", offset, errors.New("bad width in $GENERATE")
}
switch {
case width < 0:
return "", offset, errors.New("bad width in $GENERATE")
case width == 0:
return "%" + xs[1] + xs[2], offset, nil
}
return "%0" + xs[1] + xs[2], offset, nil
}

168
vendor/github.com/miekg/dns/labels.go generated vendored
View file

@ -1,168 +0,0 @@
package dns
// Holds a bunch of helper functions for dealing with labels.
// SplitDomainName splits a name string into it's labels.
// www.miek.nl. returns []string{"www", "miek", "nl"}
// .www.miek.nl. returns []string{"", "www", "miek", "nl"},
// The root label (.) returns nil. Note that using
// strings.Split(s) will work in most cases, but does not handle
// escaped dots (\.) for instance.
// s must be a syntactically valid domain name, see IsDomainName.
func SplitDomainName(s string) (labels []string) {
if len(s) == 0 {
return nil
}
fqdnEnd := 0 // offset of the final '.' or the length of the name
idx := Split(s)
begin := 0
if s[len(s)-1] == '.' {
fqdnEnd = len(s) - 1
} else {
fqdnEnd = len(s)
}
switch len(idx) {
case 0:
return nil
case 1:
// no-op
default:
end := 0
for i := 1; i < len(idx); i++ {
end = idx[i]
labels = append(labels, s[begin:end-1])
begin = end
}
}
labels = append(labels, s[begin:fqdnEnd])
return labels
}
// CompareDomainName compares the names s1 and s2 and
// returns how many labels they have in common starting from the *right*.
// The comparison stops at the first inequality. The names are not downcased
// before the comparison.
//
// www.miek.nl. and miek.nl. have two labels in common: miek and nl
// www.miek.nl. and www.bla.nl. have one label in common: nl
//
// s1 and s2 must be syntactically valid domain names.
func CompareDomainName(s1, s2 string) (n int) {
s1 = Fqdn(s1)
s2 = Fqdn(s2)
l1 := Split(s1)
l2 := Split(s2)
// the first check: root label
if l1 == nil || l2 == nil {
return
}
j1 := len(l1) - 1 // end
i1 := len(l1) - 2 // start
j2 := len(l2) - 1
i2 := len(l2) - 2
// the second check can be done here: last/only label
// before we fall through into the for-loop below
if s1[l1[j1]:] == s2[l2[j2]:] {
n++
} else {
return
}
for {
if i1 < 0 || i2 < 0 {
break
}
if s1[l1[i1]:l1[j1]] == s2[l2[i2]:l2[j2]] {
n++
} else {
break
}
j1--
i1--
j2--
i2--
}
return
}
// CountLabel counts the the number of labels in the string s.
// s must be a syntactically valid domain name.
func CountLabel(s string) (labels int) {
if s == "." {
return
}
off := 0
end := false
for {
off, end = NextLabel(s, off)
labels++
if end {
return
}
}
}
// Split splits a name s into its label indexes.
// www.miek.nl. returns []int{0, 4, 9}, www.miek.nl also returns []int{0, 4, 9}.
// The root name (.) returns nil. Also see SplitDomainName.
// s must be a syntactically valid domain name.
func Split(s string) []int {
if s == "." {
return nil
}
idx := make([]int, 1, 3)
off := 0
end := false
for {
off, end = NextLabel(s, off)
if end {
return idx
}
idx = append(idx, off)
}
}
// NextLabel returns the index of the start of the next label in the
// string s starting at offset.
// The bool end is true when the end of the string has been reached.
// Also see PrevLabel.
func NextLabel(s string, offset int) (i int, end bool) {
quote := false
for i = offset; i < len(s)-1; i++ {
switch s[i] {
case '\\':
quote = !quote
default:
quote = false
case '.':
if quote {
quote = !quote
continue
}
return i + 1, false
}
}
return i + 1, true
}
// PrevLabel returns the index of the label when starting from the right and
// jumping n labels to the left.
// The bool start is true when the start of the string has been overshot.
// Also see NextLabel.
func PrevLabel(s string, n int) (i int, start bool) {
if n == 0 {
return len(s), false
}
lab := Split(s)
if lab == nil {
return 0, true
}
if n > len(lab) {
return 0, true
}
return lab[len(lab)-n], false
}

1231
vendor/github.com/miekg/dns/msg.go generated vendored

File diff suppressed because it is too large Load diff

View file

@ -1,630 +0,0 @@
package dns
import (
"encoding/base32"
"encoding/base64"
"encoding/binary"
"encoding/hex"
"net"
"strconv"
)
// helper functions called from the generated zmsg.go
// These function are named after the tag to help pack/unpack, if there is no tag it is the name
// of the type they pack/unpack (string, int, etc). We prefix all with unpackData or packData, so packDataA or
// packDataDomainName.
func unpackDataA(msg []byte, off int) (net.IP, int, error) {
if off+net.IPv4len > len(msg) {
return nil, len(msg), &Error{err: "overflow unpacking a"}
}
a := append(make(net.IP, 0, net.IPv4len), msg[off:off+net.IPv4len]...)
off += net.IPv4len
return a, off, nil
}
func packDataA(a net.IP, msg []byte, off int) (int, error) {
// It must be a slice of 4, even if it is 16, we encode only the first 4
if off+net.IPv4len > len(msg) {
return len(msg), &Error{err: "overflow packing a"}
}
switch len(a) {
case net.IPv4len, net.IPv6len:
copy(msg[off:], a.To4())
off += net.IPv4len
case 0:
// Allowed, for dynamic updates.
default:
return len(msg), &Error{err: "overflow packing a"}
}
return off, nil
}
func unpackDataAAAA(msg []byte, off int) (net.IP, int, error) {
if off+net.IPv6len > len(msg) {
return nil, len(msg), &Error{err: "overflow unpacking aaaa"}
}
aaaa := append(make(net.IP, 0, net.IPv6len), msg[off:off+net.IPv6len]...)
off += net.IPv6len
return aaaa, off, nil
}
func packDataAAAA(aaaa net.IP, msg []byte, off int) (int, error) {
if off+net.IPv6len > len(msg) {
return len(msg), &Error{err: "overflow packing aaaa"}
}
switch len(aaaa) {
case net.IPv6len:
copy(msg[off:], aaaa)
off += net.IPv6len
case 0:
// Allowed, dynamic updates.
default:
return len(msg), &Error{err: "overflow packing aaaa"}
}
return off, nil
}
// unpackHeader unpacks an RR header, returning the offset to the end of the header and a
// re-sliced msg according to the expected length of the RR.
func unpackHeader(msg []byte, off int) (rr RR_Header, off1 int, truncmsg []byte, err error) {
hdr := RR_Header{}
if off == len(msg) {
return hdr, off, msg, nil
}
hdr.Name, off, err = UnpackDomainName(msg, off)
if err != nil {
return hdr, len(msg), msg, err
}
hdr.Rrtype, off, err = unpackUint16(msg, off)
if err != nil {
return hdr, len(msg), msg, err
}
hdr.Class, off, err = unpackUint16(msg, off)
if err != nil {
return hdr, len(msg), msg, err
}
hdr.Ttl, off, err = unpackUint32(msg, off)
if err != nil {
return hdr, len(msg), msg, err
}
hdr.Rdlength, off, err = unpackUint16(msg, off)
if err != nil {
return hdr, len(msg), msg, err
}
msg, err = truncateMsgFromRdlength(msg, off, hdr.Rdlength)
return hdr, off, msg, nil
}
// pack packs an RR header, returning the offset to the end of the header.
// See PackDomainName for documentation about the compression.
func (hdr RR_Header) pack(msg []byte, off int, compression map[string]int, compress bool) (off1 int, err error) {
if off == len(msg) {
return off, nil
}
off, err = PackDomainName(hdr.Name, msg, off, compression, compress)
if err != nil {
return len(msg), err
}
off, err = packUint16(hdr.Rrtype, msg, off)
if err != nil {
return len(msg), err
}
off, err = packUint16(hdr.Class, msg, off)
if err != nil {
return len(msg), err
}
off, err = packUint32(hdr.Ttl, msg, off)
if err != nil {
return len(msg), err
}
off, err = packUint16(hdr.Rdlength, msg, off)
if err != nil {
return len(msg), err
}
return off, nil
}
// helper helper functions.
// truncateMsgFromRdLength truncates msg to match the expected length of the RR.
// Returns an error if msg is smaller than the expected size.
func truncateMsgFromRdlength(msg []byte, off int, rdlength uint16) (truncmsg []byte, err error) {
lenrd := off + int(rdlength)
if lenrd > len(msg) {
return msg, &Error{err: "overflowing header size"}
}
return msg[:lenrd], nil
}
func fromBase32(s []byte) (buf []byte, err error) {
buflen := base32.HexEncoding.DecodedLen(len(s))
buf = make([]byte, buflen)
n, err := base32.HexEncoding.Decode(buf, s)
buf = buf[:n]
return
}
func toBase32(b []byte) string { return base32.HexEncoding.EncodeToString(b) }
func fromBase64(s []byte) (buf []byte, err error) {
buflen := base64.StdEncoding.DecodedLen(len(s))
buf = make([]byte, buflen)
n, err := base64.StdEncoding.Decode(buf, s)
buf = buf[:n]
return
}
func toBase64(b []byte) string { return base64.StdEncoding.EncodeToString(b) }
// dynamicUpdate returns true if the Rdlength is zero.
func noRdata(h RR_Header) bool { return h.Rdlength == 0 }
func unpackUint8(msg []byte, off int) (i uint8, off1 int, err error) {
if off+1 > len(msg) {
return 0, len(msg), &Error{err: "overflow unpacking uint8"}
}
return uint8(msg[off]), off + 1, nil
}
func packUint8(i uint8, msg []byte, off int) (off1 int, err error) {
if off+1 > len(msg) {
return len(msg), &Error{err: "overflow packing uint8"}
}
msg[off] = byte(i)
return off + 1, nil
}
func unpackUint16(msg []byte, off int) (i uint16, off1 int, err error) {
if off+2 > len(msg) {
return 0, len(msg), &Error{err: "overflow unpacking uint16"}
}
return binary.BigEndian.Uint16(msg[off:]), off + 2, nil
}
func packUint16(i uint16, msg []byte, off int) (off1 int, err error) {
if off+2 > len(msg) {
return len(msg), &Error{err: "overflow packing uint16"}
}
binary.BigEndian.PutUint16(msg[off:], i)
return off + 2, nil
}
func unpackUint32(msg []byte, off int) (i uint32, off1 int, err error) {
if off+4 > len(msg) {
return 0, len(msg), &Error{err: "overflow unpacking uint32"}
}
return binary.BigEndian.Uint32(msg[off:]), off + 4, nil
}
func packUint32(i uint32, msg []byte, off int) (off1 int, err error) {
if off+4 > len(msg) {
return len(msg), &Error{err: "overflow packing uint32"}
}
binary.BigEndian.PutUint32(msg[off:], i)
return off + 4, nil
}
func unpackUint48(msg []byte, off int) (i uint64, off1 int, err error) {
if off+6 > len(msg) {
return 0, len(msg), &Error{err: "overflow unpacking uint64 as uint48"}
}
// Used in TSIG where the last 48 bits are occupied, so for now, assume a uint48 (6 bytes)
i = (uint64(uint64(msg[off])<<40 | uint64(msg[off+1])<<32 | uint64(msg[off+2])<<24 | uint64(msg[off+3])<<16 |
uint64(msg[off+4])<<8 | uint64(msg[off+5])))
off += 6
return i, off, nil
}
func packUint48(i uint64, msg []byte, off int) (off1 int, err error) {
if off+6 > len(msg) {
return len(msg), &Error{err: "overflow packing uint64 as uint48"}
}
msg[off] = byte(i >> 40)
msg[off+1] = byte(i >> 32)
msg[off+2] = byte(i >> 24)
msg[off+3] = byte(i >> 16)
msg[off+4] = byte(i >> 8)
msg[off+5] = byte(i)
off += 6
return off, nil
}
func unpackUint64(msg []byte, off int) (i uint64, off1 int, err error) {
if off+8 > len(msg) {
return 0, len(msg), &Error{err: "overflow unpacking uint64"}
}
return binary.BigEndian.Uint64(msg[off:]), off + 8, nil
}
func packUint64(i uint64, msg []byte, off int) (off1 int, err error) {
if off+8 > len(msg) {
return len(msg), &Error{err: "overflow packing uint64"}
}
binary.BigEndian.PutUint64(msg[off:], i)
off += 8
return off, nil
}
func unpackString(msg []byte, off int) (string, int, error) {
if off+1 > len(msg) {
return "", off, &Error{err: "overflow unpacking txt"}
}
l := int(msg[off])
if off+l+1 > len(msg) {
return "", off, &Error{err: "overflow unpacking txt"}
}
s := make([]byte, 0, l)
for _, b := range msg[off+1 : off+1+l] {
switch b {
case '"', '\\':
s = append(s, '\\', b)
case '\t', '\r', '\n':
s = append(s, b)
default:
if b < 32 || b > 127 { // unprintable
var buf [3]byte
bufs := strconv.AppendInt(buf[:0], int64(b), 10)
s = append(s, '\\')
for i := 0; i < 3-len(bufs); i++ {
s = append(s, '0')
}
for _, r := range bufs {
s = append(s, r)
}
} else {
s = append(s, b)
}
}
}
off += 1 + l
return string(s), off, nil
}
func packString(s string, msg []byte, off int) (int, error) {
txtTmp := make([]byte, 256*4+1)
off, err := packTxtString(s, msg, off, txtTmp)
if err != nil {
return len(msg), err
}
return off, nil
}
func unpackStringBase32(msg []byte, off, end int) (string, int, error) {
if end > len(msg) {
return "", len(msg), &Error{err: "overflow unpacking base32"}
}
s := toBase32(msg[off:end])
return s, end, nil
}
func packStringBase32(s string, msg []byte, off int) (int, error) {
b32, err := fromBase32([]byte(s))
if err != nil {
return len(msg), err
}
if off+len(b32) > len(msg) {
return len(msg), &Error{err: "overflow packing base32"}
}
copy(msg[off:off+len(b32)], b32)
off += len(b32)
return off, nil
}
func unpackStringBase64(msg []byte, off, end int) (string, int, error) {
// Rest of the RR is base64 encoded value, so we don't need an explicit length
// to be set. Thus far all RR's that have base64 encoded fields have those as their
// last one. What we do need is the end of the RR!
if end > len(msg) {
return "", len(msg), &Error{err: "overflow unpacking base64"}
}
s := toBase64(msg[off:end])
return s, end, nil
}
func packStringBase64(s string, msg []byte, off int) (int, error) {
b64, err := fromBase64([]byte(s))
if err != nil {
return len(msg), err
}
if off+len(b64) > len(msg) {
return len(msg), &Error{err: "overflow packing base64"}
}
copy(msg[off:off+len(b64)], b64)
off += len(b64)
return off, nil
}
func unpackStringHex(msg []byte, off, end int) (string, int, error) {
// Rest of the RR is hex encoded value, so we don't need an explicit length
// to be set. NSEC and TSIG have hex fields with a length field.
// What we do need is the end of the RR!
if end > len(msg) {
return "", len(msg), &Error{err: "overflow unpacking hex"}
}
s := hex.EncodeToString(msg[off:end])
return s, end, nil
}
func packStringHex(s string, msg []byte, off int) (int, error) {
h, err := hex.DecodeString(s)
if err != nil {
return len(msg), err
}
if off+(len(h)) > len(msg) {
return len(msg), &Error{err: "overflow packing hex"}
}
copy(msg[off:off+len(h)], h)
off += len(h)
return off, nil
}
func unpackStringTxt(msg []byte, off int) ([]string, int, error) {
txt, off, err := unpackTxt(msg, off)
if err != nil {
return nil, len(msg), err
}
return txt, off, nil
}
func packStringTxt(s []string, msg []byte, off int) (int, error) {
txtTmp := make([]byte, 256*4+1) // If the whole string consists out of \DDD we need this many.
off, err := packTxt(s, msg, off, txtTmp)
if err != nil {
return len(msg), err
}
return off, nil
}
func unpackDataOpt(msg []byte, off int) ([]EDNS0, int, error) {
var edns []EDNS0
Option:
code := uint16(0)
if off+4 > len(msg) {
return nil, len(msg), &Error{err: "overflow unpacking opt"}
}
code = binary.BigEndian.Uint16(msg[off:])
off += 2
optlen := binary.BigEndian.Uint16(msg[off:])
off += 2
if off+int(optlen) > len(msg) {
return nil, len(msg), &Error{err: "overflow unpacking opt"}
}
switch code {
case EDNS0NSID:
e := new(EDNS0_NSID)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0SUBNET, EDNS0SUBNETDRAFT:
e := new(EDNS0_SUBNET)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
if code == EDNS0SUBNETDRAFT {
e.DraftOption = true
}
case EDNS0COOKIE:
e := new(EDNS0_COOKIE)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0UL:
e := new(EDNS0_UL)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0LLQ:
e := new(EDNS0_LLQ)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0DAU:
e := new(EDNS0_DAU)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0DHU:
e := new(EDNS0_DHU)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0N3U:
e := new(EDNS0_N3U)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
default:
e := new(EDNS0_LOCAL)
e.Code = code
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
}
if off < len(msg) {
goto Option
}
return edns, off, nil
}
func packDataOpt(options []EDNS0, msg []byte, off int) (int, error) {
for _, el := range options {
b, err := el.pack()
if err != nil || off+3 > len(msg) {
return len(msg), &Error{err: "overflow packing opt"}
}
binary.BigEndian.PutUint16(msg[off:], el.Option()) // Option code
binary.BigEndian.PutUint16(msg[off+2:], uint16(len(b))) // Length
off += 4
if off+len(b) > len(msg) {
copy(msg[off:], b)
off = len(msg)
continue
}
// Actual data
copy(msg[off:off+len(b)], b)
off += len(b)
}
return off, nil
}
func unpackStringOctet(msg []byte, off int) (string, int, error) {
s := string(msg[off:])
return s, len(msg), nil
}
func packStringOctet(s string, msg []byte, off int) (int, error) {
txtTmp := make([]byte, 256*4+1)
off, err := packOctetString(s, msg, off, txtTmp)
if err != nil {
return len(msg), err
}
return off, nil
}
func unpackDataNsec(msg []byte, off int) ([]uint16, int, error) {
var nsec []uint16
length, window, lastwindow := 0, 0, -1
for off < len(msg) {
if off+2 > len(msg) {
return nsec, len(msg), &Error{err: "overflow unpacking nsecx"}
}
window = int(msg[off])
length = int(msg[off+1])
off += 2
if window <= lastwindow {
// RFC 4034: Blocks are present in the NSEC RR RDATA in
// increasing numerical order.
return nsec, len(msg), &Error{err: "out of order NSEC block"}
}
if length == 0 {
// RFC 4034: Blocks with no types present MUST NOT be included.
return nsec, len(msg), &Error{err: "empty NSEC block"}
}
if length > 32 {
return nsec, len(msg), &Error{err: "NSEC block too long"}
}
if off+length > len(msg) {
return nsec, len(msg), &Error{err: "overflowing NSEC block"}
}
// Walk the bytes in the window and extract the type bits
for j := 0; j < length; j++ {
b := msg[off+j]
// Check the bits one by one, and set the type
if b&0x80 == 0x80 {
nsec = append(nsec, uint16(window*256+j*8+0))
}
if b&0x40 == 0x40 {
nsec = append(nsec, uint16(window*256+j*8+1))
}
if b&0x20 == 0x20 {
nsec = append(nsec, uint16(window*256+j*8+2))
}
if b&0x10 == 0x10 {
nsec = append(nsec, uint16(window*256+j*8+3))
}
if b&0x8 == 0x8 {
nsec = append(nsec, uint16(window*256+j*8+4))
}
if b&0x4 == 0x4 {
nsec = append(nsec, uint16(window*256+j*8+5))
}
if b&0x2 == 0x2 {
nsec = append(nsec, uint16(window*256+j*8+6))
}
if b&0x1 == 0x1 {
nsec = append(nsec, uint16(window*256+j*8+7))
}
}
off += length
lastwindow = window
}
return nsec, off, nil
}
func packDataNsec(bitmap []uint16, msg []byte, off int) (int, error) {
if len(bitmap) == 0 {
return off, nil
}
var lastwindow, lastlength uint16
for j := 0; j < len(bitmap); j++ {
t := bitmap[j]
window := t / 256
length := (t-window*256)/8 + 1
if window > lastwindow && lastlength != 0 { // New window, jump to the new offset
off += int(lastlength) + 2
lastlength = 0
}
if window < lastwindow || length < lastlength {
return len(msg), &Error{err: "nsec bits out of order"}
}
if off+2+int(length) > len(msg) {
return len(msg), &Error{err: "overflow packing nsec"}
}
// Setting the window #
msg[off] = byte(window)
// Setting the octets length
msg[off+1] = byte(length)
// Setting the bit value for the type in the right octet
msg[off+1+int(length)] |= byte(1 << (7 - (t % 8)))
lastwindow, lastlength = window, length
}
off += int(lastlength) + 2
return off, nil
}
func unpackDataDomainNames(msg []byte, off, end int) ([]string, int, error) {
var (
servers []string
s string
err error
)
if end > len(msg) {
return nil, len(msg), &Error{err: "overflow unpacking domain names"}
}
for off < end {
s, off, err = UnpackDomainName(msg, off)
if err != nil {
return servers, len(msg), err
}
servers = append(servers, s)
}
return servers, off, nil
}
func packDataDomainNames(names []string, msg []byte, off int, compression map[string]int, compress bool) (int, error) {
var err error
for j := 0; j < len(names); j++ {
off, err = PackDomainName(names[j], msg, off, compression, false && compress)
if err != nil {
return len(msg), err
}
}
return off, nil
}

119
vendor/github.com/miekg/dns/nsecx.go generated vendored
View file

@ -1,119 +0,0 @@
package dns
import (
"crypto/sha1"
"hash"
"io"
"strings"
)
type saltWireFmt struct {
Salt string `dns:"size-hex"`
}
// HashName hashes a string (label) according to RFC 5155. It returns the hashed string in uppercase.
func HashName(label string, ha uint8, iter uint16, salt string) string {
saltwire := new(saltWireFmt)
saltwire.Salt = salt
wire := make([]byte, DefaultMsgSize)
n, err := packSaltWire(saltwire, wire)
if err != nil {
return ""
}
wire = wire[:n]
name := make([]byte, 255)
off, err := PackDomainName(strings.ToLower(label), name, 0, nil, false)
if err != nil {
return ""
}
name = name[:off]
var s hash.Hash
switch ha {
case SHA1:
s = sha1.New()
default:
return ""
}
// k = 0
name = append(name, wire...)
io.WriteString(s, string(name))
nsec3 := s.Sum(nil)
// k > 0
for k := uint16(0); k < iter; k++ {
s.Reset()
nsec3 = append(nsec3, wire...)
io.WriteString(s, string(nsec3))
nsec3 = s.Sum(nil)
}
return toBase32(nsec3)
}
// Denialer is an interface that should be implemented by types that are used to denial
// answers in DNSSEC.
type Denialer interface {
// Cover will check if the (unhashed) name is being covered by this NSEC or NSEC3.
Cover(name string) bool
// Match will check if the ownername matches the (unhashed) name for this NSEC3 or NSEC3.
Match(name string) bool
}
// Cover implements the Denialer interface.
func (rr *NSEC) Cover(name string) bool {
return true
}
// Match implements the Denialer interface.
func (rr *NSEC) Match(name string) bool {
return true
}
// Cover implements the Denialer interface.
func (rr *NSEC3) Cover(name string) bool {
// FIXME(miek): check if the zones match
// FIXME(miek): check if we're not dealing with parent nsec3
hname := HashName(name, rr.Hash, rr.Iterations, rr.Salt)
labels := Split(rr.Hdr.Name)
if len(labels) < 2 {
return false
}
hash := strings.ToUpper(rr.Hdr.Name[labels[0] : labels[1]-1]) // -1 to remove the dot
if hash == rr.NextDomain {
return false // empty interval
}
if hash > rr.NextDomain { // last name, points to apex
// hname > hash
// hname > rr.NextDomain
// TODO(miek)
}
if hname <= hash {
return false
}
if hname >= rr.NextDomain {
return false
}
return true
}
// Match implements the Denialer interface.
func (rr *NSEC3) Match(name string) bool {
// FIXME(miek): Check if we are in the same zone
hname := HashName(name, rr.Hash, rr.Iterations, rr.Salt)
labels := Split(rr.Hdr.Name)
if len(labels) < 2 {
return false
}
hash := strings.ToUpper(rr.Hdr.Name[labels[0] : labels[1]-1]) // -1 to remove the .
if hash == hname {
return true
}
return false
}
func packSaltWire(sw *saltWireFmt, msg []byte) (int, error) {
off, err := packStringHex(sw.Salt, msg, 0)
if err != nil {
return off, err
}
return off, nil
}

View file

@ -1,149 +0,0 @@
package dns
import (
"fmt"
"strings"
)
// PrivateRdata is an interface used for implementing "Private Use" RR types, see
// RFC 6895. This allows one to experiment with new RR types, without requesting an
// official type code. Also see dns.PrivateHandle and dns.PrivateHandleRemove.
type PrivateRdata interface {
// String returns the text presentaton of the Rdata of the Private RR.
String() string
// Parse parses the Rdata of the private RR.
Parse([]string) error
// Pack is used when packing a private RR into a buffer.
Pack([]byte) (int, error)
// Unpack is used when unpacking a private RR from a buffer.
// TODO(miek): diff. signature than Pack, see edns0.go for instance.
Unpack([]byte) (int, error)
// Copy copies the Rdata.
Copy(PrivateRdata) error
// Len returns the length in octets of the Rdata.
Len() int
}
// PrivateRR represents an RR that uses a PrivateRdata user-defined type.
// It mocks normal RRs and implements dns.RR interface.
type PrivateRR struct {
Hdr RR_Header
Data PrivateRdata
}
func mkPrivateRR(rrtype uint16) *PrivateRR {
// Panics if RR is not an instance of PrivateRR.
rrfunc, ok := TypeToRR[rrtype]
if !ok {
panic(fmt.Sprintf("dns: invalid operation with Private RR type %d", rrtype))
}
anyrr := rrfunc()
switch rr := anyrr.(type) {
case *PrivateRR:
return rr
}
panic(fmt.Sprintf("dns: RR is not a PrivateRR, TypeToRR[%d] generator returned %T", rrtype, anyrr))
}
// Header return the RR header of r.
func (r *PrivateRR) Header() *RR_Header { return &r.Hdr }
func (r *PrivateRR) String() string { return r.Hdr.String() + r.Data.String() }
// Private len and copy parts to satisfy RR interface.
func (r *PrivateRR) len() int { return r.Hdr.len() + r.Data.Len() }
func (r *PrivateRR) copy() RR {
// make new RR like this:
rr := mkPrivateRR(r.Hdr.Rrtype)
newh := r.Hdr.copyHeader()
rr.Hdr = *newh
err := r.Data.Copy(rr.Data)
if err != nil {
panic("dns: got value that could not be used to copy Private rdata")
}
return rr
}
func (r *PrivateRR) pack(msg []byte, off int, compression map[string]int, compress bool) (int, error) {
off, err := r.Hdr.pack(msg, off, compression, compress)
if err != nil {
return off, err
}
headerEnd := off
n, err := r.Data.Pack(msg[off:])
if err != nil {
return len(msg), err
}
off += n
r.Header().Rdlength = uint16(off - headerEnd)
return off, nil
}
// PrivateHandle registers a private resource record type. It requires
// string and numeric representation of private RR type and generator function as argument.
func PrivateHandle(rtypestr string, rtype uint16, generator func() PrivateRdata) {
rtypestr = strings.ToUpper(rtypestr)
TypeToRR[rtype] = func() RR { return &PrivateRR{RR_Header{}, generator()} }
TypeToString[rtype] = rtypestr
StringToType[rtypestr] = rtype
typeToUnpack[rtype] = func(h RR_Header, msg []byte, off int) (RR, int, error) {
if noRdata(h) {
return &h, off, nil
}
var err error
rr := mkPrivateRR(h.Rrtype)
rr.Hdr = h
off1, err := rr.Data.Unpack(msg[off:])
off += off1
if err != nil {
return rr, off, err
}
return rr, off, err
}
setPrivateRR := func(h RR_Header, c chan lex, o, f string) (RR, *ParseError, string) {
rr := mkPrivateRR(h.Rrtype)
rr.Hdr = h
var l lex
text := make([]string, 0, 2) // could be 0..N elements, median is probably 1
Fetch:
for {
// TODO(miek): we could also be returning _QUOTE, this might or might not
// be an issue (basically parsing TXT becomes hard)
switch l = <-c; l.value {
case zNewline, zEOF:
break Fetch
case zString:
text = append(text, l.token)
}
}
err := rr.Data.Parse(text)
if err != nil {
return nil, &ParseError{f, err.Error(), l}, ""
}
return rr, nil, ""
}
typeToparserFunc[rtype] = parserFunc{setPrivateRR, true}
}
// PrivateHandleRemove removes defenitions required to support private RR type.
func PrivateHandleRemove(rtype uint16) {
rtypestr, ok := TypeToString[rtype]
if ok {
delete(TypeToRR, rtype)
delete(TypeToString, rtype)
delete(typeToparserFunc, rtype)
delete(StringToType, rtypestr)
delete(typeToUnpack, rtype)
}
return
}

View file

@ -1,49 +0,0 @@
package dns
import "encoding/binary"
// rawSetRdlength sets the rdlength in the header of
// the RR. The offset 'off' must be positioned at the
// start of the header of the RR, 'end' must be the
// end of the RR.
func rawSetRdlength(msg []byte, off, end int) bool {
l := len(msg)
Loop:
for {
if off+1 > l {
return false
}
c := int(msg[off])
off++
switch c & 0xC0 {
case 0x00:
if c == 0x00 {
// End of the domainname
break Loop
}
if off+c > l {
return false
}
off += c
case 0xC0:
// pointer, next byte included, ends domainname
off++
break Loop
}
}
// The domainname has been seen, we at the start of the fixed part in the header.
// Type is 2 bytes, class is 2 bytes, ttl 4 and then 2 bytes for the length.
off += 2 + 2 + 4
if off+2 > l {
return false
}
//off+1 is the end of the header, 'end' is the end of the rr
//so 'end' - 'off+2' is the length of the rdata
rdatalen := end - (off + 2)
if rdatalen > 0xFFFF {
return false
}
binary.BigEndian.PutUint16(msg[off:], uint16(rdatalen))
return true
}

View file

@ -1,38 +0,0 @@
package dns
// StringToType is the reverse of TypeToString, needed for string parsing.
var StringToType = reverseInt16(TypeToString)
// StringToClass is the reverse of ClassToString, needed for string parsing.
var StringToClass = reverseInt16(ClassToString)
// Map of opcodes strings.
var StringToOpcode = reverseInt(OpcodeToString)
// Map of rcodes strings.
var StringToRcode = reverseInt(RcodeToString)
// Reverse a map
func reverseInt8(m map[uint8]string) map[string]uint8 {
n := make(map[string]uint8, len(m))
for u, s := range m {
n[s] = u
}
return n
}
func reverseInt16(m map[uint16]string) map[string]uint16 {
n := make(map[string]uint16, len(m))
for u, s := range m {
n[s] = u
}
return n
}
func reverseInt(m map[int]string) map[string]int {
n := make(map[string]int, len(m))
for u, s := range m {
n[s] = u
}
return n
}

View file

@ -1,84 +0,0 @@
package dns
// Dedup removes identical RRs from rrs. It preserves the original ordering.
// The lowest TTL of any duplicates is used in the remaining one. Dedup modifies
// rrs.
// m is used to store the RRs temporay. If it is nil a new map will be allocated.
func Dedup(rrs []RR, m map[string]RR) []RR {
if m == nil {
m = make(map[string]RR)
}
// Save the keys, so we don't have to call normalizedString twice.
keys := make([]*string, 0, len(rrs))
for _, r := range rrs {
key := normalizedString(r)
keys = append(keys, &key)
if _, ok := m[key]; ok {
// Shortest TTL wins.
if m[key].Header().Ttl > r.Header().Ttl {
m[key].Header().Ttl = r.Header().Ttl
}
continue
}
m[key] = r
}
// If the length of the result map equals the amount of RRs we got,
// it means they were all different. We can then just return the original rrset.
if len(m) == len(rrs) {
return rrs
}
j := 0
for i, r := range rrs {
// If keys[i] lives in the map, we should copy and remove it.
if _, ok := m[*keys[i]]; ok {
delete(m, *keys[i])
rrs[j] = r
j++
}
if len(m) == 0 {
break
}
}
return rrs[:j]
}
// normalizedString returns a normalized string from r. The TTL
// is removed and the domain name is lowercased. We go from this:
// DomainName<TAB>TTL<TAB>CLASS<TAB>TYPE<TAB>RDATA to:
// lowercasename<TAB>CLASS<TAB>TYPE...
func normalizedString(r RR) string {
// A string Go DNS makes has: domainname<TAB>TTL<TAB>...
b := []byte(r.String())
// find the first non-escaped tab, then another, so we capture where the TTL lives.
esc := false
ttlStart, ttlEnd := 0, 0
for i := 0; i < len(b) && ttlEnd == 0; i++ {
switch {
case b[i] == '\\':
esc = !esc
case b[i] == '\t' && !esc:
if ttlStart == 0 {
ttlStart = i
continue
}
if ttlEnd == 0 {
ttlEnd = i
}
case b[i] >= 'A' && b[i] <= 'Z' && !esc:
b[i] += 32
default:
esc = false
}
}
// remove TTL.
copy(b[ttlStart:], b[ttlEnd:])
cut := ttlEnd - ttlStart
return string(b[:len(b)-cut])
}

981
vendor/github.com/miekg/dns/scan.go generated vendored
View file

@ -1,981 +0,0 @@
package dns
import (
"io"
"log"
"os"
"strconv"
"strings"
)
type debugging bool
const debug debugging = false
func (d debugging) Printf(format string, args ...interface{}) {
if d {
log.Printf(format, args...)
}
}
const maxTok = 2048 // Largest token we can return.
const maxUint16 = 1<<16 - 1
// Tokinize a RFC 1035 zone file. The tokenizer will normalize it:
// * Add ownernames if they are left blank;
// * Suppress sequences of spaces;
// * Make each RR fit on one line (_NEWLINE is send as last)
// * Handle comments: ;
// * Handle braces - anywhere.
const (
// Zonefile
zEOF = iota
zString
zBlank
zQuote
zNewline
zRrtpe
zOwner
zClass
zDirOrigin // $ORIGIN
zDirTtl // $TTL
zDirInclude // $INCLUDE
zDirGenerate // $GENERATE
// Privatekey file
zValue
zKey
zExpectOwnerDir // Ownername
zExpectOwnerBl // Whitespace after the ownername
zExpectAny // Expect rrtype, ttl or class
zExpectAnyNoClass // Expect rrtype or ttl
zExpectAnyNoClassBl // The whitespace after _EXPECT_ANY_NOCLASS
zExpectAnyNoTtl // Expect rrtype or class
zExpectAnyNoTtlBl // Whitespace after _EXPECT_ANY_NOTTL
zExpectRrtype // Expect rrtype
zExpectRrtypeBl // Whitespace BEFORE rrtype
zExpectRdata // The first element of the rdata
zExpectDirTtlBl // Space after directive $TTL
zExpectDirTtl // Directive $TTL
zExpectDirOriginBl // Space after directive $ORIGIN
zExpectDirOrigin // Directive $ORIGIN
zExpectDirIncludeBl // Space after directive $INCLUDE
zExpectDirInclude // Directive $INCLUDE
zExpectDirGenerate // Directive $GENERATE
zExpectDirGenerateBl // Space after directive $GENERATE
)
// ParseError is a parsing error. It contains the parse error and the location in the io.Reader
// where the error occurred.
type ParseError struct {
file string
err string
lex lex
}
func (e *ParseError) Error() (s string) {
if e.file != "" {
s = e.file + ": "
}
s += "dns: " + e.err + ": " + strconv.QuoteToASCII(e.lex.token) + " at line: " +
strconv.Itoa(e.lex.line) + ":" + strconv.Itoa(e.lex.column)
return
}
type lex struct {
token string // text of the token
tokenUpper string // uppercase text of the token
length int // length of the token
err bool // when true, token text has lexer error
value uint8 // value: zString, _BLANK, etc.
line int // line in the file
column int // column in the file
torc uint16 // type or class as parsed in the lexer, we only need to look this up in the grammar
comment string // any comment text seen
}
// Token holds the token that are returned when a zone file is parsed.
type Token struct {
// The scanned resource record when error is not nil.
RR
// When an error occurred, this has the error specifics.
Error *ParseError
// A potential comment positioned after the RR and on the same line.
Comment string
}
// NewRR reads the RR contained in the string s. Only the first RR is
// returned. If s contains no RR, return nil with no error. The class
// defaults to IN and TTL defaults to 3600. The full zone file syntax
// like $TTL, $ORIGIN, etc. is supported. All fields of the returned
// RR are set, except RR.Header().Rdlength which is set to 0.
func NewRR(s string) (RR, error) {
if len(s) > 0 && s[len(s)-1] != '\n' { // We need a closing newline
return ReadRR(strings.NewReader(s+"\n"), "")
}
return ReadRR(strings.NewReader(s), "")
}
// ReadRR reads the RR contained in q.
// See NewRR for more documentation.
func ReadRR(q io.Reader, filename string) (RR, error) {
r := <-parseZoneHelper(q, ".", filename, 1)
if r == nil {
return nil, nil
}
if r.Error != nil {
return nil, r.Error
}
return r.RR, nil
}
// ParseZone reads a RFC 1035 style zonefile from r. It returns *Tokens on the
// returned channel, which consist out the parsed RR, a potential comment or an error.
// If there is an error the RR is nil. The string file is only used
// in error reporting. The string origin is used as the initial origin, as
// if the file would start with: $ORIGIN origin .
// The directives $INCLUDE, $ORIGIN, $TTL and $GENERATE are supported.
// The channel t is closed by ParseZone when the end of r is reached.
//
// Basic usage pattern when reading from a string (z) containing the
// zone data:
//
// for x := range dns.ParseZone(strings.NewReader(z), "", "") {
// if x.Error != nil {
// // log.Println(x.Error)
// } else {
// // Do something with x.RR
// }
// }
//
// Comments specified after an RR (and on the same line!) are returned too:
//
// foo. IN A 10.0.0.1 ; this is a comment
//
// The text "; this is comment" is returned in Token.Comment. Comments inside the
// RR are discarded. Comments on a line by themselves are discarded too.
func ParseZone(r io.Reader, origin, file string) chan *Token {
return parseZoneHelper(r, origin, file, 10000)
}
func parseZoneHelper(r io.Reader, origin, file string, chansize int) chan *Token {
t := make(chan *Token, chansize)
go parseZone(r, origin, file, t, 0)
return t
}
func parseZone(r io.Reader, origin, f string, t chan *Token, include int) {
defer func() {
if include == 0 {
close(t)
}
}()
s := scanInit(r)
c := make(chan lex)
// Start the lexer
go zlexer(s, c)
// 6 possible beginnings of a line, _ is a space
// 0. zRRTYPE -> all omitted until the rrtype
// 1. zOwner _ zRrtype -> class/ttl omitted
// 2. zOwner _ zString _ zRrtype -> class omitted
// 3. zOwner _ zString _ zClass _ zRrtype -> ttl/class
// 4. zOwner _ zClass _ zRrtype -> ttl omitted
// 5. zOwner _ zClass _ zString _ zRrtype -> class/ttl (reversed)
// After detecting these, we know the zRrtype so we can jump to functions
// handling the rdata for each of these types.
if origin == "" {
origin = "."
}
origin = Fqdn(origin)
if _, ok := IsDomainName(origin); !ok {
t <- &Token{Error: &ParseError{f, "bad initial origin name", lex{}}}
return
}
st := zExpectOwnerDir // initial state
var h RR_Header
var defttl uint32 = defaultTtl
var prevName string
for l := range c {
// Lexer spotted an error already
if l.err == true {
t <- &Token{Error: &ParseError{f, l.token, l}}
return
}
switch st {
case zExpectOwnerDir:
// We can also expect a directive, like $TTL or $ORIGIN
h.Ttl = defttl
h.Class = ClassINET
switch l.value {
case zNewline:
st = zExpectOwnerDir
case zOwner:
h.Name = l.token
if l.token[0] == '@' {
h.Name = origin
prevName = h.Name
st = zExpectOwnerBl
break
}
if h.Name[l.length-1] != '.' {
h.Name = appendOrigin(h.Name, origin)
}
_, ok := IsDomainName(l.token)
if !ok {
t <- &Token{Error: &ParseError{f, "bad owner name", l}}
return
}
prevName = h.Name
st = zExpectOwnerBl
case zDirTtl:
st = zExpectDirTtlBl
case zDirOrigin:
st = zExpectDirOriginBl
case zDirInclude:
st = zExpectDirIncludeBl
case zDirGenerate:
st = zExpectDirGenerateBl
case zRrtpe:
h.Name = prevName
h.Rrtype = l.torc
st = zExpectRdata
case zClass:
h.Name = prevName
h.Class = l.torc
st = zExpectAnyNoClassBl
case zBlank:
// Discard, can happen when there is nothing on the
// line except the RR type
case zString:
ttl, ok := stringToTtl(l.token)
if !ok {
t <- &Token{Error: &ParseError{f, "not a TTL", l}}
return
}
h.Ttl = ttl
// Don't about the defttl, we should take the $TTL value
// defttl = ttl
st = zExpectAnyNoTtlBl
default:
t <- &Token{Error: &ParseError{f, "syntax error at beginning", l}}
return
}
case zExpectDirIncludeBl:
if l.value != zBlank {
t <- &Token{Error: &ParseError{f, "no blank after $INCLUDE-directive", l}}
return
}
st = zExpectDirInclude
case zExpectDirInclude:
if l.value != zString {
t <- &Token{Error: &ParseError{f, "expecting $INCLUDE value, not this...", l}}
return
}
neworigin := origin // There may be optionally a new origin set after the filename, if not use current one
l := <-c
switch l.value {
case zBlank:
l := <-c
if l.value == zString {
if _, ok := IsDomainName(l.token); !ok || l.length == 0 || l.err {
t <- &Token{Error: &ParseError{f, "bad origin name", l}}
return
}
// a new origin is specified.
if l.token[l.length-1] != '.' {
if origin != "." { // Prevent .. endings
neworigin = l.token + "." + origin
} else {
neworigin = l.token + origin
}
} else {
neworigin = l.token
}
}
case zNewline, zEOF:
// Ok
default:
t <- &Token{Error: &ParseError{f, "garbage after $INCLUDE", l}}
return
}
// Start with the new file
r1, e1 := os.Open(l.token)
if e1 != nil {
t <- &Token{Error: &ParseError{f, "failed to open `" + l.token + "'", l}}
return
}
if include+1 > 7 {
t <- &Token{Error: &ParseError{f, "too deeply nested $INCLUDE", l}}
return
}
parseZone(r1, l.token, neworigin, t, include+1)
st = zExpectOwnerDir
case zExpectDirTtlBl:
if l.value != zBlank {
t <- &Token{Error: &ParseError{f, "no blank after $TTL-directive", l}}
return
}
st = zExpectDirTtl
case zExpectDirTtl:
if l.value != zString {
t <- &Token{Error: &ParseError{f, "expecting $TTL value, not this...", l}}
return
}
if e, _ := slurpRemainder(c, f); e != nil {
t <- &Token{Error: e}
return
}
ttl, ok := stringToTtl(l.token)
if !ok {
t <- &Token{Error: &ParseError{f, "expecting $TTL value, not this...", l}}
return
}
defttl = ttl
st = zExpectOwnerDir
case zExpectDirOriginBl:
if l.value != zBlank {
t <- &Token{Error: &ParseError{f, "no blank after $ORIGIN-directive", l}}
return
}
st = zExpectDirOrigin
case zExpectDirOrigin:
if l.value != zString {
t <- &Token{Error: &ParseError{f, "expecting $ORIGIN value, not this...", l}}
return
}
if e, _ := slurpRemainder(c, f); e != nil {
t <- &Token{Error: e}
}
if _, ok := IsDomainName(l.token); !ok {
t <- &Token{Error: &ParseError{f, "bad origin name", l}}
return
}
if l.token[l.length-1] != '.' {
if origin != "." { // Prevent .. endings
origin = l.token + "." + origin
} else {
origin = l.token + origin
}
} else {
origin = l.token
}
st = zExpectOwnerDir
case zExpectDirGenerateBl:
if l.value != zBlank {
t <- &Token{Error: &ParseError{f, "no blank after $GENERATE-directive", l}}
return
}
st = zExpectDirGenerate
case zExpectDirGenerate:
if l.value != zString {
t <- &Token{Error: &ParseError{f, "expecting $GENERATE value, not this...", l}}
return
}
if errMsg := generate(l, c, t, origin); errMsg != "" {
t <- &Token{Error: &ParseError{f, errMsg, l}}
return
}
st = zExpectOwnerDir
case zExpectOwnerBl:
if l.value != zBlank {
t <- &Token{Error: &ParseError{f, "no blank after owner", l}}
return
}
st = zExpectAny
case zExpectAny:
switch l.value {
case zRrtpe:
h.Rrtype = l.torc
st = zExpectRdata
case zClass:
h.Class = l.torc
st = zExpectAnyNoClassBl
case zString:
ttl, ok := stringToTtl(l.token)
if !ok {
t <- &Token{Error: &ParseError{f, "not a TTL", l}}
return
}
h.Ttl = ttl
// defttl = ttl // don't set the defttl here
st = zExpectAnyNoTtlBl
default:
t <- &Token{Error: &ParseError{f, "expecting RR type, TTL or class, not this...", l}}
return
}
case zExpectAnyNoClassBl:
if l.value != zBlank {
t <- &Token{Error: &ParseError{f, "no blank before class", l}}
return
}
st = zExpectAnyNoClass
case zExpectAnyNoTtlBl:
if l.value != zBlank {
t <- &Token{Error: &ParseError{f, "no blank before TTL", l}}
return
}
st = zExpectAnyNoTtl
case zExpectAnyNoTtl:
switch l.value {
case zClass:
h.Class = l.torc
st = zExpectRrtypeBl
case zRrtpe:
h.Rrtype = l.torc
st = zExpectRdata
default:
t <- &Token{Error: &ParseError{f, "expecting RR type or class, not this...", l}}
return
}
case zExpectAnyNoClass:
switch l.value {
case zString:
ttl, ok := stringToTtl(l.token)
if !ok {
t <- &Token{Error: &ParseError{f, "not a TTL", l}}
return
}
h.Ttl = ttl
// defttl = ttl // don't set the def ttl anymore
st = zExpectRrtypeBl
case zRrtpe:
h.Rrtype = l.torc
st = zExpectRdata
default:
t <- &Token{Error: &ParseError{f, "expecting RR type or TTL, not this...", l}}
return
}
case zExpectRrtypeBl:
if l.value != zBlank {
t <- &Token{Error: &ParseError{f, "no blank before RR type", l}}
return
}
st = zExpectRrtype
case zExpectRrtype:
if l.value != zRrtpe {
t <- &Token{Error: &ParseError{f, "unknown RR type", l}}
return
}
h.Rrtype = l.torc
st = zExpectRdata
case zExpectRdata:
r, e, c1 := setRR(h, c, origin, f)
if e != nil {
// If e.lex is nil than we have encounter a unknown RR type
// in that case we substitute our current lex token
if e.lex.token == "" && e.lex.value == 0 {
e.lex = l // Uh, dirty
}
t <- &Token{Error: e}
return
}
t <- &Token{RR: r, Comment: c1}
st = zExpectOwnerDir
}
}
// If we get here, we and the h.Rrtype is still zero, we haven't parsed anything, this
// is not an error, because an empty zone file is still a zone file.
}
// zlexer scans the sourcefile and returns tokens on the channel c.
func zlexer(s *scan, c chan lex) {
var l lex
str := make([]byte, maxTok) // Should be enough for any token
stri := 0 // Offset in str (0 means empty)
com := make([]byte, maxTok) // Hold comment text
comi := 0
quote := false
escape := false
space := false
commt := false
rrtype := false
owner := true
brace := 0
x, err := s.tokenText()
defer close(c)
for err == nil {
l.column = s.position.Column
l.line = s.position.Line
if stri >= maxTok {
l.token = "token length insufficient for parsing"
l.err = true
debug.Printf("[%+v]", l.token)
c <- l
return
}
if comi >= maxTok {
l.token = "comment length insufficient for parsing"
l.err = true
debug.Printf("[%+v]", l.token)
c <- l
return
}
switch x {
case ' ', '\t':
if escape {
escape = false
str[stri] = x
stri++
break
}
if quote {
// Inside quotes this is legal
str[stri] = x
stri++
break
}
if commt {
com[comi] = x
comi++
break
}
if stri == 0 {
// Space directly in the beginning, handled in the grammar
} else if owner {
// If we have a string and its the first, make it an owner
l.value = zOwner
l.token = string(str[:stri])
l.tokenUpper = strings.ToUpper(l.token)
l.length = stri
// escape $... start with a \ not a $, so this will work
switch l.tokenUpper {
case "$TTL":
l.value = zDirTtl
case "$ORIGIN":
l.value = zDirOrigin
case "$INCLUDE":
l.value = zDirInclude
case "$GENERATE":
l.value = zDirGenerate
}
debug.Printf("[7 %+v]", l.token)
c <- l
} else {
l.value = zString
l.token = string(str[:stri])
l.tokenUpper = strings.ToUpper(l.token)
l.length = stri
if !rrtype {
if t, ok := StringToType[l.tokenUpper]; ok {
l.value = zRrtpe
l.torc = t
rrtype = true
} else {
if strings.HasPrefix(l.tokenUpper, "TYPE") {
t, ok := typeToInt(l.token)
if !ok {
l.token = "unknown RR type"
l.err = true
c <- l
return
}
l.value = zRrtpe
l.torc = t
}
}
if t, ok := StringToClass[l.tokenUpper]; ok {
l.value = zClass
l.torc = t
} else {
if strings.HasPrefix(l.tokenUpper, "CLASS") {
t, ok := classToInt(l.token)
if !ok {
l.token = "unknown class"
l.err = true
c <- l
return
}
l.value = zClass
l.torc = t
}
}
}
debug.Printf("[6 %+v]", l.token)
c <- l
}
stri = 0
// I reverse space stuff here
if !space && !commt {
l.value = zBlank
l.token = " "
l.length = 1
debug.Printf("[5 %+v]", l.token)
c <- l
}
owner = false
space = true
case ';':
if escape {
escape = false
str[stri] = x
stri++
break
}
if quote {
// Inside quotes this is legal
str[stri] = x
stri++
break
}
if stri > 0 {
l.value = zString
l.token = string(str[:stri])
l.tokenUpper = strings.ToUpper(l.token)
l.length = stri
debug.Printf("[4 %+v]", l.token)
c <- l
stri = 0
}
commt = true
com[comi] = ';'
comi++
case '\r':
escape = false
if quote {
str[stri] = x
stri++
break
}
// discard if outside of quotes
case '\n':
escape = false
// Escaped newline
if quote {
str[stri] = x
stri++
break
}
// inside quotes this is legal
if commt {
// Reset a comment
commt = false
rrtype = false
stri = 0
// If not in a brace this ends the comment AND the RR
if brace == 0 {
owner = true
owner = true
l.value = zNewline
l.token = "\n"
l.tokenUpper = l.token
l.length = 1
l.comment = string(com[:comi])
debug.Printf("[3 %+v %+v]", l.token, l.comment)
c <- l
l.comment = ""
comi = 0
break
}
com[comi] = ' ' // convert newline to space
comi++
break
}
if brace == 0 {
// If there is previous text, we should output it here
if stri != 0 {
l.value = zString
l.token = string(str[:stri])
l.tokenUpper = strings.ToUpper(l.token)
l.length = stri
if !rrtype {
if t, ok := StringToType[l.tokenUpper]; ok {
l.value = zRrtpe
l.torc = t
rrtype = true
}
}
debug.Printf("[2 %+v]", l.token)
c <- l
}
l.value = zNewline
l.token = "\n"
l.tokenUpper = l.token
l.length = 1
debug.Printf("[1 %+v]", l.token)
c <- l
stri = 0
commt = false
rrtype = false
owner = true
comi = 0
}
case '\\':
// comments do not get escaped chars, everything is copied
if commt {
com[comi] = x
comi++
break
}
// something already escaped must be in string
if escape {
str[stri] = x
stri++
escape = false
break
}
// something escaped outside of string gets added to string
str[stri] = x
stri++
escape = true
case '"':
if commt {
com[comi] = x
comi++
break
}
if escape {
str[stri] = x
stri++
escape = false
break
}
space = false
// send previous gathered text and the quote
if stri != 0 {
l.value = zString
l.token = string(str[:stri])
l.tokenUpper = strings.ToUpper(l.token)
l.length = stri
debug.Printf("[%+v]", l.token)
c <- l
stri = 0
}
// send quote itself as separate token
l.value = zQuote
l.token = "\""
l.tokenUpper = l.token
l.length = 1
c <- l
quote = !quote
case '(', ')':
if commt {
com[comi] = x
comi++
break
}
if escape {
str[stri] = x
stri++
escape = false
break
}
if quote {
str[stri] = x
stri++
break
}
switch x {
case ')':
brace--
if brace < 0 {
l.token = "extra closing brace"
l.tokenUpper = l.token
l.err = true
debug.Printf("[%+v]", l.token)
c <- l
return
}
case '(':
brace++
}
default:
escape = false
if commt {
com[comi] = x
comi++
break
}
str[stri] = x
stri++
space = false
}
x, err = s.tokenText()
}
if stri > 0 {
// Send remainder
l.token = string(str[:stri])
l.tokenUpper = strings.ToUpper(l.token)
l.length = stri
l.value = zString
debug.Printf("[%+v]", l.token)
c <- l
}
}
// Extract the class number from CLASSxx
func classToInt(token string) (uint16, bool) {
offset := 5
if len(token) < offset+1 {
return 0, false
}
class, ok := strconv.Atoi(token[offset:])
if ok != nil || class > maxUint16 {
return 0, false
}
return uint16(class), true
}
// Extract the rr number from TYPExxx
func typeToInt(token string) (uint16, bool) {
offset := 4
if len(token) < offset+1 {
return 0, false
}
typ, ok := strconv.Atoi(token[offset:])
if ok != nil || typ > maxUint16 {
return 0, false
}
return uint16(typ), true
}
// Parse things like 2w, 2m, etc, Return the time in seconds.
func stringToTtl(token string) (uint32, bool) {
s := uint32(0)
i := uint32(0)
for _, c := range token {
switch c {
case 's', 'S':
s += i
i = 0
case 'm', 'M':
s += i * 60
i = 0
case 'h', 'H':
s += i * 60 * 60
i = 0
case 'd', 'D':
s += i * 60 * 60 * 24
i = 0
case 'w', 'W':
s += i * 60 * 60 * 24 * 7
i = 0
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
i *= 10
i += uint32(c) - '0'
default:
return 0, false
}
}
return s + i, true
}
// Parse LOC records' <digits>[.<digits>][mM] into a
// mantissa exponent format. Token should contain the entire
// string (i.e. no spaces allowed)
func stringToCm(token string) (e, m uint8, ok bool) {
if token[len(token)-1] == 'M' || token[len(token)-1] == 'm' {
token = token[0 : len(token)-1]
}
s := strings.SplitN(token, ".", 2)
var meters, cmeters, val int
var err error
switch len(s) {
case 2:
if cmeters, err = strconv.Atoi(s[1]); err != nil {
return
}
fallthrough
case 1:
if meters, err = strconv.Atoi(s[0]); err != nil {
return
}
case 0:
// huh?
return 0, 0, false
}
ok = true
if meters > 0 {
e = 2
val = meters
} else {
e = 0
val = cmeters
}
for val > 10 {
e++
val /= 10
}
if e > 9 {
ok = false
}
m = uint8(val)
return
}
func appendOrigin(name, origin string) string {
if origin == "." {
return name + origin
}
return name + "." + origin
}
// LOC record helper function
func locCheckNorth(token string, latitude uint32) (uint32, bool) {
switch token {
case "n", "N":
return LOC_EQUATOR + latitude, true
case "s", "S":
return LOC_EQUATOR - latitude, true
}
return latitude, false
}
// LOC record helper function
func locCheckEast(token string, longitude uint32) (uint32, bool) {
switch token {
case "e", "E":
return LOC_EQUATOR + longitude, true
case "w", "W":
return LOC_EQUATOR - longitude, true
}
return longitude, false
}
// "Eat" the rest of the "line". Return potential comments
func slurpRemainder(c chan lex, f string) (*ParseError, string) {
l := <-c
com := ""
switch l.value {
case zBlank:
l = <-c
com = l.comment
if l.value != zNewline && l.value != zEOF {
return &ParseError{f, "garbage after rdata", l}, ""
}
case zNewline:
com = l.comment
case zEOF:
default:
return &ParseError{f, "garbage after rdata", l}, ""
}
return nil, com
}
// Parse a 64 bit-like ipv6 address: "0014:4fff:ff20:ee64"
// Used for NID and L64 record.
func stringToNodeID(l lex) (uint64, *ParseError) {
if len(l.token) < 19 {
return 0, &ParseError{l.token, "bad NID/L64 NodeID/Locator64", l}
}
// There must be three colons at fixes postitions, if not its a parse error
if l.token[4] != ':' && l.token[9] != ':' && l.token[14] != ':' {
return 0, &ParseError{l.token, "bad NID/L64 NodeID/Locator64", l}
}
s := l.token[0:4] + l.token[5:9] + l.token[10:14] + l.token[15:19]
u, err := strconv.ParseUint(s, 16, 64)
if err != nil {
return 0, &ParseError{l.token, "bad NID/L64 NodeID/Locator64", l}
}
return u, nil
}

2179
vendor/github.com/miekg/dns/scan_rr.go generated vendored

File diff suppressed because it is too large Load diff

View file

@ -1,43 +0,0 @@
package dns
// Implement a simple scanner, return a byte stream from an io reader.
import (
"bufio"
"io"
"text/scanner"
)
type scan struct {
src *bufio.Reader
position scanner.Position
eof bool // Have we just seen a eof
}
func scanInit(r io.Reader) *scan {
s := new(scan)
s.src = bufio.NewReader(r)
s.position.Line = 1
return s
}
// tokenText returns the next byte from the input
func (s *scan) tokenText() (byte, error) {
c, err := s.src.ReadByte()
if err != nil {
return c, err
}
// delay the newline handling until the next token is delivered,
// fixes off-by-one errors when reporting a parse error.
if s.eof == true {
s.position.Line++
s.position.Column = 0
s.eof = false
}
if c == '\n' {
s.eof = true
return c, nil
}
s.position.Column++
return c, nil
}

734
vendor/github.com/miekg/dns/server.go generated vendored
View file

@ -1,734 +0,0 @@
// DNS server implementation.
package dns
import (
"bytes"
"crypto/tls"
"encoding/binary"
"io"
"net"
"sync"
"time"
)
// Maximum number of TCP queries before we close the socket.
const maxTCPQueries = 128
// Handler is implemented by any value that implements ServeDNS.
type Handler interface {
ServeDNS(w ResponseWriter, r *Msg)
}
// A ResponseWriter interface is used by an DNS handler to
// construct an DNS response.
type ResponseWriter interface {
// LocalAddr returns the net.Addr of the server
LocalAddr() net.Addr
// RemoteAddr returns the net.Addr of the client that sent the current request.
RemoteAddr() net.Addr
// WriteMsg writes a reply back to the client.
WriteMsg(*Msg) error
// Write writes a raw buffer back to the client.
Write([]byte) (int, error)
// Close closes the connection.
Close() error
// TsigStatus returns the status of the Tsig.
TsigStatus() error
// TsigTimersOnly sets the tsig timers only boolean.
TsigTimersOnly(bool)
// Hijack lets the caller take over the connection.
// After a call to Hijack(), the DNS package will not do anything with the connection.
Hijack()
}
type response struct {
hijacked bool // connection has been hijacked by handler
tsigStatus error
tsigTimersOnly bool
tsigRequestMAC string
tsigSecret map[string]string // the tsig secrets
udp *net.UDPConn // i/o connection if UDP was used
tcp net.Conn // i/o connection if TCP was used
udpSession *SessionUDP // oob data to get egress interface right
remoteAddr net.Addr // address of the client
writer Writer // writer to output the raw DNS bits
}
// ServeMux is an DNS request multiplexer. It matches the
// zone name of each incoming request against a list of
// registered patterns add calls the handler for the pattern
// that most closely matches the zone name. ServeMux is DNSSEC aware, meaning
// that queries for the DS record are redirected to the parent zone (if that
// is also registered), otherwise the child gets the query.
// ServeMux is also safe for concurrent access from multiple goroutines.
type ServeMux struct {
z map[string]Handler
m *sync.RWMutex
}
// NewServeMux allocates and returns a new ServeMux.
func NewServeMux() *ServeMux { return &ServeMux{z: make(map[string]Handler), m: new(sync.RWMutex)} }
// DefaultServeMux is the default ServeMux used by Serve.
var DefaultServeMux = NewServeMux()
// The HandlerFunc type is an adapter to allow the use of
// ordinary functions as DNS handlers. If f is a function
// with the appropriate signature, HandlerFunc(f) is a
// Handler object that calls f.
type HandlerFunc func(ResponseWriter, *Msg)
// ServeDNS calls f(w, r).
func (f HandlerFunc) ServeDNS(w ResponseWriter, r *Msg) {
f(w, r)
}
// HandleFailed returns a HandlerFunc that returns SERVFAIL for every request it gets.
func HandleFailed(w ResponseWriter, r *Msg) {
m := new(Msg)
m.SetRcode(r, RcodeServerFailure)
// does not matter if this write fails
w.WriteMsg(m)
}
func failedHandler() Handler { return HandlerFunc(HandleFailed) }
// ListenAndServe Starts a server on address and network specified Invoke handler
// for incoming queries.
func ListenAndServe(addr string, network string, handler Handler) error {
server := &Server{Addr: addr, Net: network, Handler: handler}
return server.ListenAndServe()
}
// ListenAndServeTLS acts like http.ListenAndServeTLS, more information in
// http://golang.org/pkg/net/http/#ListenAndServeTLS
func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
cert, err := tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return err
}
config := tls.Config{
Certificates: []tls.Certificate{cert},
}
server := &Server{
Addr: addr,
Net: "tcp-tls",
TLSConfig: &config,
Handler: handler,
}
return server.ListenAndServe()
}
// ActivateAndServe activates a server with a listener from systemd,
// l and p should not both be non-nil.
// If both l and p are not nil only p will be used.
// Invoke handler for incoming queries.
func ActivateAndServe(l net.Listener, p net.PacketConn, handler Handler) error {
server := &Server{Listener: l, PacketConn: p, Handler: handler}
return server.ActivateAndServe()
}
func (mux *ServeMux) match(q string, t uint16) Handler {
mux.m.RLock()
defer mux.m.RUnlock()
var handler Handler
b := make([]byte, len(q)) // worst case, one label of length q
off := 0
end := false
for {
l := len(q[off:])
for i := 0; i < l; i++ {
b[i] = q[off+i]
if b[i] >= 'A' && b[i] <= 'Z' {
b[i] |= ('a' - 'A')
}
}
if h, ok := mux.z[string(b[:l])]; ok { // causes garbage, might want to change the map key
if t != TypeDS {
return h
}
// Continue for DS to see if we have a parent too, if so delegeate to the parent
handler = h
}
off, end = NextLabel(q, off)
if end {
break
}
}
// Wildcard match, if we have found nothing try the root zone as a last resort.
if h, ok := mux.z["."]; ok {
return h
}
return handler
}
// Handle adds a handler to the ServeMux for pattern.
func (mux *ServeMux) Handle(pattern string, handler Handler) {
if pattern == "" {
panic("dns: invalid pattern " + pattern)
}
mux.m.Lock()
mux.z[Fqdn(pattern)] = handler
mux.m.Unlock()
}
// HandleFunc adds a handler function to the ServeMux for pattern.
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Msg)) {
mux.Handle(pattern, HandlerFunc(handler))
}
// HandleRemove deregistrars the handler specific for pattern from the ServeMux.
func (mux *ServeMux) HandleRemove(pattern string) {
if pattern == "" {
panic("dns: invalid pattern " + pattern)
}
mux.m.Lock()
delete(mux.z, Fqdn(pattern))
mux.m.Unlock()
}
// ServeDNS dispatches the request to the handler whose
// pattern most closely matches the request message. If DefaultServeMux
// is used the correct thing for DS queries is done: a possible parent
// is sought.
// If no handler is found a standard SERVFAIL message is returned
// If the request message does not have exactly one question in the
// question section a SERVFAIL is returned, unlesss Unsafe is true.
func (mux *ServeMux) ServeDNS(w ResponseWriter, request *Msg) {
var h Handler
if len(request.Question) < 1 { // allow more than one question
h = failedHandler()
} else {
if h = mux.match(request.Question[0].Name, request.Question[0].Qtype); h == nil {
h = failedHandler()
}
}
h.ServeDNS(w, request)
}
// Handle registers the handler with the given pattern
// in the DefaultServeMux. The documentation for
// ServeMux explains how patterns are matched.
func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
// HandleRemove deregisters the handle with the given pattern
// in the DefaultServeMux.
func HandleRemove(pattern string) { DefaultServeMux.HandleRemove(pattern) }
// HandleFunc registers the handler function with the given pattern
// in the DefaultServeMux.
func HandleFunc(pattern string, handler func(ResponseWriter, *Msg)) {
DefaultServeMux.HandleFunc(pattern, handler)
}
// Writer writes raw DNS messages; each call to Write should send an entire message.
type Writer interface {
io.Writer
}
// Reader reads raw DNS messages; each call to ReadTCP or ReadUDP should return an entire message.
type Reader interface {
// ReadTCP reads a raw message from a TCP connection. Implementations may alter
// connection properties, for example the read-deadline.
ReadTCP(conn net.Conn, timeout time.Duration) ([]byte, error)
// ReadUDP reads a raw message from a UDP connection. Implementations may alter
// connection properties, for example the read-deadline.
ReadUDP(conn *net.UDPConn, timeout time.Duration) ([]byte, *SessionUDP, error)
}
// defaultReader is an adapter for the Server struct that implements the Reader interface
// using the readTCP and readUDP func of the embedded Server.
type defaultReader struct {
*Server
}
func (dr *defaultReader) ReadTCP(conn net.Conn, timeout time.Duration) ([]byte, error) {
return dr.readTCP(conn, timeout)
}
func (dr *defaultReader) ReadUDP(conn *net.UDPConn, timeout time.Duration) ([]byte, *SessionUDP, error) {
return dr.readUDP(conn, timeout)
}
// DecorateReader is a decorator hook for extending or supplanting the functionality of a Reader.
// Implementations should never return a nil Reader.
type DecorateReader func(Reader) Reader
// DecorateWriter is a decorator hook for extending or supplanting the functionality of a Writer.
// Implementations should never return a nil Writer.
type DecorateWriter func(Writer) Writer
// A Server defines parameters for running an DNS server.
type Server struct {
// Address to listen on, ":dns" if empty.
Addr string
// if "tcp" or "tcp-tls" (DNS over TLS) it will invoke a TCP listener, otherwise an UDP one
Net string
// TCP Listener to use, this is to aid in systemd's socket activation.
Listener net.Listener
// TLS connection configuration
TLSConfig *tls.Config
// UDP "Listener" to use, this is to aid in systemd's socket activation.
PacketConn net.PacketConn
// Handler to invoke, dns.DefaultServeMux if nil.
Handler Handler
// Default buffer size to use to read incoming UDP messages. If not set
// it defaults to MinMsgSize (512 B).
UDPSize int
// The net.Conn.SetReadTimeout value for new connections, defaults to 2 * time.Second.
ReadTimeout time.Duration
// The net.Conn.SetWriteTimeout value for new connections, defaults to 2 * time.Second.
WriteTimeout time.Duration
// TCP idle timeout for multiple queries, if nil, defaults to 8 * time.Second (RFC 5966).
IdleTimeout func() time.Duration
// Secret(s) for Tsig map[<zonename>]<base64 secret>.
TsigSecret map[string]string
// Unsafe instructs the server to disregard any sanity checks and directly hand the message to
// the handler. It will specifically not check if the query has the QR bit not set.
Unsafe bool
// If NotifyStartedFunc is set it is called once the server has started listening.
NotifyStartedFunc func()
// DecorateReader is optional, allows customization of the process that reads raw DNS messages.
DecorateReader DecorateReader
// DecorateWriter is optional, allows customization of the process that writes raw DNS messages.
DecorateWriter DecorateWriter
// Graceful shutdown handling
inFlight sync.WaitGroup
lock sync.RWMutex
started bool
}
// ListenAndServe starts a nameserver on the configured address in *Server.
func (srv *Server) ListenAndServe() error {
srv.lock.Lock()
defer srv.lock.Unlock()
if srv.started {
return &Error{err: "server already started"}
}
addr := srv.Addr
if addr == "" {
addr = ":domain"
}
if srv.UDPSize == 0 {
srv.UDPSize = MinMsgSize
}
switch srv.Net {
case "tcp", "tcp4", "tcp6":
a, err := net.ResolveTCPAddr(srv.Net, addr)
if err != nil {
return err
}
l, err := net.ListenTCP(srv.Net, a)
if err != nil {
return err
}
srv.Listener = l
srv.started = true
srv.lock.Unlock()
err = srv.serveTCP(l)
srv.lock.Lock() // to satisfy the defer at the top
return err
case "tcp-tls", "tcp4-tls", "tcp6-tls":
network := "tcp"
if srv.Net == "tcp4-tls" {
network = "tcp4"
} else if srv.Net == "tcp6" {
network = "tcp6"
}
l, err := tls.Listen(network, addr, srv.TLSConfig)
if err != nil {
return err
}
srv.Listener = l
srv.started = true
srv.lock.Unlock()
err = srv.serveTCP(l)
srv.lock.Lock() // to satisfy the defer at the top
return err
case "udp", "udp4", "udp6":
a, err := net.ResolveUDPAddr(srv.Net, addr)
if err != nil {
return err
}
l, err := net.ListenUDP(srv.Net, a)
if err != nil {
return err
}
if e := setUDPSocketOptions(l); e != nil {
return e
}
srv.PacketConn = l
srv.started = true
srv.lock.Unlock()
err = srv.serveUDP(l)
srv.lock.Lock() // to satisfy the defer at the top
return err
}
return &Error{err: "bad network"}
}
// ActivateAndServe starts a nameserver with the PacketConn or Listener
// configured in *Server. Its main use is to start a server from systemd.
func (srv *Server) ActivateAndServe() error {
srv.lock.Lock()
defer srv.lock.Unlock()
if srv.started {
return &Error{err: "server already started"}
}
pConn := srv.PacketConn
l := srv.Listener
if pConn != nil {
if srv.UDPSize == 0 {
srv.UDPSize = MinMsgSize
}
// Check PacketConn interface's type is valid and value
// is not nil
if t, ok := pConn.(*net.UDPConn); ok && t != nil {
if e := setUDPSocketOptions(t); e != nil {
return e
}
srv.started = true
srv.lock.Unlock()
e := srv.serveUDP(t)
srv.lock.Lock() // to satisfy the defer at the top
return e
}
}
if l != nil {
srv.started = true
srv.lock.Unlock()
e := srv.serveTCP(l)
srv.lock.Lock() // to satisfy the defer at the top
return e
}
return &Error{err: "bad listeners"}
}
// Shutdown gracefully shuts down a server. After a call to Shutdown, ListenAndServe and
// ActivateAndServe will return. All in progress queries are completed before the server
// is taken down. If the Shutdown is taking longer than the reading timeout an error
// is returned.
func (srv *Server) Shutdown() error {
srv.lock.Lock()
if !srv.started {
srv.lock.Unlock()
return &Error{err: "server not started"}
}
srv.started = false
srv.lock.Unlock()
if srv.PacketConn != nil {
srv.PacketConn.Close()
}
if srv.Listener != nil {
srv.Listener.Close()
}
fin := make(chan bool)
go func() {
srv.inFlight.Wait()
fin <- true
}()
select {
case <-time.After(srv.getReadTimeout()):
return &Error{err: "server shutdown is pending"}
case <-fin:
return nil
}
}
// getReadTimeout is a helper func to use system timeout if server did not intend to change it.
func (srv *Server) getReadTimeout() time.Duration {
rtimeout := dnsTimeout
if srv.ReadTimeout != 0 {
rtimeout = srv.ReadTimeout
}
return rtimeout
}
// serveTCP starts a TCP listener for the server.
// Each request is handled in a separate goroutine.
func (srv *Server) serveTCP(l net.Listener) error {
defer l.Close()
if srv.NotifyStartedFunc != nil {
srv.NotifyStartedFunc()
}
reader := Reader(&defaultReader{srv})
if srv.DecorateReader != nil {
reader = srv.DecorateReader(reader)
}
handler := srv.Handler
if handler == nil {
handler = DefaultServeMux
}
rtimeout := srv.getReadTimeout()
// deadline is not used here
for {
rw, err := l.Accept()
if err != nil {
if neterr, ok := err.(net.Error); ok && neterr.Temporary() {
continue
}
return err
}
m, err := reader.ReadTCP(rw, rtimeout)
srv.lock.RLock()
if !srv.started {
srv.lock.RUnlock()
return nil
}
srv.lock.RUnlock()
if err != nil {
continue
}
srv.inFlight.Add(1)
go srv.serve(rw.RemoteAddr(), handler, m, nil, nil, rw)
}
}
// serveUDP starts a UDP listener for the server.
// Each request is handled in a separate goroutine.
func (srv *Server) serveUDP(l *net.UDPConn) error {
defer l.Close()
if srv.NotifyStartedFunc != nil {
srv.NotifyStartedFunc()
}
reader := Reader(&defaultReader{srv})
if srv.DecorateReader != nil {
reader = srv.DecorateReader(reader)
}
handler := srv.Handler
if handler == nil {
handler = DefaultServeMux
}
rtimeout := srv.getReadTimeout()
// deadline is not used here
for {
m, s, err := reader.ReadUDP(l, rtimeout)
srv.lock.RLock()
if !srv.started {
srv.lock.RUnlock()
return nil
}
srv.lock.RUnlock()
if err != nil {
continue
}
srv.inFlight.Add(1)
go srv.serve(s.RemoteAddr(), handler, m, l, s, nil)
}
}
// Serve a new connection.
func (srv *Server) serve(a net.Addr, h Handler, m []byte, u *net.UDPConn, s *SessionUDP, t net.Conn) {
defer srv.inFlight.Done()
w := &response{tsigSecret: srv.TsigSecret, udp: u, tcp: t, remoteAddr: a, udpSession: s}
if srv.DecorateWriter != nil {
w.writer = srv.DecorateWriter(w)
} else {
w.writer = w
}
q := 0 // counter for the amount of TCP queries we get
reader := Reader(&defaultReader{srv})
if srv.DecorateReader != nil {
reader = srv.DecorateReader(reader)
}
Redo:
req := new(Msg)
err := req.Unpack(m)
if err != nil { // Send a FormatError back
x := new(Msg)
x.SetRcodeFormatError(req)
w.WriteMsg(x)
goto Exit
}
if !srv.Unsafe && req.Response {
goto Exit
}
w.tsigStatus = nil
if w.tsigSecret != nil {
if t := req.IsTsig(); t != nil {
secret := t.Hdr.Name
if _, ok := w.tsigSecret[secret]; !ok {
w.tsigStatus = ErrKeyAlg
}
w.tsigStatus = TsigVerify(m, w.tsigSecret[secret], "", false)
w.tsigTimersOnly = false
w.tsigRequestMAC = req.Extra[len(req.Extra)-1].(*TSIG).MAC
}
}
h.ServeDNS(w, req) // Writes back to the client
Exit:
if w.tcp == nil {
return
}
// TODO(miek): make this number configurable?
if q > maxTCPQueries { // close socket after this many queries
w.Close()
return
}
if w.hijacked {
return // client calls Close()
}
if u != nil { // UDP, "close" and return
w.Close()
return
}
idleTimeout := tcpIdleTimeout
if srv.IdleTimeout != nil {
idleTimeout = srv.IdleTimeout()
}
m, err = reader.ReadTCP(w.tcp, idleTimeout)
if err == nil {
q++
goto Redo
}
w.Close()
return
}
func (srv *Server) readTCP(conn net.Conn, timeout time.Duration) ([]byte, error) {
conn.SetReadDeadline(time.Now().Add(timeout))
l := make([]byte, 2)
n, err := conn.Read(l)
if err != nil || n != 2 {
if err != nil {
return nil, err
}
return nil, ErrShortRead
}
length := binary.BigEndian.Uint16(l)
if length == 0 {
return nil, ErrShortRead
}
m := make([]byte, int(length))
n, err = conn.Read(m[:int(length)])
if err != nil || n == 0 {
if err != nil {
return nil, err
}
return nil, ErrShortRead
}
i := n
for i < int(length) {
j, err := conn.Read(m[i:int(length)])
if err != nil {
return nil, err
}
i += j
}
n = i
m = m[:n]
return m, nil
}
func (srv *Server) readUDP(conn *net.UDPConn, timeout time.Duration) ([]byte, *SessionUDP, error) {
conn.SetReadDeadline(time.Now().Add(timeout))
m := make([]byte, srv.UDPSize)
n, s, err := ReadFromSessionUDP(conn, m)
if err != nil || n == 0 {
if err != nil {
return nil, nil, err
}
return nil, nil, ErrShortRead
}
m = m[:n]
return m, s, nil
}
// WriteMsg implements the ResponseWriter.WriteMsg method.
func (w *response) WriteMsg(m *Msg) (err error) {
var data []byte
if w.tsigSecret != nil { // if no secrets, dont check for the tsig (which is a longer check)
if t := m.IsTsig(); t != nil {
data, w.tsigRequestMAC, err = TsigGenerate(m, w.tsigSecret[t.Hdr.Name], w.tsigRequestMAC, w.tsigTimersOnly)
if err != nil {
return err
}
_, err = w.writer.Write(data)
return err
}
}
data, err = m.Pack()
if err != nil {
return err
}
_, err = w.writer.Write(data)
return err
}
// Write implements the ResponseWriter.Write method.
func (w *response) Write(m []byte) (int, error) {
switch {
case w.udp != nil:
n, err := WriteToSessionUDP(w.udp, m, w.udpSession)
return n, err
case w.tcp != nil:
lm := len(m)
if lm < 2 {
return 0, io.ErrShortBuffer
}
if lm > MaxMsgSize {
return 0, &Error{err: "message too large"}
}
l := make([]byte, 2, 2+lm)
binary.BigEndian.PutUint16(l, uint16(lm))
m = append(l, m...)
n, err := io.Copy(w.tcp, bytes.NewReader(m))
return int(n), err
}
panic("not reached")
}
// LocalAddr implements the ResponseWriter.LocalAddr method.
func (w *response) LocalAddr() net.Addr {
if w.tcp != nil {
return w.tcp.LocalAddr()
}
return w.udp.LocalAddr()
}
// RemoteAddr implements the ResponseWriter.RemoteAddr method.
func (w *response) RemoteAddr() net.Addr { return w.remoteAddr }
// TsigStatus implements the ResponseWriter.TsigStatus method.
func (w *response) TsigStatus() error { return w.tsigStatus }
// TsigTimersOnly implements the ResponseWriter.TsigTimersOnly method.
func (w *response) TsigTimersOnly(b bool) { w.tsigTimersOnly = b }
// Hijack implements the ResponseWriter.Hijack method.
func (w *response) Hijack() { w.hijacked = true }
// Close implements the ResponseWriter.Close method
func (w *response) Close() error {
// Can't close the udp conn, as that is actually the listener.
if w.tcp != nil {
e := w.tcp.Close()
w.tcp = nil
return e
}
return nil
}

219
vendor/github.com/miekg/dns/sig0.go generated vendored
View file

@ -1,219 +0,0 @@
package dns
import (
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"encoding/binary"
"math/big"
"strings"
"time"
)
// Sign signs a dns.Msg. It fills the signature with the appropriate data.
// The SIG record should have the SignerName, KeyTag, Algorithm, Inception
// and Expiration set.
func (rr *SIG) Sign(k crypto.Signer, m *Msg) ([]byte, error) {
if k == nil {
return nil, ErrPrivKey
}
if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
return nil, ErrKey
}
rr.Header().Rrtype = TypeSIG
rr.Header().Class = ClassANY
rr.Header().Ttl = 0
rr.Header().Name = "."
rr.OrigTtl = 0
rr.TypeCovered = 0
rr.Labels = 0
buf := make([]byte, m.Len()+rr.len())
mbuf, err := m.PackBuffer(buf)
if err != nil {
return nil, err
}
if &buf[0] != &mbuf[0] {
return nil, ErrBuf
}
off, err := PackRR(rr, buf, len(mbuf), nil, false)
if err != nil {
return nil, err
}
buf = buf[:off:cap(buf)]
hash, ok := AlgorithmToHash[rr.Algorithm]
if !ok {
return nil, ErrAlg
}
hasher := hash.New()
// Write SIG rdata
hasher.Write(buf[len(mbuf)+1+2+2+4+2:])
// Write message
hasher.Write(buf[:len(mbuf)])
signature, err := sign(k, hasher.Sum(nil), hash, rr.Algorithm)
if err != nil {
return nil, err
}
rr.Signature = toBase64(signature)
sig := string(signature)
buf = append(buf, sig...)
if len(buf) > int(^uint16(0)) {
return nil, ErrBuf
}
// Adjust sig data length
rdoff := len(mbuf) + 1 + 2 + 2 + 4
rdlen := binary.BigEndian.Uint16(buf[rdoff:])
rdlen += uint16(len(sig))
binary.BigEndian.PutUint16(buf[rdoff:], rdlen)
// Adjust additional count
adc := binary.BigEndian.Uint16(buf[10:])
adc++
binary.BigEndian.PutUint16(buf[10:], adc)
return buf, nil
}
// Verify validates the message buf using the key k.
// It's assumed that buf is a valid message from which rr was unpacked.
func (rr *SIG) Verify(k *KEY, buf []byte) error {
if k == nil {
return ErrKey
}
if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
return ErrKey
}
var hash crypto.Hash
switch rr.Algorithm {
case DSA, RSASHA1:
hash = crypto.SHA1
case RSASHA256, ECDSAP256SHA256:
hash = crypto.SHA256
case ECDSAP384SHA384:
hash = crypto.SHA384
case RSASHA512:
hash = crypto.SHA512
default:
return ErrAlg
}
hasher := hash.New()
buflen := len(buf)
qdc := binary.BigEndian.Uint16(buf[4:])
anc := binary.BigEndian.Uint16(buf[6:])
auc := binary.BigEndian.Uint16(buf[8:])
adc := binary.BigEndian.Uint16(buf[10:])
offset := 12
var err error
for i := uint16(0); i < qdc && offset < buflen; i++ {
_, offset, err = UnpackDomainName(buf, offset)
if err != nil {
return err
}
// Skip past Type and Class
offset += 2 + 2
}
for i := uint16(1); i < anc+auc+adc && offset < buflen; i++ {
_, offset, err = UnpackDomainName(buf, offset)
if err != nil {
return err
}
// Skip past Type, Class and TTL
offset += 2 + 2 + 4
if offset+1 >= buflen {
continue
}
var rdlen uint16
rdlen = binary.BigEndian.Uint16(buf[offset:])
offset += 2
offset += int(rdlen)
}
if offset >= buflen {
return &Error{err: "overflowing unpacking signed message"}
}
// offset should be just prior to SIG
bodyend := offset
// owner name SHOULD be root
_, offset, err = UnpackDomainName(buf, offset)
if err != nil {
return err
}
// Skip Type, Class, TTL, RDLen
offset += 2 + 2 + 4 + 2
sigstart := offset
// Skip Type Covered, Algorithm, Labels, Original TTL
offset += 2 + 1 + 1 + 4
if offset+4+4 >= buflen {
return &Error{err: "overflow unpacking signed message"}
}
expire := binary.BigEndian.Uint32(buf[offset:])
offset += 4
incept := binary.BigEndian.Uint32(buf[offset:])
offset += 4
now := uint32(time.Now().Unix())
if now < incept || now > expire {
return ErrTime
}
// Skip key tag
offset += 2
var signername string
signername, offset, err = UnpackDomainName(buf, offset)
if err != nil {
return err
}
// If key has come from the DNS name compression might
// have mangled the case of the name
if strings.ToLower(signername) != strings.ToLower(k.Header().Name) {
return &Error{err: "signer name doesn't match key name"}
}
sigend := offset
hasher.Write(buf[sigstart:sigend])
hasher.Write(buf[:10])
hasher.Write([]byte{
byte((adc - 1) << 8),
byte(adc - 1),
})
hasher.Write(buf[12:bodyend])
hashed := hasher.Sum(nil)
sig := buf[sigend:]
switch k.Algorithm {
case DSA:
pk := k.publicKeyDSA()
sig = sig[1:]
r := big.NewInt(0)
r.SetBytes(sig[:len(sig)/2])
s := big.NewInt(0)
s.SetBytes(sig[len(sig)/2:])
if pk != nil {
if dsa.Verify(pk, hashed, r, s) {
return nil
}
return ErrSig
}
case RSASHA1, RSASHA256, RSASHA512:
pk := k.publicKeyRSA()
if pk != nil {
return rsa.VerifyPKCS1v15(pk, hash, hashed, sig)
}
case ECDSAP256SHA256, ECDSAP384SHA384:
pk := k.publicKeyECDSA()
r := big.NewInt(0)
r.SetBytes(sig[:len(sig)/2])
s := big.NewInt(0)
s.SetBytes(sig[len(sig)/2:])
if pk != nil {
if ecdsa.Verify(pk, hashed, r, s) {
return nil
}
return ErrSig
}
}
return ErrKeyAlg
}

View file

@ -1,57 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Adapted for dns package usage by Miek Gieben.
package dns
import "sync"
import "time"
// call is an in-flight or completed singleflight.Do call
type call struct {
wg sync.WaitGroup
val *Msg
rtt time.Duration
err error
dups int
}
// singleflight represents a class of work and forms a namespace in
// which units of work can be executed with duplicate suppression.
type singleflight struct {
sync.Mutex // protects m
m map[string]*call // lazily initialized
}
// Do executes and returns the results of the given function, making
// sure that only one execution is in-flight for a given key at a
// time. If a duplicate comes in, the duplicate caller waits for the
// original to complete and receives the same results.
// The return value shared indicates whether v was given to multiple callers.
func (g *singleflight) Do(key string, fn func() (*Msg, time.Duration, error)) (v *Msg, rtt time.Duration, err error, shared bool) {
g.Lock()
if g.m == nil {
g.m = make(map[string]*call)
}
if c, ok := g.m[key]; ok {
c.dups++
g.Unlock()
c.wg.Wait()
return c.val, c.rtt, c.err, true
}
c := new(call)
c.wg.Add(1)
g.m[key] = c
g.Unlock()
c.val, c.rtt, c.err = fn()
c.wg.Done()
g.Lock()
delete(g.m, key)
g.Unlock()
return c.val, c.rtt, c.err, c.dups > 0
}

View file

@ -1,47 +0,0 @@
package dns
import (
"crypto/sha256"
"crypto/x509"
"encoding/hex"
)
// Sign creates a SMIMEA record from an SSL certificate.
func (r *SMIMEA) Sign(usage, selector, matchingType int, cert *x509.Certificate) (err error) {
r.Hdr.Rrtype = TypeSMIMEA
r.Usage = uint8(usage)
r.Selector = uint8(selector)
r.MatchingType = uint8(matchingType)
r.Certificate, err = CertificateToDANE(r.Selector, r.MatchingType, cert)
if err != nil {
return err
}
return nil
}
// Verify verifies a SMIMEA record against an SSL certificate. If it is OK
// a nil error is returned.
func (r *SMIMEA) Verify(cert *x509.Certificate) error {
c, err := CertificateToDANE(r.Selector, r.MatchingType, cert)
if err != nil {
return err // Not also ErrSig?
}
if r.Certificate == c {
return nil
}
return ErrSig // ErrSig, really?
}
// SIMEAName returns the ownername of a SMIMEA resource record as per the
// format specified in RFC 'draft-ietf-dane-smime-12' Section 2 and 3
func SMIMEAName(email_address string, domain_name string) (string, error) {
hasher := sha256.New()
hasher.Write([]byte(email_address))
// RFC Section 3: "The local-part is hashed using the SHA2-256
// algorithm with the hash truncated to 28 octets and
// represented in its hexadecimal representation to become the
// left-most label in the prepared domain name"
return hex.EncodeToString(hasher.Sum(nil)[:28]) + "." + "_smimecert." + domain_name, nil
}

47
vendor/github.com/miekg/dns/tlsa.go generated vendored
View file

@ -1,47 +0,0 @@
package dns
import (
"crypto/x509"
"net"
"strconv"
)
// Sign creates a TLSA record from an SSL certificate.
func (r *TLSA) Sign(usage, selector, matchingType int, cert *x509.Certificate) (err error) {
r.Hdr.Rrtype = TypeTLSA
r.Usage = uint8(usage)
r.Selector = uint8(selector)
r.MatchingType = uint8(matchingType)
r.Certificate, err = CertificateToDANE(r.Selector, r.MatchingType, cert)
if err != nil {
return err
}
return nil
}
// Verify verifies a TLSA record against an SSL certificate. If it is OK
// a nil error is returned.
func (r *TLSA) Verify(cert *x509.Certificate) error {
c, err := CertificateToDANE(r.Selector, r.MatchingType, cert)
if err != nil {
return err // Not also ErrSig?
}
if r.Certificate == c {
return nil
}
return ErrSig // ErrSig, really?
}
// TLSAName returns the ownername of a TLSA resource record as per the
// rules specified in RFC 6698, Section 3.
func TLSAName(name, service, network string) (string, error) {
if !IsFqdn(name) {
return "", ErrFqdn
}
p, err := net.LookupPort(network, service)
if err != nil {
return "", err
}
return "_" + strconv.Itoa(p) + "._" + network + "." + name, nil
}

384
vendor/github.com/miekg/dns/tsig.go generated vendored
View file

@ -1,384 +0,0 @@
package dns
import (
"crypto/hmac"
"crypto/md5"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"encoding/hex"
"hash"
"io"
"strconv"
"strings"
"time"
)
// HMAC hashing codes. These are transmitted as domain names.
const (
HmacMD5 = "hmac-md5.sig-alg.reg.int."
HmacSHA1 = "hmac-sha1."
HmacSHA256 = "hmac-sha256."
HmacSHA512 = "hmac-sha512."
)
// TSIG is the RR the holds the transaction signature of a message.
// See RFC 2845 and RFC 4635.
type TSIG struct {
Hdr RR_Header
Algorithm string `dns:"domain-name"`
TimeSigned uint64 `dns:"uint48"`
Fudge uint16
MACSize uint16
MAC string `dns:"size-hex:MACSize"`
OrigId uint16
Error uint16
OtherLen uint16
OtherData string `dns:"size-hex:OtherLen"`
}
// TSIG has no official presentation format, but this will suffice.
func (rr *TSIG) String() string {
s := "\n;; TSIG PSEUDOSECTION:\n"
s += rr.Hdr.String() +
" " + rr.Algorithm +
" " + tsigTimeToString(rr.TimeSigned) +
" " + strconv.Itoa(int(rr.Fudge)) +
" " + strconv.Itoa(int(rr.MACSize)) +
" " + strings.ToUpper(rr.MAC) +
" " + strconv.Itoa(int(rr.OrigId)) +
" " + strconv.Itoa(int(rr.Error)) + // BIND prints NOERROR
" " + strconv.Itoa(int(rr.OtherLen)) +
" " + rr.OtherData
return s
}
// The following values must be put in wireformat, so that the MAC can be calculated.
// RFC 2845, section 3.4.2. TSIG Variables.
type tsigWireFmt struct {
// From RR_Header
Name string `dns:"domain-name"`
Class uint16
Ttl uint32
// Rdata of the TSIG
Algorithm string `dns:"domain-name"`
TimeSigned uint64 `dns:"uint48"`
Fudge uint16
// MACSize, MAC and OrigId excluded
Error uint16
OtherLen uint16
OtherData string `dns:"size-hex:OtherLen"`
}
// If we have the MAC use this type to convert it to wiredata. Section 3.4.3. Request MAC
type macWireFmt struct {
MACSize uint16
MAC string `dns:"size-hex:MACSize"`
}
// 3.3. Time values used in TSIG calculations
type timerWireFmt struct {
TimeSigned uint64 `dns:"uint48"`
Fudge uint16
}
// TsigGenerate fills out the TSIG record attached to the message.
// The message should contain
// a "stub" TSIG RR with the algorithm, key name (owner name of the RR),
// time fudge (defaults to 300 seconds) and the current time
// The TSIG MAC is saved in that Tsig RR.
// When TsigGenerate is called for the first time requestMAC is set to the empty string and
// timersOnly is false.
// If something goes wrong an error is returned, otherwise it is nil.
func TsigGenerate(m *Msg, secret, requestMAC string, timersOnly bool) ([]byte, string, error) {
if m.IsTsig() == nil {
panic("dns: TSIG not last RR in additional")
}
// If we barf here, the caller is to blame
rawsecret, err := fromBase64([]byte(secret))
if err != nil {
return nil, "", err
}
rr := m.Extra[len(m.Extra)-1].(*TSIG)
m.Extra = m.Extra[0 : len(m.Extra)-1] // kill the TSIG from the msg
mbuf, err := m.Pack()
if err != nil {
return nil, "", err
}
buf := tsigBuffer(mbuf, rr, requestMAC, timersOnly)
t := new(TSIG)
var h hash.Hash
switch strings.ToLower(rr.Algorithm) {
case HmacMD5:
h = hmac.New(md5.New, []byte(rawsecret))
case HmacSHA1:
h = hmac.New(sha1.New, []byte(rawsecret))
case HmacSHA256:
h = hmac.New(sha256.New, []byte(rawsecret))
case HmacSHA512:
h = hmac.New(sha512.New, []byte(rawsecret))
default:
return nil, "", ErrKeyAlg
}
io.WriteString(h, string(buf))
t.MAC = hex.EncodeToString(h.Sum(nil))
t.MACSize = uint16(len(t.MAC) / 2) // Size is half!
t.Hdr = RR_Header{Name: rr.Hdr.Name, Rrtype: TypeTSIG, Class: ClassANY, Ttl: 0}
t.Fudge = rr.Fudge
t.TimeSigned = rr.TimeSigned
t.Algorithm = rr.Algorithm
t.OrigId = m.Id
tbuf := make([]byte, t.len())
if off, err := PackRR(t, tbuf, 0, nil, false); err == nil {
tbuf = tbuf[:off] // reset to actual size used
} else {
return nil, "", err
}
mbuf = append(mbuf, tbuf...)
// Update the ArCount directly in the buffer.
binary.BigEndian.PutUint16(mbuf[10:], uint16(len(m.Extra)+1))
return mbuf, t.MAC, nil
}
// TsigVerify verifies the TSIG on a message.
// If the signature does not validate err contains the
// error, otherwise it is nil.
func TsigVerify(msg []byte, secret, requestMAC string, timersOnly bool) error {
rawsecret, err := fromBase64([]byte(secret))
if err != nil {
return err
}
// Strip the TSIG from the incoming msg
stripped, tsig, err := stripTsig(msg)
if err != nil {
return err
}
msgMAC, err := hex.DecodeString(tsig.MAC)
if err != nil {
return err
}
buf := tsigBuffer(stripped, tsig, requestMAC, timersOnly)
// Fudge factor works both ways. A message can arrive before it was signed because
// of clock skew.
now := uint64(time.Now().Unix())
ti := now - tsig.TimeSigned
if now < tsig.TimeSigned {
ti = tsig.TimeSigned - now
}
if uint64(tsig.Fudge) < ti {
return ErrTime
}
var h hash.Hash
switch strings.ToLower(tsig.Algorithm) {
case HmacMD5:
h = hmac.New(md5.New, rawsecret)
case HmacSHA1:
h = hmac.New(sha1.New, rawsecret)
case HmacSHA256:
h = hmac.New(sha256.New, rawsecret)
case HmacSHA512:
h = hmac.New(sha512.New, rawsecret)
default:
return ErrKeyAlg
}
h.Write(buf)
if !hmac.Equal(h.Sum(nil), msgMAC) {
return ErrSig
}
return nil
}
// Create a wiredata buffer for the MAC calculation.
func tsigBuffer(msgbuf []byte, rr *TSIG, requestMAC string, timersOnly bool) []byte {
var buf []byte
if rr.TimeSigned == 0 {
rr.TimeSigned = uint64(time.Now().Unix())
}
if rr.Fudge == 0 {
rr.Fudge = 300 // Standard (RFC) default.
}
if requestMAC != "" {
m := new(macWireFmt)
m.MACSize = uint16(len(requestMAC) / 2)
m.MAC = requestMAC
buf = make([]byte, len(requestMAC)) // long enough
n, _ := packMacWire(m, buf)
buf = buf[:n]
}
tsigvar := make([]byte, DefaultMsgSize)
if timersOnly {
tsig := new(timerWireFmt)
tsig.TimeSigned = rr.TimeSigned
tsig.Fudge = rr.Fudge
n, _ := packTimerWire(tsig, tsigvar)
tsigvar = tsigvar[:n]
} else {
tsig := new(tsigWireFmt)
tsig.Name = strings.ToLower(rr.Hdr.Name)
tsig.Class = ClassANY
tsig.Ttl = rr.Hdr.Ttl
tsig.Algorithm = strings.ToLower(rr.Algorithm)
tsig.TimeSigned = rr.TimeSigned
tsig.Fudge = rr.Fudge
tsig.Error = rr.Error
tsig.OtherLen = rr.OtherLen
tsig.OtherData = rr.OtherData
n, _ := packTsigWire(tsig, tsigvar)
tsigvar = tsigvar[:n]
}
if requestMAC != "" {
x := append(buf, msgbuf...)
buf = append(x, tsigvar...)
} else {
buf = append(msgbuf, tsigvar...)
}
return buf
}
// Strip the TSIG from the raw message.
func stripTsig(msg []byte) ([]byte, *TSIG, error) {
// Copied from msg.go's Unpack() Header, but modified.
var (
dh Header
err error
)
off, tsigoff := 0, 0
if dh, off, err = unpackMsgHdr(msg, off); err != nil {
return nil, nil, err
}
if dh.Arcount == 0 {
return nil, nil, ErrNoSig
}
// Rcode, see msg.go Unpack()
if int(dh.Bits&0xF) == RcodeNotAuth {
return nil, nil, ErrAuth
}
for i := 0; i < int(dh.Qdcount); i++ {
_, off, err = unpackQuestion(msg, off)
if err != nil {
return nil, nil, err
}
}
_, off, err = unpackRRslice(int(dh.Ancount), msg, off)
if err != nil {
return nil, nil, err
}
_, off, err = unpackRRslice(int(dh.Nscount), msg, off)
if err != nil {
return nil, nil, err
}
rr := new(TSIG)
var extra RR
for i := 0; i < int(dh.Arcount); i++ {
tsigoff = off
extra, off, err = UnpackRR(msg, off)
if err != nil {
return nil, nil, err
}
if extra.Header().Rrtype == TypeTSIG {
rr = extra.(*TSIG)
// Adjust Arcount.
arcount := binary.BigEndian.Uint16(msg[10:])
binary.BigEndian.PutUint16(msg[10:], arcount-1)
break
}
}
if rr == nil {
return nil, nil, ErrNoSig
}
return msg[:tsigoff], rr, nil
}
// Translate the TSIG time signed into a date. There is no
// need for RFC1982 calculations as this date is 48 bits.
func tsigTimeToString(t uint64) string {
ti := time.Unix(int64(t), 0).UTC()
return ti.Format("20060102150405")
}
func packTsigWire(tw *tsigWireFmt, msg []byte) (int, error) {
// copied from zmsg.go TSIG packing
// RR_Header
off, err := PackDomainName(tw.Name, msg, 0, nil, false)
if err != nil {
return off, err
}
off, err = packUint16(tw.Class, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(tw.Ttl, msg, off)
if err != nil {
return off, err
}
off, err = PackDomainName(tw.Algorithm, msg, off, nil, false)
if err != nil {
return off, err
}
off, err = packUint48(tw.TimeSigned, msg, off)
if err != nil {
return off, err
}
off, err = packUint16(tw.Fudge, msg, off)
if err != nil {
return off, err
}
off, err = packUint16(tw.Error, msg, off)
if err != nil {
return off, err
}
off, err = packUint16(tw.OtherLen, msg, off)
if err != nil {
return off, err
}
off, err = packStringHex(tw.OtherData, msg, off)
if err != nil {
return off, err
}
return off, nil
}
func packMacWire(mw *macWireFmt, msg []byte) (int, error) {
off, err := packUint16(mw.MACSize, msg, 0)
if err != nil {
return off, err
}
off, err = packStringHex(mw.MAC, msg, off)
if err != nil {
return off, err
}
return off, nil
}
func packTimerWire(tw *timerWireFmt, msg []byte) (int, error) {
off, err := packUint48(tw.TimeSigned, msg, 0)
if err != nil {
return off, err
}
off, err = packUint16(tw.Fudge, msg, off)
if err != nil {
return off, err
}
return off, nil
}

1294
vendor/github.com/miekg/dns/types.go generated vendored

File diff suppressed because it is too large Load diff

58
vendor/github.com/miekg/dns/udp.go generated vendored
View file

@ -1,58 +0,0 @@
// +build !windows,!plan9
package dns
import (
"net"
"syscall"
)
// SessionUDP holds the remote address and the associated
// out-of-band data.
type SessionUDP struct {
raddr *net.UDPAddr
context []byte
}
// RemoteAddr returns the remote network address.
func (s *SessionUDP) RemoteAddr() net.Addr { return s.raddr }
// setUDPSocketOptions sets the UDP socket options.
// This function is implemented on a per platform basis. See udp_*.go for more details
func setUDPSocketOptions(conn *net.UDPConn) error {
sa, err := getUDPSocketName(conn)
if err != nil {
return err
}
switch sa.(type) {
case *syscall.SockaddrInet6:
v6only, err := getUDPSocketOptions6Only(conn)
if err != nil {
return err
}
setUDPSocketOptions6(conn)
if !v6only {
setUDPSocketOptions4(conn)
}
case *syscall.SockaddrInet4:
setUDPSocketOptions4(conn)
}
return nil
}
// ReadFromSessionUDP acts just like net.UDPConn.ReadFrom(), but returns a session object instead of a
// net.UDPAddr.
func ReadFromSessionUDP(conn *net.UDPConn, b []byte) (int, *SessionUDP, error) {
oob := make([]byte, 40)
n, oobn, _, raddr, err := conn.ReadMsgUDP(b, oob)
if err != nil {
return n, nil, err
}
return n, &SessionUDP{raddr, oob[:oobn]}, err
}
// WriteToSessionUDP acts just like net.UDPConn.WritetTo(), but uses a *SessionUDP instead of a net.Addr.
func WriteToSessionUDP(conn *net.UDPConn, b []byte, session *SessionUDP) (int, error) {
n, _, err := conn.WriteMsgUDP(b, session.context, session.raddr)
return n, err
}

View file

@ -1,73 +0,0 @@
// +build linux
package dns
// See:
// * http://stackoverflow.com/questions/3062205/setting-the-source-ip-for-a-udp-socket and
// * http://blog.powerdns.com/2012/10/08/on-binding-datagram-udp-sockets-to-the-any-addresses/
//
// Why do we need this: When listening on 0.0.0.0 with UDP so kernel decides what is the outgoing
// interface, this might not always be the correct one. This code will make sure the egress
// packet's interface matched the ingress' one.
import (
"net"
"syscall"
)
// setUDPSocketOptions4 prepares the v4 socket for sessions.
func setUDPSocketOptions4(conn *net.UDPConn) error {
file, err := conn.File()
if err != nil {
return err
}
if err := syscall.SetsockoptInt(int(file.Fd()), syscall.IPPROTO_IP, syscall.IP_PKTINFO, 1); err != nil {
return err
}
// Calling File() above results in the connection becoming blocking, we must fix that.
// See https://github.com/miekg/dns/issues/279
err = syscall.SetNonblock(int(file.Fd()), true)
if err != nil {
return err
}
return nil
}
// setUDPSocketOptions6 prepares the v6 socket for sessions.
func setUDPSocketOptions6(conn *net.UDPConn) error {
file, err := conn.File()
if err != nil {
return err
}
if err := syscall.SetsockoptInt(int(file.Fd()), syscall.IPPROTO_IPV6, syscall.IPV6_RECVPKTINFO, 1); err != nil {
return err
}
err = syscall.SetNonblock(int(file.Fd()), true)
if err != nil {
return err
}
return nil
}
// getUDPSocketOption6Only return true if the socket is v6 only and false when it is v4/v6 combined
// (dualstack).
func getUDPSocketOptions6Only(conn *net.UDPConn) (bool, error) {
file, err := conn.File()
if err != nil {
return false, err
}
// dual stack. See http://stackoverflow.com/questions/1618240/how-to-support-both-ipv4-and-ipv6-connections
v6only, err := syscall.GetsockoptInt(int(file.Fd()), syscall.IPPROTO_IPV6, syscall.IPV6_V6ONLY)
if err != nil {
return false, err
}
return v6only == 1, nil
}
func getUDPSocketName(conn *net.UDPConn) (syscall.Sockaddr, error) {
file, err := conn.File()
if err != nil {
return nil, err
}
return syscall.Getsockname(int(file.Fd()))
}

View file

@ -1,17 +0,0 @@
// +build !linux,!plan9
package dns
import (
"net"
"syscall"
)
// These do nothing. See udp_linux.go for an example of how to implement this.
// We tried to adhire to some kind of naming scheme.
func setUDPSocketOptions4(conn *net.UDPConn) error { return nil }
func setUDPSocketOptions6(conn *net.UDPConn) error { return nil }
func getUDPSocketOptions6Only(conn *net.UDPConn) (bool, error) { return false, nil }
func getUDPSocketName(conn *net.UDPConn) (syscall.Sockaddr, error) { return nil, nil }

View file

@ -1,34 +0,0 @@
package dns
import (
"net"
)
func setUDPSocketOptions(conn *net.UDPConn) error { return nil }
// SessionUDP holds the remote address and the associated
// out-of-band data.
type SessionUDP struct {
raddr *net.UDPAddr
context []byte
}
// RemoteAddr returns the remote network address.
func (s *SessionUDP) RemoteAddr() net.Addr { return s.raddr }
// ReadFromSessionUDP acts just like net.UDPConn.ReadFrom(), but returns a session object instead of a
// net.UDPAddr.
func ReadFromSessionUDP(conn *net.UDPConn, b []byte) (int, *SessionUDP, error) {
oob := make([]byte, 40)
n, oobn, _, raddr, err := conn.ReadMsgUDP(b, oob)
if err != nil {
return n, nil, err
}
return n, &SessionUDP{raddr, oob[:oobn]}, err
}
// WriteToSessionUDP acts just like net.UDPConn.WritetTo(), but uses a *SessionUDP instead of a net.Addr.
func WriteToSessionUDP(conn *net.UDPConn, b []byte, session *SessionUDP) (int, error) {
n, _, err := conn.WriteMsgUDP(b, session.context, session.raddr)
return n, err
}

View file

@ -1,34 +0,0 @@
// +build windows
package dns
import "net"
type SessionUDP struct {
raddr *net.UDPAddr
}
// ReadFromSessionUDP acts just like net.UDPConn.ReadFrom(), but returns a session object instead of a
// net.UDPAddr.
func ReadFromSessionUDP(conn *net.UDPConn, b []byte) (int, *SessionUDP, error) {
n, raddr, err := conn.ReadFrom(b)
if err != nil {
return n, nil, err
}
session := &SessionUDP{raddr.(*net.UDPAddr)}
return n, session, err
}
// WriteToSessionUDP acts just like net.UDPConn.WritetTo(), but uses a *SessionUDP instead of a net.Addr.
func WriteToSessionUDP(conn *net.UDPConn, b []byte, session *SessionUDP) (int, error) {
n, err := conn.WriteTo(b, session.raddr)
return n, err
}
func (s *SessionUDP) RemoteAddr() net.Addr { return s.raddr }
// setUDPSocketOptions sets the UDP socket options.
// This function is implemented on a per platform basis. See udp_*.go for more details
func setUDPSocketOptions(conn *net.UDPConn) error {
return nil
}

106
vendor/github.com/miekg/dns/update.go generated vendored
View file

@ -1,106 +0,0 @@
package dns
// NameUsed sets the RRs in the prereq section to
// "Name is in use" RRs. RFC 2136 section 2.4.4.
func (u *Msg) NameUsed(rr []RR) {
if u.Answer == nil {
u.Answer = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Answer = append(u.Answer, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: TypeANY, Class: ClassANY}})
}
}
// NameNotUsed sets the RRs in the prereq section to
// "Name is in not use" RRs. RFC 2136 section 2.4.5.
func (u *Msg) NameNotUsed(rr []RR) {
if u.Answer == nil {
u.Answer = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Answer = append(u.Answer, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: TypeANY, Class: ClassNONE}})
}
}
// Used sets the RRs in the prereq section to
// "RRset exists (value dependent -- with rdata)" RRs. RFC 2136 section 2.4.2.
func (u *Msg) Used(rr []RR) {
if len(u.Question) == 0 {
panic("dns: empty question section")
}
if u.Answer == nil {
u.Answer = make([]RR, 0, len(rr))
}
for _, r := range rr {
r.Header().Class = u.Question[0].Qclass
u.Answer = append(u.Answer, r)
}
}
// RRsetUsed sets the RRs in the prereq section to
// "RRset exists (value independent -- no rdata)" RRs. RFC 2136 section 2.4.1.
func (u *Msg) RRsetUsed(rr []RR) {
if u.Answer == nil {
u.Answer = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Answer = append(u.Answer, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: r.Header().Rrtype, Class: ClassANY}})
}
}
// RRsetNotUsed sets the RRs in the prereq section to
// "RRset does not exist" RRs. RFC 2136 section 2.4.3.
func (u *Msg) RRsetNotUsed(rr []RR) {
if u.Answer == nil {
u.Answer = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Answer = append(u.Answer, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: r.Header().Rrtype, Class: ClassNONE}})
}
}
// Insert creates a dynamic update packet that adds an complete RRset, see RFC 2136 section 2.5.1.
func (u *Msg) Insert(rr []RR) {
if len(u.Question) == 0 {
panic("dns: empty question section")
}
if u.Ns == nil {
u.Ns = make([]RR, 0, len(rr))
}
for _, r := range rr {
r.Header().Class = u.Question[0].Qclass
u.Ns = append(u.Ns, r)
}
}
// RemoveRRset creates a dynamic update packet that deletes an RRset, see RFC 2136 section 2.5.2.
func (u *Msg) RemoveRRset(rr []RR) {
if u.Ns == nil {
u.Ns = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Ns = append(u.Ns, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: r.Header().Rrtype, Class: ClassANY}})
}
}
// RemoveName creates a dynamic update packet that deletes all RRsets of a name, see RFC 2136 section 2.5.3
func (u *Msg) RemoveName(rr []RR) {
if u.Ns == nil {
u.Ns = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Ns = append(u.Ns, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: TypeANY, Class: ClassANY}})
}
}
// Remove creates a dynamic update packet deletes RR from a RRSset, see RFC 2136 section 2.5.4
func (u *Msg) Remove(rr []RR) {
if u.Ns == nil {
u.Ns = make([]RR, 0, len(rr))
}
for _, r := range rr {
r.Header().Class = ClassNONE
r.Header().Ttl = 0
u.Ns = append(u.Ns, r)
}
}

244
vendor/github.com/miekg/dns/xfr.go generated vendored
View file

@ -1,244 +0,0 @@
package dns
import (
"time"
)
// Envelope is used when doing a zone transfer with a remote server.
type Envelope struct {
RR []RR // The set of RRs in the answer section of the xfr reply message.
Error error // If something went wrong, this contains the error.
}
// A Transfer defines parameters that are used during a zone transfer.
type Transfer struct {
*Conn
DialTimeout time.Duration // net.DialTimeout, defaults to 2 seconds
ReadTimeout time.Duration // net.Conn.SetReadTimeout value for connections, defaults to 2 seconds
WriteTimeout time.Duration // net.Conn.SetWriteTimeout value for connections, defaults to 2 seconds
TsigSecret map[string]string // Secret(s) for Tsig map[<zonename>]<base64 secret>, zonename must be fully qualified
tsigTimersOnly bool
}
// Think we need to away to stop the transfer
// In performs an incoming transfer with the server in a.
// If you would like to set the source IP, or some other attribute
// of a Dialer for a Transfer, you can do so by specifying the attributes
// in the Transfer.Conn:
//
// d := net.Dialer{LocalAddr: transfer_source}
// con, err := d.Dial("tcp", master)
// dnscon := &dns.Conn{Conn:con}
// transfer = &dns.Transfer{Conn: dnscon}
// channel, err := transfer.In(message, master)
//
func (t *Transfer) In(q *Msg, a string) (env chan *Envelope, err error) {
timeout := dnsTimeout
if t.DialTimeout != 0 {
timeout = t.DialTimeout
}
if t.Conn == nil {
t.Conn, err = DialTimeout("tcp", a, timeout)
if err != nil {
return nil, err
}
}
if err := t.WriteMsg(q); err != nil {
return nil, err
}
env = make(chan *Envelope)
go func() {
if q.Question[0].Qtype == TypeAXFR {
go t.inAxfr(q.Id, env)
return
}
if q.Question[0].Qtype == TypeIXFR {
go t.inIxfr(q.Id, env)
return
}
}()
return env, nil
}
func (t *Transfer) inAxfr(id uint16, c chan *Envelope) {
first := true
defer t.Close()
defer close(c)
timeout := dnsTimeout
if t.ReadTimeout != 0 {
timeout = t.ReadTimeout
}
for {
t.Conn.SetReadDeadline(time.Now().Add(timeout))
in, err := t.ReadMsg()
if err != nil {
c <- &Envelope{nil, err}
return
}
if id != in.Id {
c <- &Envelope{in.Answer, ErrId}
return
}
if first {
if !isSOAFirst(in) {
c <- &Envelope{in.Answer, ErrSoa}
return
}
first = !first
// only one answer that is SOA, receive more
if len(in.Answer) == 1 {
t.tsigTimersOnly = true
c <- &Envelope{in.Answer, nil}
continue
}
}
if !first {
t.tsigTimersOnly = true // Subsequent envelopes use this.
if isSOALast(in) {
c <- &Envelope{in.Answer, nil}
return
}
c <- &Envelope{in.Answer, nil}
}
}
}
func (t *Transfer) inIxfr(id uint16, c chan *Envelope) {
serial := uint32(0) // The first serial seen is the current server serial
first := true
defer t.Close()
defer close(c)
timeout := dnsTimeout
if t.ReadTimeout != 0 {
timeout = t.ReadTimeout
}
for {
t.SetReadDeadline(time.Now().Add(timeout))
in, err := t.ReadMsg()
if err != nil {
c <- &Envelope{nil, err}
return
}
if id != in.Id {
c <- &Envelope{in.Answer, ErrId}
return
}
if first {
// A single SOA RR signals "no changes"
if len(in.Answer) == 1 && isSOAFirst(in) {
c <- &Envelope{in.Answer, nil}
return
}
// Check if the returned answer is ok
if !isSOAFirst(in) {
c <- &Envelope{in.Answer, ErrSoa}
return
}
// This serial is important
serial = in.Answer[0].(*SOA).Serial
first = !first
}
// Now we need to check each message for SOA records, to see what we need to do
if !first {
t.tsigTimersOnly = true
// If the last record in the IXFR contains the servers' SOA, we should quit
if v, ok := in.Answer[len(in.Answer)-1].(*SOA); ok {
if v.Serial == serial {
c <- &Envelope{in.Answer, nil}
return
}
}
c <- &Envelope{in.Answer, nil}
}
}
}
// Out performs an outgoing transfer with the client connecting in w.
// Basic use pattern:
//
// ch := make(chan *dns.Envelope)
// tr := new(dns.Transfer)
// go tr.Out(w, r, ch)
// ch <- &dns.Envelope{RR: []dns.RR{soa, rr1, rr2, rr3, soa}}
// close(ch)
// w.Hijack()
// // w.Close() // Client closes connection
//
// The server is responsible for sending the correct sequence of RRs through the
// channel ch.
func (t *Transfer) Out(w ResponseWriter, q *Msg, ch chan *Envelope) error {
for x := range ch {
r := new(Msg)
// Compress?
r.SetReply(q)
r.Authoritative = true
// assume it fits TODO(miek): fix
r.Answer = append(r.Answer, x.RR...)
if err := w.WriteMsg(r); err != nil {
return err
}
}
w.TsigTimersOnly(true)
return nil
}
// ReadMsg reads a message from the transfer connection t.
func (t *Transfer) ReadMsg() (*Msg, error) {
m := new(Msg)
p := make([]byte, MaxMsgSize)
n, err := t.Read(p)
if err != nil && n == 0 {
return nil, err
}
p = p[:n]
if err := m.Unpack(p); err != nil {
return nil, err
}
if ts := m.IsTsig(); ts != nil && t.TsigSecret != nil {
if _, ok := t.TsigSecret[ts.Hdr.Name]; !ok {
return m, ErrSecret
}
// Need to work on the original message p, as that was used to calculate the tsig.
err = TsigVerify(p, t.TsigSecret[ts.Hdr.Name], t.tsigRequestMAC, t.tsigTimersOnly)
t.tsigRequestMAC = ts.MAC
}
return m, err
}
// WriteMsg writes a message through the transfer connection t.
func (t *Transfer) WriteMsg(m *Msg) (err error) {
var out []byte
if ts := m.IsTsig(); ts != nil && t.TsigSecret != nil {
if _, ok := t.TsigSecret[ts.Hdr.Name]; !ok {
return ErrSecret
}
out, t.tsigRequestMAC, err = TsigGenerate(m, t.TsigSecret[ts.Hdr.Name], t.tsigRequestMAC, t.tsigTimersOnly)
} else {
out, err = m.Pack()
}
if err != nil {
return err
}
if _, err = t.Write(out); err != nil {
return err
}
return nil
}
func isSOAFirst(in *Msg) bool {
if len(in.Answer) > 0 {
return in.Answer[0].Header().Rrtype == TypeSOA
}
return false
}
func isSOALast(in *Msg) bool {
if len(in.Answer) > 0 {
return in.Answer[len(in.Answer)-1].Header().Rrtype == TypeSOA
}
return false
}

3529
vendor/github.com/miekg/dns/zmsg.go generated vendored

File diff suppressed because it is too large Load diff

842
vendor/github.com/miekg/dns/ztypes.go generated vendored
View file

@ -1,842 +0,0 @@
// *** DO NOT MODIFY ***
// AUTOGENERATED BY go generate from type_generate.go
package dns
import (
"encoding/base64"
"net"
)
// TypeToRR is a map of constructors for each RR type.
var TypeToRR = map[uint16]func() RR{
TypeA: func() RR { return new(A) },
TypeAAAA: func() RR { return new(AAAA) },
TypeAFSDB: func() RR { return new(AFSDB) },
TypeANY: func() RR { return new(ANY) },
TypeCAA: func() RR { return new(CAA) },
TypeCDNSKEY: func() RR { return new(CDNSKEY) },
TypeCDS: func() RR { return new(CDS) },
TypeCERT: func() RR { return new(CERT) },
TypeCNAME: func() RR { return new(CNAME) },
TypeDHCID: func() RR { return new(DHCID) },
TypeDLV: func() RR { return new(DLV) },
TypeDNAME: func() RR { return new(DNAME) },
TypeDNSKEY: func() RR { return new(DNSKEY) },
TypeDS: func() RR { return new(DS) },
TypeEID: func() RR { return new(EID) },
TypeEUI48: func() RR { return new(EUI48) },
TypeEUI64: func() RR { return new(EUI64) },
TypeGID: func() RR { return new(GID) },
TypeGPOS: func() RR { return new(GPOS) },
TypeHINFO: func() RR { return new(HINFO) },
TypeHIP: func() RR { return new(HIP) },
TypeKEY: func() RR { return new(KEY) },
TypeKX: func() RR { return new(KX) },
TypeL32: func() RR { return new(L32) },
TypeL64: func() RR { return new(L64) },
TypeLOC: func() RR { return new(LOC) },
TypeLP: func() RR { return new(LP) },
TypeMB: func() RR { return new(MB) },
TypeMD: func() RR { return new(MD) },
TypeMF: func() RR { return new(MF) },
TypeMG: func() RR { return new(MG) },
TypeMINFO: func() RR { return new(MINFO) },
TypeMR: func() RR { return new(MR) },
TypeMX: func() RR { return new(MX) },
TypeNAPTR: func() RR { return new(NAPTR) },
TypeNID: func() RR { return new(NID) },
TypeNIMLOC: func() RR { return new(NIMLOC) },
TypeNINFO: func() RR { return new(NINFO) },
TypeNS: func() RR { return new(NS) },
TypeNSAPPTR: func() RR { return new(NSAPPTR) },
TypeNSEC: func() RR { return new(NSEC) },
TypeNSEC3: func() RR { return new(NSEC3) },
TypeNSEC3PARAM: func() RR { return new(NSEC3PARAM) },
TypeOPENPGPKEY: func() RR { return new(OPENPGPKEY) },
TypeOPT: func() RR { return new(OPT) },
TypePTR: func() RR { return new(PTR) },
TypePX: func() RR { return new(PX) },
TypeRKEY: func() RR { return new(RKEY) },
TypeRP: func() RR { return new(RP) },
TypeRRSIG: func() RR { return new(RRSIG) },
TypeRT: func() RR { return new(RT) },
TypeSIG: func() RR { return new(SIG) },
TypeSMIMEA: func() RR { return new(SMIMEA) },
TypeSOA: func() RR { return new(SOA) },
TypeSPF: func() RR { return new(SPF) },
TypeSRV: func() RR { return new(SRV) },
TypeSSHFP: func() RR { return new(SSHFP) },
TypeTA: func() RR { return new(TA) },
TypeTALINK: func() RR { return new(TALINK) },
TypeTKEY: func() RR { return new(TKEY) },
TypeTLSA: func() RR { return new(TLSA) },
TypeTSIG: func() RR { return new(TSIG) },
TypeTXT: func() RR { return new(TXT) },
TypeUID: func() RR { return new(UID) },
TypeUINFO: func() RR { return new(UINFO) },
TypeURI: func() RR { return new(URI) },
TypeX25: func() RR { return new(X25) },
}
// TypeToString is a map of strings for each RR type.
var TypeToString = map[uint16]string{
TypeA: "A",
TypeAAAA: "AAAA",
TypeAFSDB: "AFSDB",
TypeANY: "ANY",
TypeATMA: "ATMA",
TypeAXFR: "AXFR",
TypeCAA: "CAA",
TypeCDNSKEY: "CDNSKEY",
TypeCDS: "CDS",
TypeCERT: "CERT",
TypeCNAME: "CNAME",
TypeDHCID: "DHCID",
TypeDLV: "DLV",
TypeDNAME: "DNAME",
TypeDNSKEY: "DNSKEY",
TypeDS: "DS",
TypeEID: "EID",
TypeEUI48: "EUI48",
TypeEUI64: "EUI64",
TypeGID: "GID",
TypeGPOS: "GPOS",
TypeHINFO: "HINFO",
TypeHIP: "HIP",
TypeISDN: "ISDN",
TypeIXFR: "IXFR",
TypeKEY: "KEY",
TypeKX: "KX",
TypeL32: "L32",
TypeL64: "L64",
TypeLOC: "LOC",
TypeLP: "LP",
TypeMAILA: "MAILA",
TypeMAILB: "MAILB",
TypeMB: "MB",
TypeMD: "MD",
TypeMF: "MF",
TypeMG: "MG",
TypeMINFO: "MINFO",
TypeMR: "MR",
TypeMX: "MX",
TypeNAPTR: "NAPTR",
TypeNID: "NID",
TypeNIMLOC: "NIMLOC",
TypeNINFO: "NINFO",
TypeNS: "NS",
TypeNSEC: "NSEC",
TypeNSEC3: "NSEC3",
TypeNSEC3PARAM: "NSEC3PARAM",
TypeNULL: "NULL",
TypeNXT: "NXT",
TypeNone: "None",
TypeOPENPGPKEY: "OPENPGPKEY",
TypeOPT: "OPT",
TypePTR: "PTR",
TypePX: "PX",
TypeRKEY: "RKEY",
TypeRP: "RP",
TypeRRSIG: "RRSIG",
TypeRT: "RT",
TypeReserved: "Reserved",
TypeSIG: "SIG",
TypeSMIMEA: "SMIMEA",
TypeSOA: "SOA",
TypeSPF: "SPF",
TypeSRV: "SRV",
TypeSSHFP: "SSHFP",
TypeTA: "TA",
TypeTALINK: "TALINK",
TypeTKEY: "TKEY",
TypeTLSA: "TLSA",
TypeTSIG: "TSIG",
TypeTXT: "TXT",
TypeUID: "UID",
TypeUINFO: "UINFO",
TypeUNSPEC: "UNSPEC",
TypeURI: "URI",
TypeX25: "X25",
TypeNSAPPTR: "NSAP-PTR",
}
// Header() functions
func (rr *A) Header() *RR_Header { return &rr.Hdr }
func (rr *AAAA) Header() *RR_Header { return &rr.Hdr }
func (rr *AFSDB) Header() *RR_Header { return &rr.Hdr }
func (rr *ANY) Header() *RR_Header { return &rr.Hdr }
func (rr *CAA) Header() *RR_Header { return &rr.Hdr }
func (rr *CDNSKEY) Header() *RR_Header { return &rr.Hdr }
func (rr *CDS) Header() *RR_Header { return &rr.Hdr }
func (rr *CERT) Header() *RR_Header { return &rr.Hdr }
func (rr *CNAME) Header() *RR_Header { return &rr.Hdr }
func (rr *DHCID) Header() *RR_Header { return &rr.Hdr }
func (rr *DLV) Header() *RR_Header { return &rr.Hdr }
func (rr *DNAME) Header() *RR_Header { return &rr.Hdr }
func (rr *DNSKEY) Header() *RR_Header { return &rr.Hdr }
func (rr *DS) Header() *RR_Header { return &rr.Hdr }
func (rr *EID) Header() *RR_Header { return &rr.Hdr }
func (rr *EUI48) Header() *RR_Header { return &rr.Hdr }
func (rr *EUI64) Header() *RR_Header { return &rr.Hdr }
func (rr *GID) Header() *RR_Header { return &rr.Hdr }
func (rr *GPOS) Header() *RR_Header { return &rr.Hdr }
func (rr *HINFO) Header() *RR_Header { return &rr.Hdr }
func (rr *HIP) Header() *RR_Header { return &rr.Hdr }
func (rr *KEY) Header() *RR_Header { return &rr.Hdr }
func (rr *KX) Header() *RR_Header { return &rr.Hdr }
func (rr *L32) Header() *RR_Header { return &rr.Hdr }
func (rr *L64) Header() *RR_Header { return &rr.Hdr }
func (rr *LOC) Header() *RR_Header { return &rr.Hdr }
func (rr *LP) Header() *RR_Header { return &rr.Hdr }
func (rr *MB) Header() *RR_Header { return &rr.Hdr }
func (rr *MD) Header() *RR_Header { return &rr.Hdr }
func (rr *MF) Header() *RR_Header { return &rr.Hdr }
func (rr *MG) Header() *RR_Header { return &rr.Hdr }
func (rr *MINFO) Header() *RR_Header { return &rr.Hdr }
func (rr *MR) Header() *RR_Header { return &rr.Hdr }
func (rr *MX) Header() *RR_Header { return &rr.Hdr }
func (rr *NAPTR) Header() *RR_Header { return &rr.Hdr }
func (rr *NID) Header() *RR_Header { return &rr.Hdr }
func (rr *NIMLOC) Header() *RR_Header { return &rr.Hdr }
func (rr *NINFO) Header() *RR_Header { return &rr.Hdr }
func (rr *NS) Header() *RR_Header { return &rr.Hdr }
func (rr *NSAPPTR) Header() *RR_Header { return &rr.Hdr }
func (rr *NSEC) Header() *RR_Header { return &rr.Hdr }
func (rr *NSEC3) Header() *RR_Header { return &rr.Hdr }
func (rr *NSEC3PARAM) Header() *RR_Header { return &rr.Hdr }
func (rr *OPENPGPKEY) Header() *RR_Header { return &rr.Hdr }
func (rr *OPT) Header() *RR_Header { return &rr.Hdr }
func (rr *PTR) Header() *RR_Header { return &rr.Hdr }
func (rr *PX) Header() *RR_Header { return &rr.Hdr }
func (rr *RFC3597) Header() *RR_Header { return &rr.Hdr }
func (rr *RKEY) Header() *RR_Header { return &rr.Hdr }
func (rr *RP) Header() *RR_Header { return &rr.Hdr }
func (rr *RRSIG) Header() *RR_Header { return &rr.Hdr }
func (rr *RT) Header() *RR_Header { return &rr.Hdr }
func (rr *SIG) Header() *RR_Header { return &rr.Hdr }
func (rr *SMIMEA) Header() *RR_Header { return &rr.Hdr }
func (rr *SOA) Header() *RR_Header { return &rr.Hdr }
func (rr *SPF) Header() *RR_Header { return &rr.Hdr }
func (rr *SRV) Header() *RR_Header { return &rr.Hdr }
func (rr *SSHFP) Header() *RR_Header { return &rr.Hdr }
func (rr *TA) Header() *RR_Header { return &rr.Hdr }
func (rr *TALINK) Header() *RR_Header { return &rr.Hdr }
func (rr *TKEY) Header() *RR_Header { return &rr.Hdr }
func (rr *TLSA) Header() *RR_Header { return &rr.Hdr }
func (rr *TSIG) Header() *RR_Header { return &rr.Hdr }
func (rr *TXT) Header() *RR_Header { return &rr.Hdr }
func (rr *UID) Header() *RR_Header { return &rr.Hdr }
func (rr *UINFO) Header() *RR_Header { return &rr.Hdr }
func (rr *URI) Header() *RR_Header { return &rr.Hdr }
func (rr *X25) Header() *RR_Header { return &rr.Hdr }
// len() functions
func (rr *A) len() int {
l := rr.Hdr.len()
l += net.IPv4len // A
return l
}
func (rr *AAAA) len() int {
l := rr.Hdr.len()
l += net.IPv6len // AAAA
return l
}
func (rr *AFSDB) len() int {
l := rr.Hdr.len()
l += 2 // Subtype
l += len(rr.Hostname) + 1
return l
}
func (rr *ANY) len() int {
l := rr.Hdr.len()
return l
}
func (rr *CAA) len() int {
l := rr.Hdr.len()
l += 1 // Flag
l += len(rr.Tag) + 1
l += len(rr.Value)
return l
}
func (rr *CERT) len() int {
l := rr.Hdr.len()
l += 2 // Type
l += 2 // KeyTag
l += 1 // Algorithm
l += base64.StdEncoding.DecodedLen(len(rr.Certificate))
return l
}
func (rr *CNAME) len() int {
l := rr.Hdr.len()
l += len(rr.Target) + 1
return l
}
func (rr *DHCID) len() int {
l := rr.Hdr.len()
l += base64.StdEncoding.DecodedLen(len(rr.Digest))
return l
}
func (rr *DNAME) len() int {
l := rr.Hdr.len()
l += len(rr.Target) + 1
return l
}
func (rr *DNSKEY) len() int {
l := rr.Hdr.len()
l += 2 // Flags
l += 1 // Protocol
l += 1 // Algorithm
l += base64.StdEncoding.DecodedLen(len(rr.PublicKey))
return l
}
func (rr *DS) len() int {
l := rr.Hdr.len()
l += 2 // KeyTag
l += 1 // Algorithm
l += 1 // DigestType
l += len(rr.Digest)/2 + 1
return l
}
func (rr *EID) len() int {
l := rr.Hdr.len()
l += len(rr.Endpoint)/2 + 1
return l
}
func (rr *EUI48) len() int {
l := rr.Hdr.len()
l += 6 // Address
return l
}
func (rr *EUI64) len() int {
l := rr.Hdr.len()
l += 8 // Address
return l
}
func (rr *GID) len() int {
l := rr.Hdr.len()
l += 4 // Gid
return l
}
func (rr *GPOS) len() int {
l := rr.Hdr.len()
l += len(rr.Longitude) + 1
l += len(rr.Latitude) + 1
l += len(rr.Altitude) + 1
return l
}
func (rr *HINFO) len() int {
l := rr.Hdr.len()
l += len(rr.Cpu) + 1
l += len(rr.Os) + 1
return l
}
func (rr *HIP) len() int {
l := rr.Hdr.len()
l += 1 // HitLength
l += 1 // PublicKeyAlgorithm
l += 2 // PublicKeyLength
l += len(rr.Hit)/2 + 1
l += base64.StdEncoding.DecodedLen(len(rr.PublicKey))
for _, x := range rr.RendezvousServers {
l += len(x) + 1
}
return l
}
func (rr *KX) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += len(rr.Exchanger) + 1
return l
}
func (rr *L32) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += net.IPv4len // Locator32
return l
}
func (rr *L64) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += 8 // Locator64
return l
}
func (rr *LOC) len() int {
l := rr.Hdr.len()
l += 1 // Version
l += 1 // Size
l += 1 // HorizPre
l += 1 // VertPre
l += 4 // Latitude
l += 4 // Longitude
l += 4 // Altitude
return l
}
func (rr *LP) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += len(rr.Fqdn) + 1
return l
}
func (rr *MB) len() int {
l := rr.Hdr.len()
l += len(rr.Mb) + 1
return l
}
func (rr *MD) len() int {
l := rr.Hdr.len()
l += len(rr.Md) + 1
return l
}
func (rr *MF) len() int {
l := rr.Hdr.len()
l += len(rr.Mf) + 1
return l
}
func (rr *MG) len() int {
l := rr.Hdr.len()
l += len(rr.Mg) + 1
return l
}
func (rr *MINFO) len() int {
l := rr.Hdr.len()
l += len(rr.Rmail) + 1
l += len(rr.Email) + 1
return l
}
func (rr *MR) len() int {
l := rr.Hdr.len()
l += len(rr.Mr) + 1
return l
}
func (rr *MX) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += len(rr.Mx) + 1
return l
}
func (rr *NAPTR) len() int {
l := rr.Hdr.len()
l += 2 // Order
l += 2 // Preference
l += len(rr.Flags) + 1
l += len(rr.Service) + 1
l += len(rr.Regexp) + 1
l += len(rr.Replacement) + 1
return l
}
func (rr *NID) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += 8 // NodeID
return l
}
func (rr *NIMLOC) len() int {
l := rr.Hdr.len()
l += len(rr.Locator)/2 + 1
return l
}
func (rr *NINFO) len() int {
l := rr.Hdr.len()
for _, x := range rr.ZSData {
l += len(x) + 1
}
return l
}
func (rr *NS) len() int {
l := rr.Hdr.len()
l += len(rr.Ns) + 1
return l
}
func (rr *NSAPPTR) len() int {
l := rr.Hdr.len()
l += len(rr.Ptr) + 1
return l
}
func (rr *NSEC3PARAM) len() int {
l := rr.Hdr.len()
l += 1 // Hash
l += 1 // Flags
l += 2 // Iterations
l += 1 // SaltLength
l += len(rr.Salt)/2 + 1
return l
}
func (rr *OPENPGPKEY) len() int {
l := rr.Hdr.len()
l += base64.StdEncoding.DecodedLen(len(rr.PublicKey))
return l
}
func (rr *PTR) len() int {
l := rr.Hdr.len()
l += len(rr.Ptr) + 1
return l
}
func (rr *PX) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += len(rr.Map822) + 1
l += len(rr.Mapx400) + 1
return l
}
func (rr *RFC3597) len() int {
l := rr.Hdr.len()
l += len(rr.Rdata)/2 + 1
return l
}
func (rr *RKEY) len() int {
l := rr.Hdr.len()
l += 2 // Flags
l += 1 // Protocol
l += 1 // Algorithm
l += base64.StdEncoding.DecodedLen(len(rr.PublicKey))
return l
}
func (rr *RP) len() int {
l := rr.Hdr.len()
l += len(rr.Mbox) + 1
l += len(rr.Txt) + 1
return l
}
func (rr *RRSIG) len() int {
l := rr.Hdr.len()
l += 2 // TypeCovered
l += 1 // Algorithm
l += 1 // Labels
l += 4 // OrigTtl
l += 4 // Expiration
l += 4 // Inception
l += 2 // KeyTag
l += len(rr.SignerName) + 1
l += base64.StdEncoding.DecodedLen(len(rr.Signature))
return l
}
func (rr *RT) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += len(rr.Host) + 1
return l
}
func (rr *SMIMEA) len() int {
l := rr.Hdr.len()
l += 1 // Usage
l += 1 // Selector
l += 1 // MatchingType
l += len(rr.Certificate)/2 + 1
return l
}
func (rr *SOA) len() int {
l := rr.Hdr.len()
l += len(rr.Ns) + 1
l += len(rr.Mbox) + 1
l += 4 // Serial
l += 4 // Refresh
l += 4 // Retry
l += 4 // Expire
l += 4 // Minttl
return l
}
func (rr *SPF) len() int {
l := rr.Hdr.len()
for _, x := range rr.Txt {
l += len(x) + 1
}
return l
}
func (rr *SRV) len() int {
l := rr.Hdr.len()
l += 2 // Priority
l += 2 // Weight
l += 2 // Port
l += len(rr.Target) + 1
return l
}
func (rr *SSHFP) len() int {
l := rr.Hdr.len()
l += 1 // Algorithm
l += 1 // Type
l += len(rr.FingerPrint)/2 + 1
return l
}
func (rr *TA) len() int {
l := rr.Hdr.len()
l += 2 // KeyTag
l += 1 // Algorithm
l += 1 // DigestType
l += len(rr.Digest)/2 + 1
return l
}
func (rr *TALINK) len() int {
l := rr.Hdr.len()
l += len(rr.PreviousName) + 1
l += len(rr.NextName) + 1
return l
}
func (rr *TKEY) len() int {
l := rr.Hdr.len()
l += len(rr.Algorithm) + 1
l += 4 // Inception
l += 4 // Expiration
l += 2 // Mode
l += 2 // Error
l += 2 // KeySize
l += len(rr.Key) + 1
l += 2 // OtherLen
l += len(rr.OtherData) + 1
return l
}
func (rr *TLSA) len() int {
l := rr.Hdr.len()
l += 1 // Usage
l += 1 // Selector
l += 1 // MatchingType
l += len(rr.Certificate)/2 + 1
return l
}
func (rr *TSIG) len() int {
l := rr.Hdr.len()
l += len(rr.Algorithm) + 1
l += 6 // TimeSigned
l += 2 // Fudge
l += 2 // MACSize
l += len(rr.MAC)/2 + 1
l += 2 // OrigId
l += 2 // Error
l += 2 // OtherLen
l += len(rr.OtherData)/2 + 1
return l
}
func (rr *TXT) len() int {
l := rr.Hdr.len()
for _, x := range rr.Txt {
l += len(x) + 1
}
return l
}
func (rr *UID) len() int {
l := rr.Hdr.len()
l += 4 // Uid
return l
}
func (rr *UINFO) len() int {
l := rr.Hdr.len()
l += len(rr.Uinfo) + 1
return l
}
func (rr *URI) len() int {
l := rr.Hdr.len()
l += 2 // Priority
l += 2 // Weight
l += len(rr.Target)
return l
}
func (rr *X25) len() int {
l := rr.Hdr.len()
l += len(rr.PSDNAddress) + 1
return l
}
// copy() functions
func (rr *A) copy() RR {
return &A{*rr.Hdr.copyHeader(), copyIP(rr.A)}
}
func (rr *AAAA) copy() RR {
return &AAAA{*rr.Hdr.copyHeader(), copyIP(rr.AAAA)}
}
func (rr *AFSDB) copy() RR {
return &AFSDB{*rr.Hdr.copyHeader(), rr.Subtype, rr.Hostname}
}
func (rr *ANY) copy() RR {
return &ANY{*rr.Hdr.copyHeader()}
}
func (rr *CAA) copy() RR {
return &CAA{*rr.Hdr.copyHeader(), rr.Flag, rr.Tag, rr.Value}
}
func (rr *CERT) copy() RR {
return &CERT{*rr.Hdr.copyHeader(), rr.Type, rr.KeyTag, rr.Algorithm, rr.Certificate}
}
func (rr *CNAME) copy() RR {
return &CNAME{*rr.Hdr.copyHeader(), rr.Target}
}
func (rr *DHCID) copy() RR {
return &DHCID{*rr.Hdr.copyHeader(), rr.Digest}
}
func (rr *DNAME) copy() RR {
return &DNAME{*rr.Hdr.copyHeader(), rr.Target}
}
func (rr *DNSKEY) copy() RR {
return &DNSKEY{*rr.Hdr.copyHeader(), rr.Flags, rr.Protocol, rr.Algorithm, rr.PublicKey}
}
func (rr *DS) copy() RR {
return &DS{*rr.Hdr.copyHeader(), rr.KeyTag, rr.Algorithm, rr.DigestType, rr.Digest}
}
func (rr *EID) copy() RR {
return &EID{*rr.Hdr.copyHeader(), rr.Endpoint}
}
func (rr *EUI48) copy() RR {
return &EUI48{*rr.Hdr.copyHeader(), rr.Address}
}
func (rr *EUI64) copy() RR {
return &EUI64{*rr.Hdr.copyHeader(), rr.Address}
}
func (rr *GID) copy() RR {
return &GID{*rr.Hdr.copyHeader(), rr.Gid}
}
func (rr *GPOS) copy() RR {
return &GPOS{*rr.Hdr.copyHeader(), rr.Longitude, rr.Latitude, rr.Altitude}
}
func (rr *HINFO) copy() RR {
return &HINFO{*rr.Hdr.copyHeader(), rr.Cpu, rr.Os}
}
func (rr *HIP) copy() RR {
RendezvousServers := make([]string, len(rr.RendezvousServers))
copy(RendezvousServers, rr.RendezvousServers)
return &HIP{*rr.Hdr.copyHeader(), rr.HitLength, rr.PublicKeyAlgorithm, rr.PublicKeyLength, rr.Hit, rr.PublicKey, RendezvousServers}
}
func (rr *KX) copy() RR {
return &KX{*rr.Hdr.copyHeader(), rr.Preference, rr.Exchanger}
}
func (rr *L32) copy() RR {
return &L32{*rr.Hdr.copyHeader(), rr.Preference, copyIP(rr.Locator32)}
}
func (rr *L64) copy() RR {
return &L64{*rr.Hdr.copyHeader(), rr.Preference, rr.Locator64}
}
func (rr *LOC) copy() RR {
return &LOC{*rr.Hdr.copyHeader(), rr.Version, rr.Size, rr.HorizPre, rr.VertPre, rr.Latitude, rr.Longitude, rr.Altitude}
}
func (rr *LP) copy() RR {
return &LP{*rr.Hdr.copyHeader(), rr.Preference, rr.Fqdn}
}
func (rr *MB) copy() RR {
return &MB{*rr.Hdr.copyHeader(), rr.Mb}
}
func (rr *MD) copy() RR {
return &MD{*rr.Hdr.copyHeader(), rr.Md}
}
func (rr *MF) copy() RR {
return &MF{*rr.Hdr.copyHeader(), rr.Mf}
}
func (rr *MG) copy() RR {
return &MG{*rr.Hdr.copyHeader(), rr.Mg}
}
func (rr *MINFO) copy() RR {
return &MINFO{*rr.Hdr.copyHeader(), rr.Rmail, rr.Email}
}
func (rr *MR) copy() RR {
return &MR{*rr.Hdr.copyHeader(), rr.Mr}
}
func (rr *MX) copy() RR {
return &MX{*rr.Hdr.copyHeader(), rr.Preference, rr.Mx}
}
func (rr *NAPTR) copy() RR {
return &NAPTR{*rr.Hdr.copyHeader(), rr.Order, rr.Preference, rr.Flags, rr.Service, rr.Regexp, rr.Replacement}
}
func (rr *NID) copy() RR {
return &NID{*rr.Hdr.copyHeader(), rr.Preference, rr.NodeID}
}
func (rr *NIMLOC) copy() RR {
return &NIMLOC{*rr.Hdr.copyHeader(), rr.Locator}
}
func (rr *NINFO) copy() RR {
ZSData := make([]string, len(rr.ZSData))
copy(ZSData, rr.ZSData)
return &NINFO{*rr.Hdr.copyHeader(), ZSData}
}
func (rr *NS) copy() RR {
return &NS{*rr.Hdr.copyHeader(), rr.Ns}
}
func (rr *NSAPPTR) copy() RR {
return &NSAPPTR{*rr.Hdr.copyHeader(), rr.Ptr}
}
func (rr *NSEC) copy() RR {
TypeBitMap := make([]uint16, len(rr.TypeBitMap))
copy(TypeBitMap, rr.TypeBitMap)
return &NSEC{*rr.Hdr.copyHeader(), rr.NextDomain, TypeBitMap}
}
func (rr *NSEC3) copy() RR {
TypeBitMap := make([]uint16, len(rr.TypeBitMap))
copy(TypeBitMap, rr.TypeBitMap)
return &NSEC3{*rr.Hdr.copyHeader(), rr.Hash, rr.Flags, rr.Iterations, rr.SaltLength, rr.Salt, rr.HashLength, rr.NextDomain, TypeBitMap}
}
func (rr *NSEC3PARAM) copy() RR {
return &NSEC3PARAM{*rr.Hdr.copyHeader(), rr.Hash, rr.Flags, rr.Iterations, rr.SaltLength, rr.Salt}
}
func (rr *OPENPGPKEY) copy() RR {
return &OPENPGPKEY{*rr.Hdr.copyHeader(), rr.PublicKey}
}
func (rr *OPT) copy() RR {
Option := make([]EDNS0, len(rr.Option))
copy(Option, rr.Option)
return &OPT{*rr.Hdr.copyHeader(), Option}
}
func (rr *PTR) copy() RR {
return &PTR{*rr.Hdr.copyHeader(), rr.Ptr}
}
func (rr *PX) copy() RR {
return &PX{*rr.Hdr.copyHeader(), rr.Preference, rr.Map822, rr.Mapx400}
}
func (rr *RFC3597) copy() RR {
return &RFC3597{*rr.Hdr.copyHeader(), rr.Rdata}
}
func (rr *RKEY) copy() RR {
return &RKEY{*rr.Hdr.copyHeader(), rr.Flags, rr.Protocol, rr.Algorithm, rr.PublicKey}
}
func (rr *RP) copy() RR {
return &RP{*rr.Hdr.copyHeader(), rr.Mbox, rr.Txt}
}
func (rr *RRSIG) copy() RR {
return &RRSIG{*rr.Hdr.copyHeader(), rr.TypeCovered, rr.Algorithm, rr.Labels, rr.OrigTtl, rr.Expiration, rr.Inception, rr.KeyTag, rr.SignerName, rr.Signature}
}
func (rr *RT) copy() RR {
return &RT{*rr.Hdr.copyHeader(), rr.Preference, rr.Host}
}
func (rr *SMIMEA) copy() RR {
return &SMIMEA{*rr.Hdr.copyHeader(), rr.Usage, rr.Selector, rr.MatchingType, rr.Certificate}
}
func (rr *SOA) copy() RR {
return &SOA{*rr.Hdr.copyHeader(), rr.Ns, rr.Mbox, rr.Serial, rr.Refresh, rr.Retry, rr.Expire, rr.Minttl}
}
func (rr *SPF) copy() RR {
Txt := make([]string, len(rr.Txt))
copy(Txt, rr.Txt)
return &SPF{*rr.Hdr.copyHeader(), Txt}
}
func (rr *SRV) copy() RR {
return &SRV{*rr.Hdr.copyHeader(), rr.Priority, rr.Weight, rr.Port, rr.Target}
}
func (rr *SSHFP) copy() RR {
return &SSHFP{*rr.Hdr.copyHeader(), rr.Algorithm, rr.Type, rr.FingerPrint}
}
func (rr *TA) copy() RR {
return &TA{*rr.Hdr.copyHeader(), rr.KeyTag, rr.Algorithm, rr.DigestType, rr.Digest}
}
func (rr *TALINK) copy() RR {
return &TALINK{*rr.Hdr.copyHeader(), rr.PreviousName, rr.NextName}
}
func (rr *TKEY) copy() RR {
return &TKEY{*rr.Hdr.copyHeader(), rr.Algorithm, rr.Inception, rr.Expiration, rr.Mode, rr.Error, rr.KeySize, rr.Key, rr.OtherLen, rr.OtherData}
}
func (rr *TLSA) copy() RR {
return &TLSA{*rr.Hdr.copyHeader(), rr.Usage, rr.Selector, rr.MatchingType, rr.Certificate}
}
func (rr *TSIG) copy() RR {
return &TSIG{*rr.Hdr.copyHeader(), rr.Algorithm, rr.TimeSigned, rr.Fudge, rr.MACSize, rr.MAC, rr.OrigId, rr.Error, rr.OtherLen, rr.OtherData}
}
func (rr *TXT) copy() RR {
Txt := make([]string, len(rr.Txt))
copy(Txt, rr.Txt)
return &TXT{*rr.Hdr.copyHeader(), Txt}
}
func (rr *UID) copy() RR {
return &UID{*rr.Hdr.copyHeader(), rr.Uid}
}
func (rr *UINFO) copy() RR {
return &UINFO{*rr.Hdr.copyHeader(), rr.Uinfo}
}
func (rr *URI) copy() RR {
return &URI{*rr.Hdr.copyHeader(), rr.Priority, rr.Weight, rr.Target}
}
func (rr *X25) copy() RR {
return &X25{*rr.Hdr.copyHeader(), rr.PSDNAddress}
}

View file

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2015 Sebastian Erhart
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View file

@ -1,248 +0,0 @@
# lego
Let's Encrypt client and ACME library written in Go
[![GoDoc](https://godoc.org/github.com/xenolf/lego/acme?status.svg)](https://godoc.org/github.com/xenolf/lego/acme)
[![Build Status](https://travis-ci.org/xenolf/lego.svg?branch=master)](https://travis-ci.org/xenolf/lego)
[![Dev Chat](https://img.shields.io/badge/dev%20chat-gitter-blue.svg?label=dev+chat)](https://gitter.im/xenolf/lego)
#### General
This is a work in progress. Please do *NOT* run this on a production server and please report any bugs you find!
#### Installation
lego supports both binary installs and install from source.
To get the binary just download the latest release for your OS/Arch from [the release page](https://github.com/xenolf/lego/releases)
and put the binary somewhere convenient. lego does not assume anything about the location you run it from.
To install from source, just run
```
go get -u github.com/xenolf/lego
```
To build lego inside a Docker container, just run
```
docker build -t lego .
```
#### Features
- Register with CA
- Obtain certificates
- Renew certificates
- Revoke certificates
- Robust implementation of all ACME challenges
- HTTP (http-01)
- TLS with Server Name Indication (tls-sni-01)
- DNS (dns-01)
- SAN certificate support
- Comes with multiple optional [DNS providers](https://github.com/xenolf/lego/tree/master/providers/dns)
- [Custom challenge solvers](https://github.com/xenolf/lego/wiki/Writing-a-Challenge-Solver)
- Certificate bundling
- OCSP helper function
Please keep in mind that CLI switches and APIs are still subject to change.
When using the standard `--path` option, all certificates and account configurations are saved to a folder *.lego* in the current working directory.
#### Sudo
The CLI does not require root permissions but needs to bind to port 80 and 443 for certain challenges.
To run the CLI without sudo, you have four options:
- Use setcap 'cap_net_bind_service=+ep' /path/to/program
- Pass the `--http` or/and the `--tls` option and specify a custom port to bind to. In this case you have to forward port 80/443 to these custom ports (see [Port Usage](#port-usage)).
- Pass the `--webroot` option and specify the path to your webroot folder. In this case the challenge will be written in a file in `.well-known/acme-challenge/` inside your webroot.
- Pass the `--dns` option and specify a DNS provider.
#### Port Usage
By default lego assumes it is able to bind to ports 80 and 443 to solve challenges.
If this is not possible in your environment, you can use the `--http` and `--tls` options to instruct
lego to listen on that interface:port for any incoming challenges.
If you are using this option, make sure you proxy all of the following traffic to these ports.
HTTP Port:
- All plaintext HTTP requests to port 80 which begin with a request path of `/.well-known/acme-challenge/` for the HTTP challenge.
TLS Port:
- All TLS handshakes on port 443 for the TLS-SNI challenge.
This traffic redirection is only needed as long as lego solves challenges. As soon as you have received your certificates you can deactivate the forwarding.
#### Usage
```
NAME:
lego - Let's Encrypt client written in Go
USAGE:
lego [global options] command [command options] [arguments...]
VERSION:
0.3.0
COMMANDS:
run Register an account, then create and install a certificate
revoke Revoke a certificate
renew Renew a certificate
dnshelp Shows additional help for the --dns global option
help, h Shows a list of commands or help for one command
GLOBAL OPTIONS:
--domains, -d [--domains option --domains option] Add domains to the process
--server, -s "https://acme-v01.api.letsencrypt.org/directory" CA hostname (and optionally :port). The server certificate must be trusted in order to avoid further modifications to the client.
--email, -m Email used for registration and recovery contact.
--accept-tos, -a By setting this flag to true you indicate that you accept the current Let's Encrypt terms of service.
--key-type, -k "rsa2048" Key type to use for private keys. Supported: rsa2048, rsa4096, rsa8192, ec256, ec384
--path "${CWD}/.lego" Directory to use for storing the data
--exclude, -x [--exclude option --exclude option] Explicitly disallow solvers by name from being used. Solvers: "http-01", "tls-sni-01".
--webroot Set the webroot folder to use for HTTP based challenges to write directly in a file in .well-known/acme-challenge
--http Set the port and interface to use for HTTP based challenges to listen on. Supported: interface:port or :port
--tls Set the port and interface to use for TLS based challenges to listen on. Supported: interface:port or :port
--dns Solve a DNS challenge using the specified provider. Disables all other challenges. Run 'lego dnshelp' for help on usage.
--help, -h show help
--version, -v print the version
```
##### CLI Example
Assumes the `lego` binary has permission to bind to ports 80 and 443. You can get a pre-built binary from the [releases](https://github.com/xenolf/lego/releases) page.
If your environment does not allow you to bind to these ports, please read [Port Usage](#port-usage).
Obtain a certificate:
```bash
$ lego --email="foo@bar.com" --domains="example.com" run
```
(Find your certificate in the `.lego` folder of current working directory.)
To renew the certificate:
```bash
$ lego --email="foo@bar.com" --domains="example.com" renew
```
Obtain a certificate using the DNS challenge and AWS Route 53:
```bash
$ AWS_REGION=us-east-1 AWS_ACCESS_KEY_ID=my_id AWS_SECRET_ACCESS_KEY=my_key lego --email="foo@bar.com" --domains="example.com" --dns="route53" run
```
Note that `--dns=foo` implies `--exclude=http-01` and `--exclude=tls-sni-01`. lego will not attempt other challenges if you've told it to use DNS instead.
lego defaults to communicating with the production Let's Encrypt ACME server. If you'd like to test something without issuing real certificates, consider using the staging endpoint instead:
```bash
$ lego --server=https://acme-staging.api.letsencrypt.org/directory …
```
#### DNS Challenge API Details
##### AWS Route 53
The following AWS IAM policy document describes the permissions required for lego to complete the DNS challenge.
Replace `<INSERT_YOUR_HOSTED_ZONE_ID_HERE>` with the Route 53 zone ID of the domain you are authorizing.
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"route53:GetChange",
"route53:ListHostedZonesByName"
],
"Resource": [
"*"
]
},
{
"Effect": "Allow",
"Action": [
"route53:ChangeResourceRecordSets"
],
"Resource": [
"arn:aws:route53:::hostedzone/<INSERT_YOUR_HOSTED_ZONE_ID_HERE>"
]
}
]
}
```
#### ACME Library Usage
A valid, but bare-bones example use of the acme package:
```go
// You'll need a user or account type that implements acme.User
type MyUser struct {
Email string
Registration *acme.RegistrationResource
key crypto.PrivateKey
}
func (u MyUser) GetEmail() string {
return u.Email
}
func (u MyUser) GetRegistration() *acme.RegistrationResource {
return u.Registration
}
func (u MyUser) GetPrivateKey() crypto.PrivateKey {
return u.key
}
// Create a user. New accounts need an email and private key to start.
const rsaKeySize = 2048
privateKey, err := rsa.GenerateKey(rand.Reader, rsaKeySize)
if err != nil {
log.Fatal(err)
}
myUser := MyUser{
Email: "you@yours.com",
key: privateKey,
}
// A client facilitates communication with the CA server. This CA URL is
// configured for a local dev instance of Boulder running in Docker in a VM.
client, err := acme.NewClient("http://192.168.99.100:4000", &myUser, acme.RSA2048)
if err != nil {
log.Fatal(err)
}
// We specify an http port of 5002 and an tls port of 5001 on all interfaces
// because we aren't running as root and can't bind a listener to port 80 and 443
// (used later when we attempt to pass challenges). Keep in mind that we still
// need to proxy challenge traffic to port 5002 and 5001.
client.SetHTTPAddress(":5002")
client.SetTLSAddress(":5001")
// New users will need to register
reg, err := client.Register()
if err != nil {
log.Fatal(err)
}
myUser.Registration = reg
// SAVE THE USER.
// The client has a URL to the current Let's Encrypt Subscriber
// Agreement. The user will need to agree to it.
err = client.AgreeToTOS()
if err != nil {
log.Fatal(err)
}
// The acme library takes care of completing the challenges to obtain the certificate(s).
// The domains must resolve to this machine or you have to use the DNS challenge.
bundle := false
certificates, failures := client.ObtainCertificate([]string{"mydomain.com"}, bundle, nil)
if len(failures) > 0 {
log.Fatal(failures)
}
// Each certificate comes back with the cert bytes, the bytes of the client's
// private key, and a certificate URL. SAVE THESE TO DISK.
fmt.Printf("%#v\n", certificates)
// ... all done.
```

View file

@ -1,16 +0,0 @@
package acme
// Challenge is a string that identifies a particular type and version of ACME challenge.
type Challenge string
const (
// HTTP01 is the "http-01" ACME challenge https://github.com/ietf-wg-acme/acme/blob/master/draft-ietf-acme-acme.md#http
// Note: HTTP01ChallengePath returns the URL path to fulfill this challenge
HTTP01 = Challenge("http-01")
// TLSSNI01 is the "tls-sni-01" ACME challenge https://github.com/ietf-wg-acme/acme/blob/master/draft-ietf-acme-acme.md#tls-with-server-name-indication-tls-sni
// Note: TLSSNI01ChallengeCert returns a certificate to fulfill this challenge
TLSSNI01 = Challenge("tls-sni-01")
// DNS01 is the "dns-01" ACME challenge https://github.com/ietf-wg-acme/acme/blob/master/draft-ietf-acme-acme.md#dns
// Note: DNS01Record returns a DNS record which will fulfill this challenge
DNS01 = Challenge("dns-01")
)

View file

@ -1,702 +0,0 @@
// Package acme implements the ACME protocol for Let's Encrypt and other conforming providers.
package acme
import (
"crypto"
"crypto/x509"
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"io/ioutil"
"log"
"net"
"regexp"
"strconv"
"strings"
"time"
)
var (
// Logger is an optional custom logger.
Logger *log.Logger
)
// logf writes a log entry. It uses Logger if not
// nil, otherwise it uses the default log.Logger.
func logf(format string, args ...interface{}) {
if Logger != nil {
Logger.Printf(format, args...)
} else {
log.Printf(format, args...)
}
}
// User interface is to be implemented by users of this library.
// It is used by the client type to get user specific information.
type User interface {
GetEmail() string
GetRegistration() *RegistrationResource
GetPrivateKey() crypto.PrivateKey
}
// Interface for all challenge solvers to implement.
type solver interface {
Solve(challenge challenge, domain string) error
}
type validateFunc func(j *jws, domain, uri string, chlng challenge) error
// Client is the user-friendy way to ACME
type Client struct {
directory directory
user User
jws *jws
keyType KeyType
issuerCert []byte
solvers map[Challenge]solver
}
// NewClient creates a new ACME client on behalf of the user. The client will depend on
// the ACME directory located at caDirURL for the rest of its actions. It will
// generate private keys for certificates of size keyBits.
func NewClient(caDirURL string, user User, keyType KeyType) (*Client, error) {
privKey := user.GetPrivateKey()
if privKey == nil {
return nil, errors.New("private key was nil")
}
var dir directory
if _, err := getJSON(caDirURL, &dir); err != nil {
return nil, fmt.Errorf("get directory at '%s': %v", caDirURL, err)
}
if dir.NewRegURL == "" {
return nil, errors.New("directory missing new registration URL")
}
if dir.NewAuthzURL == "" {
return nil, errors.New("directory missing new authz URL")
}
if dir.NewCertURL == "" {
return nil, errors.New("directory missing new certificate URL")
}
if dir.RevokeCertURL == "" {
return nil, errors.New("directory missing revoke certificate URL")
}
jws := &jws{privKey: privKey, directoryURL: caDirURL}
// REVIEW: best possibility?
// Add all available solvers with the right index as per ACME
// spec to this map. Otherwise they won`t be found.
solvers := make(map[Challenge]solver)
solvers[HTTP01] = &httpChallenge{jws: jws, validate: validate, provider: &HTTPProviderServer{}}
solvers[TLSSNI01] = &tlsSNIChallenge{jws: jws, validate: validate, provider: &TLSProviderServer{}}
return &Client{directory: dir, user: user, jws: jws, keyType: keyType, solvers: solvers}, nil
}
// SetChallengeProvider specifies a custom provider that will make the solution available
func (c *Client) SetChallengeProvider(challenge Challenge, p ChallengeProvider) error {
switch challenge {
case HTTP01:
c.solvers[challenge] = &httpChallenge{jws: c.jws, validate: validate, provider: p}
case TLSSNI01:
c.solvers[challenge] = &tlsSNIChallenge{jws: c.jws, validate: validate, provider: p}
case DNS01:
c.solvers[challenge] = &dnsChallenge{jws: c.jws, validate: validate, provider: p}
default:
return fmt.Errorf("Unknown challenge %v", challenge)
}
return nil
}
// SetHTTPAddress specifies a custom interface:port to be used for HTTP based challenges.
// If this option is not used, the default port 80 and all interfaces will be used.
// To only specify a port and no interface use the ":port" notation.
func (c *Client) SetHTTPAddress(iface string) error {
host, port, err := net.SplitHostPort(iface)
if err != nil {
return err
}
if chlng, ok := c.solvers[HTTP01]; ok {
chlng.(*httpChallenge).provider = NewHTTPProviderServer(host, port)
}
return nil
}
// SetTLSAddress specifies a custom interface:port to be used for TLS based challenges.
// If this option is not used, the default port 443 and all interfaces will be used.
// To only specify a port and no interface use the ":port" notation.
func (c *Client) SetTLSAddress(iface string) error {
host, port, err := net.SplitHostPort(iface)
if err != nil {
return err
}
if chlng, ok := c.solvers[TLSSNI01]; ok {
chlng.(*tlsSNIChallenge).provider = NewTLSProviderServer(host, port)
}
return nil
}
// ExcludeChallenges explicitly removes challenges from the pool for solving.
func (c *Client) ExcludeChallenges(challenges []Challenge) {
// Loop through all challenges and delete the requested one if found.
for _, challenge := range challenges {
delete(c.solvers, challenge)
}
}
// Register the current account to the ACME server.
func (c *Client) Register() (*RegistrationResource, error) {
if c == nil || c.user == nil {
return nil, errors.New("acme: cannot register a nil client or user")
}
logf("[INFO] acme: Registering account for %s", c.user.GetEmail())
regMsg := registrationMessage{
Resource: "new-reg",
}
if c.user.GetEmail() != "" {
regMsg.Contact = []string{"mailto:" + c.user.GetEmail()}
} else {
regMsg.Contact = []string{}
}
var serverReg Registration
hdr, err := postJSON(c.jws, c.directory.NewRegURL, regMsg, &serverReg)
if err != nil {
return nil, err
}
reg := &RegistrationResource{Body: serverReg}
links := parseLinks(hdr["Link"])
reg.URI = hdr.Get("Location")
if links["terms-of-service"] != "" {
reg.TosURL = links["terms-of-service"]
}
if links["next"] != "" {
reg.NewAuthzURL = links["next"]
} else {
return nil, errors.New("acme: The server did not return 'next' link to proceed")
}
return reg, nil
}
// DeleteRegistration deletes the client's user registration from the ACME
// server.
func (c *Client) DeleteRegistration() error {
if c == nil || c.user == nil {
return errors.New("acme: cannot unregister a nil client or user")
}
logf("[INFO] acme: Deleting account for %s", c.user.GetEmail())
regMsg := registrationMessage{
Resource: "reg",
Delete: true,
}
_, err := postJSON(c.jws, c.user.GetRegistration().URI, regMsg, nil)
if err != nil {
return err
}
return nil
}
// QueryRegistration runs a POST request on the client's registration and
// returns the result.
//
// This is similar to the Register function, but acting on an existing
// registration link and resource.
func (c *Client) QueryRegistration() (*RegistrationResource, error) {
if c == nil || c.user == nil {
return nil, errors.New("acme: cannot query the registration of a nil client or user")
}
// Log the URL here instead of the email as the email may not be set
logf("[INFO] acme: Querying account for %s", c.user.GetRegistration().URI)
regMsg := registrationMessage{
Resource: "reg",
}
var serverReg Registration
hdr, err := postJSON(c.jws, c.user.GetRegistration().URI, regMsg, &serverReg)
if err != nil {
return nil, err
}
reg := &RegistrationResource{Body: serverReg}
links := parseLinks(hdr["Link"])
// Location: header is not returned so this needs to be populated off of
// existing URI
reg.URI = c.user.GetRegistration().URI
if links["terms-of-service"] != "" {
reg.TosURL = links["terms-of-service"]
}
if links["next"] != "" {
reg.NewAuthzURL = links["next"]
} else {
return nil, errors.New("acme: No new-authz link in response to registration query")
}
return reg, nil
}
// AgreeToTOS updates the Client registration and sends the agreement to
// the server.
func (c *Client) AgreeToTOS() error {
reg := c.user.GetRegistration()
reg.Body.Agreement = c.user.GetRegistration().TosURL
reg.Body.Resource = "reg"
_, err := postJSON(c.jws, c.user.GetRegistration().URI, c.user.GetRegistration().Body, nil)
return err
}
// ObtainCertificate tries to obtain a single certificate using all domains passed into it.
// The first domain in domains is used for the CommonName field of the certificate, all other
// domains are added using the Subject Alternate Names extension. A new private key is generated
// for every invocation of this function. If you do not want that you can supply your own private key
// in the privKey parameter. If this parameter is non-nil it will be used instead of generating a new one.
// If bundle is true, the []byte contains both the issuer certificate and
// your issued certificate as a bundle.
// This function will never return a partial certificate. If one domain in the list fails,
// the whole certificate will fail.
func (c *Client) ObtainCertificate(domains []string, bundle bool, privKey crypto.PrivateKey) (CertificateResource, map[string]error) {
if bundle {
logf("[INFO][%s] acme: Obtaining bundled SAN certificate", strings.Join(domains, ", "))
} else {
logf("[INFO][%s] acme: Obtaining SAN certificate", strings.Join(domains, ", "))
}
challenges, failures := c.getChallenges(domains)
// If any challenge fails - return. Do not generate partial SAN certificates.
if len(failures) > 0 {
return CertificateResource{}, failures
}
errs := c.solveChallenges(challenges)
// If any challenge fails - return. Do not generate partial SAN certificates.
if len(errs) > 0 {
return CertificateResource{}, errs
}
logf("[INFO][%s] acme: Validations succeeded; requesting certificates", strings.Join(domains, ", "))
cert, err := c.requestCertificate(challenges, bundle, privKey)
if err != nil {
for _, chln := range challenges {
failures[chln.Domain] = err
}
}
return cert, failures
}
// RevokeCertificate takes a PEM encoded certificate or bundle and tries to revoke it at the CA.
func (c *Client) RevokeCertificate(certificate []byte) error {
certificates, err := parsePEMBundle(certificate)
if err != nil {
return err
}
x509Cert := certificates[0]
if x509Cert.IsCA {
return fmt.Errorf("Certificate bundle starts with a CA certificate")
}
encodedCert := base64.URLEncoding.EncodeToString(x509Cert.Raw)
_, err = postJSON(c.jws, c.directory.RevokeCertURL, revokeCertMessage{Resource: "revoke-cert", Certificate: encodedCert}, nil)
return err
}
// RenewCertificate takes a CertificateResource and tries to renew the certificate.
// If the renewal process succeeds, the new certificate will ge returned in a new CertResource.
// Please be aware that this function will return a new certificate in ANY case that is not an error.
// If the server does not provide us with a new cert on a GET request to the CertURL
// this function will start a new-cert flow where a new certificate gets generated.
// If bundle is true, the []byte contains both the issuer certificate and
// your issued certificate as a bundle.
// For private key reuse the PrivateKey property of the passed in CertificateResource should be non-nil.
func (c *Client) RenewCertificate(cert CertificateResource, bundle bool) (CertificateResource, error) {
// Input certificate is PEM encoded. Decode it here as we may need the decoded
// cert later on in the renewal process. The input may be a bundle or a single certificate.
certificates, err := parsePEMBundle(cert.Certificate)
if err != nil {
return CertificateResource{}, err
}
x509Cert := certificates[0]
if x509Cert.IsCA {
return CertificateResource{}, fmt.Errorf("[%s] Certificate bundle starts with a CA certificate", cert.Domain)
}
// This is just meant to be informal for the user.
timeLeft := x509Cert.NotAfter.Sub(time.Now().UTC())
logf("[INFO][%s] acme: Trying renewal with %d hours remaining", cert.Domain, int(timeLeft.Hours()))
// The first step of renewal is to check if we get a renewed cert
// directly from the cert URL.
resp, err := httpGet(cert.CertURL)
if err != nil {
return CertificateResource{}, err
}
defer resp.Body.Close()
serverCertBytes, err := ioutil.ReadAll(resp.Body)
if err != nil {
return CertificateResource{}, err
}
serverCert, err := x509.ParseCertificate(serverCertBytes)
if err != nil {
return CertificateResource{}, err
}
// If the server responds with a different certificate we are effectively renewed.
// TODO: Further test if we can actually use the new certificate (Our private key works)
if !x509Cert.Equal(serverCert) {
logf("[INFO][%s] acme: Server responded with renewed certificate", cert.Domain)
issuedCert := pemEncode(derCertificateBytes(serverCertBytes))
// If bundle is true, we want to return a certificate bundle.
// To do this, we need the issuer certificate.
if bundle {
// The issuer certificate link is always supplied via an "up" link
// in the response headers of a new certificate.
links := parseLinks(resp.Header["Link"])
issuerCert, err := c.getIssuerCertificate(links["up"])
if err != nil {
// If we fail to acquire the issuer cert, return the issued certificate - do not fail.
logf("[ERROR][%s] acme: Could not bundle issuer certificate: %v", cert.Domain, err)
} else {
// Success - append the issuer cert to the issued cert.
issuerCert = pemEncode(derCertificateBytes(issuerCert))
issuedCert = append(issuedCert, issuerCert...)
}
}
cert.Certificate = issuedCert
return cert, nil
}
var privKey crypto.PrivateKey
if cert.PrivateKey != nil {
privKey, err = parsePEMPrivateKey(cert.PrivateKey)
if err != nil {
return CertificateResource{}, err
}
}
var domains []string
var failures map[string]error
// check for SAN certificate
if len(x509Cert.DNSNames) > 1 {
domains = append(domains, x509Cert.Subject.CommonName)
for _, sanDomain := range x509Cert.DNSNames {
if sanDomain == x509Cert.Subject.CommonName {
continue
}
domains = append(domains, sanDomain)
}
} else {
domains = append(domains, x509Cert.Subject.CommonName)
}
newCert, failures := c.ObtainCertificate(domains, bundle, privKey)
return newCert, failures[cert.Domain]
}
// Looks through the challenge combinations to find a solvable match.
// Then solves the challenges in series and returns.
func (c *Client) solveChallenges(challenges []authorizationResource) map[string]error {
// loop through the resources, basically through the domains.
failures := make(map[string]error)
for _, authz := range challenges {
// no solvers - no solving
if solvers := c.chooseSolvers(authz.Body, authz.Domain); solvers != nil {
for i, solver := range solvers {
// TODO: do not immediately fail if one domain fails to validate.
err := solver.Solve(authz.Body.Challenges[i], authz.Domain)
if err != nil {
failures[authz.Domain] = err
}
}
} else {
failures[authz.Domain] = fmt.Errorf("[%s] acme: Could not determine solvers", authz.Domain)
}
}
return failures
}
// Checks all combinations from the server and returns an array of
// solvers which should get executed in series.
func (c *Client) chooseSolvers(auth authorization, domain string) map[int]solver {
for _, combination := range auth.Combinations {
solvers := make(map[int]solver)
for _, idx := range combination {
if solver, ok := c.solvers[auth.Challenges[idx].Type]; ok {
solvers[idx] = solver
} else {
logf("[INFO][%s] acme: Could not find solver for: %s", domain, auth.Challenges[idx].Type)
}
}
// If we can solve the whole combination, return the solvers
if len(solvers) == len(combination) {
return solvers
}
}
return nil
}
// Get the challenges needed to proof our identifier to the ACME server.
func (c *Client) getChallenges(domains []string) ([]authorizationResource, map[string]error) {
resc, errc := make(chan authorizationResource), make(chan domainError)
for _, domain := range domains {
go func(domain string) {
authMsg := authorization{Resource: "new-authz", Identifier: identifier{Type: "dns", Value: domain}}
var authz authorization
hdr, err := postJSON(c.jws, c.user.GetRegistration().NewAuthzURL, authMsg, &authz)
if err != nil {
errc <- domainError{Domain: domain, Error: err}
return
}
links := parseLinks(hdr["Link"])
if links["next"] == "" {
logf("[ERROR][%s] acme: Server did not provide next link to proceed", domain)
return
}
resc <- authorizationResource{Body: authz, NewCertURL: links["next"], AuthURL: hdr.Get("Location"), Domain: domain}
}(domain)
}
responses := make(map[string]authorizationResource)
failures := make(map[string]error)
for i := 0; i < len(domains); i++ {
select {
case res := <-resc:
responses[res.Domain] = res
case err := <-errc:
failures[err.Domain] = err.Error
}
}
challenges := make([]authorizationResource, 0, len(responses))
for _, domain := range domains {
if challenge, ok := responses[domain]; ok {
challenges = append(challenges, challenge)
}
}
close(resc)
close(errc)
return challenges, failures
}
func (c *Client) requestCertificate(authz []authorizationResource, bundle bool, privKey crypto.PrivateKey) (CertificateResource, error) {
if len(authz) == 0 {
return CertificateResource{}, errors.New("Passed no authorizations to requestCertificate!")
}
commonName := authz[0]
var err error
if privKey == nil {
privKey, err = generatePrivateKey(c.keyType)
if err != nil {
return CertificateResource{}, err
}
}
var san []string
var authURLs []string
for _, auth := range authz[1:] {
san = append(san, auth.Domain)
authURLs = append(authURLs, auth.AuthURL)
}
// TODO: should the CSR be customizable?
csr, err := generateCsr(privKey, commonName.Domain, san)
if err != nil {
return CertificateResource{}, err
}
csrString := base64.URLEncoding.EncodeToString(csr)
jsonBytes, err := json.Marshal(csrMessage{Resource: "new-cert", Csr: csrString, Authorizations: authURLs})
if err != nil {
return CertificateResource{}, err
}
resp, err := c.jws.post(commonName.NewCertURL, jsonBytes)
if err != nil {
return CertificateResource{}, err
}
privateKeyPem := pemEncode(privKey)
cerRes := CertificateResource{
Domain: commonName.Domain,
CertURL: resp.Header.Get("Location"),
PrivateKey: privateKeyPem}
for {
switch resp.StatusCode {
case 201, 202:
cert, err := ioutil.ReadAll(limitReader(resp.Body, 1024*1024))
resp.Body.Close()
if err != nil {
return CertificateResource{}, err
}
// The server returns a body with a length of zero if the
// certificate was not ready at the time this request completed.
// Otherwise the body is the certificate.
if len(cert) > 0 {
cerRes.CertStableURL = resp.Header.Get("Content-Location")
cerRes.AccountRef = c.user.GetRegistration().URI
issuedCert := pemEncode(derCertificateBytes(cert))
// If bundle is true, we want to return a certificate bundle.
// To do this, we need the issuer certificate.
if bundle {
// The issuer certificate link is always supplied via an "up" link
// in the response headers of a new certificate.
links := parseLinks(resp.Header["Link"])
issuerCert, err := c.getIssuerCertificate(links["up"])
if err != nil {
// If we fail to acquire the issuer cert, return the issued certificate - do not fail.
logf("[WARNING][%s] acme: Could not bundle issuer certificate: %v", commonName.Domain, err)
} else {
// Success - append the issuer cert to the issued cert.
issuerCert = pemEncode(derCertificateBytes(issuerCert))
issuedCert = append(issuedCert, issuerCert...)
}
}
cerRes.Certificate = issuedCert
logf("[INFO][%s] Server responded with a certificate.", commonName.Domain)
return cerRes, nil
}
// The certificate was granted but is not yet issued.
// Check retry-after and loop.
ra := resp.Header.Get("Retry-After")
retryAfter, err := strconv.Atoi(ra)
if err != nil {
return CertificateResource{}, err
}
logf("[INFO][%s] acme: Server responded with status 202; retrying after %ds", commonName.Domain, retryAfter)
time.Sleep(time.Duration(retryAfter) * time.Second)
break
default:
return CertificateResource{}, handleHTTPError(resp)
}
resp, err = httpGet(cerRes.CertURL)
if err != nil {
return CertificateResource{}, err
}
}
}
// getIssuerCertificate requests the issuer certificate and caches it for
// subsequent requests.
func (c *Client) getIssuerCertificate(url string) ([]byte, error) {
logf("[INFO] acme: Requesting issuer cert from %s", url)
if c.issuerCert != nil {
return c.issuerCert, nil
}
resp, err := httpGet(url)
if err != nil {
return nil, err
}
defer resp.Body.Close()
issuerBytes, err := ioutil.ReadAll(limitReader(resp.Body, 1024*1024))
if err != nil {
return nil, err
}
_, err = x509.ParseCertificate(issuerBytes)
if err != nil {
return nil, err
}
c.issuerCert = issuerBytes
return issuerBytes, err
}
func parseLinks(links []string) map[string]string {
aBrkt := regexp.MustCompile("[<>]")
slver := regexp.MustCompile("(.+) *= *\"(.+)\"")
linkMap := make(map[string]string)
for _, link := range links {
link = aBrkt.ReplaceAllString(link, "")
parts := strings.Split(link, ";")
matches := slver.FindStringSubmatch(parts[1])
if len(matches) > 0 {
linkMap[matches[2]] = parts[0]
}
}
return linkMap
}
// validate makes the ACME server start validating a
// challenge response, only returning once it is done.
func validate(j *jws, domain, uri string, chlng challenge) error {
var challengeResponse challenge
hdr, err := postJSON(j, uri, chlng, &challengeResponse)
if err != nil {
return err
}
// After the path is sent, the ACME server will access our server.
// Repeatedly check the server for an updated status on our request.
for {
switch challengeResponse.Status {
case "valid":
logf("[INFO][%s] The server validated our request", domain)
return nil
case "pending":
break
case "invalid":
return handleChallengeError(challengeResponse)
default:
return errors.New("The server returned an unexpected state.")
}
ra, err := strconv.Atoi(hdr.Get("Retry-After"))
if err != nil {
// The ACME server MUST return a Retry-After.
// If it doesn't, we'll just poll hard.
ra = 1
}
time.Sleep(time.Duration(ra) * time.Second)
hdr, err = getJSON(uri, &challengeResponse)
if err != nil {
return err
}
}
}

View file

@ -1,323 +0,0 @@
package acme
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"encoding/base64"
"encoding/pem"
"errors"
"fmt"
"io"
"io/ioutil"
"math/big"
"net/http"
"strings"
"time"
"golang.org/x/crypto/ocsp"
)
// KeyType represents the key algo as well as the key size or curve to use.
type KeyType string
type derCertificateBytes []byte
// Constants for all key types we support.
const (
EC256 = KeyType("P256")
EC384 = KeyType("P384")
RSA2048 = KeyType("2048")
RSA4096 = KeyType("4096")
RSA8192 = KeyType("8192")
)
const (
// OCSPGood means that the certificate is valid.
OCSPGood = ocsp.Good
// OCSPRevoked means that the certificate has been deliberately revoked.
OCSPRevoked = ocsp.Revoked
// OCSPUnknown means that the OCSP responder doesn't know about the certificate.
OCSPUnknown = ocsp.Unknown
// OCSPServerFailed means that the OCSP responder failed to process the request.
OCSPServerFailed = ocsp.ServerFailed
)
// GetOCSPForCert takes a PEM encoded cert or cert bundle returning the raw OCSP response,
// the parsed response, and an error, if any. The returned []byte can be passed directly
// into the OCSPStaple property of a tls.Certificate. If the bundle only contains the
// issued certificate, this function will try to get the issuer certificate from the
// IssuingCertificateURL in the certificate. If the []byte and/or ocsp.Response return
// values are nil, the OCSP status may be assumed OCSPUnknown.
func GetOCSPForCert(bundle []byte) ([]byte, *ocsp.Response, error) {
certificates, err := parsePEMBundle(bundle)
if err != nil {
return nil, nil, err
}
// We expect the certificate slice to be ordered downwards the chain.
// SRV CRT -> CA. We need to pull the leaf and issuer certs out of it,
// which should always be the first two certificates. If there's no
// OCSP server listed in the leaf cert, there's nothing to do. And if
// we have only one certificate so far, we need to get the issuer cert.
issuedCert := certificates[0]
if len(issuedCert.OCSPServer) == 0 {
return nil, nil, errors.New("no OCSP server specified in cert")
}
if len(certificates) == 1 {
// TODO: build fallback. If this fails, check the remaining array entries.
if len(issuedCert.IssuingCertificateURL) == 0 {
return nil, nil, errors.New("no issuing certificate URL")
}
resp, err := httpGet(issuedCert.IssuingCertificateURL[0])
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
issuerBytes, err := ioutil.ReadAll(limitReader(resp.Body, 1024*1024))
if err != nil {
return nil, nil, err
}
issuerCert, err := x509.ParseCertificate(issuerBytes)
if err != nil {
return nil, nil, err
}
// Insert it into the slice on position 0
// We want it ordered right SRV CRT -> CA
certificates = append(certificates, issuerCert)
}
issuerCert := certificates[1]
// Finally kick off the OCSP request.
ocspReq, err := ocsp.CreateRequest(issuedCert, issuerCert, nil)
if err != nil {
return nil, nil, err
}
reader := bytes.NewReader(ocspReq)
req, err := httpPost(issuedCert.OCSPServer[0], "application/ocsp-request", reader)
if err != nil {
return nil, nil, err
}
defer req.Body.Close()
ocspResBytes, err := ioutil.ReadAll(limitReader(req.Body, 1024*1024))
ocspRes, err := ocsp.ParseResponse(ocspResBytes, issuerCert)
if err != nil {
return nil, nil, err
}
if ocspRes.Certificate == nil {
err = ocspRes.CheckSignatureFrom(issuerCert)
if err != nil {
return nil, nil, err
}
}
return ocspResBytes, ocspRes, nil
}
func getKeyAuthorization(token string, key interface{}) (string, error) {
var publicKey crypto.PublicKey
switch k := key.(type) {
case *ecdsa.PrivateKey:
publicKey = k.Public()
case *rsa.PrivateKey:
publicKey = k.Public()
}
// Generate the Key Authorization for the challenge
jwk := keyAsJWK(publicKey)
if jwk == nil {
return "", errors.New("Could not generate JWK from key.")
}
thumbBytes, err := jwk.Thumbprint(crypto.SHA256)
if err != nil {
return "", err
}
// unpad the base64URL
keyThumb := base64.URLEncoding.EncodeToString(thumbBytes)
index := strings.Index(keyThumb, "=")
if index != -1 {
keyThumb = keyThumb[:index]
}
return token + "." + keyThumb, nil
}
// parsePEMBundle parses a certificate bundle from top to bottom and returns
// a slice of x509 certificates. This function will error if no certificates are found.
func parsePEMBundle(bundle []byte) ([]*x509.Certificate, error) {
var certificates []*x509.Certificate
var certDERBlock *pem.Block
for {
certDERBlock, bundle = pem.Decode(bundle)
if certDERBlock == nil {
break
}
if certDERBlock.Type == "CERTIFICATE" {
cert, err := x509.ParseCertificate(certDERBlock.Bytes)
if err != nil {
return nil, err
}
certificates = append(certificates, cert)
}
}
if len(certificates) == 0 {
return nil, errors.New("No certificates were found while parsing the bundle.")
}
return certificates, nil
}
func parsePEMPrivateKey(key []byte) (crypto.PrivateKey, error) {
keyBlock, _ := pem.Decode(key)
switch keyBlock.Type {
case "RSA PRIVATE KEY":
return x509.ParsePKCS1PrivateKey(keyBlock.Bytes)
case "EC PRIVATE KEY":
return x509.ParseECPrivateKey(keyBlock.Bytes)
default:
return nil, errors.New("Unknown PEM header value")
}
}
func generatePrivateKey(keyType KeyType) (crypto.PrivateKey, error) {
switch keyType {
case EC256:
return ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
case EC384:
return ecdsa.GenerateKey(elliptic.P384(), rand.Reader)
case RSA2048:
return rsa.GenerateKey(rand.Reader, 2048)
case RSA4096:
return rsa.GenerateKey(rand.Reader, 4096)
case RSA8192:
return rsa.GenerateKey(rand.Reader, 8192)
}
return nil, fmt.Errorf("Invalid KeyType: %s", keyType)
}
func generateCsr(privateKey crypto.PrivateKey, domain string, san []string) ([]byte, error) {
template := x509.CertificateRequest{
Subject: pkix.Name{
CommonName: domain,
},
}
if len(san) > 0 {
template.DNSNames = san
}
return x509.CreateCertificateRequest(rand.Reader, &template, privateKey)
}
func pemEncode(data interface{}) []byte {
var pemBlock *pem.Block
switch key := data.(type) {
case *ecdsa.PrivateKey:
keyBytes, _ := x509.MarshalECPrivateKey(key)
pemBlock = &pem.Block{Type: "EC PRIVATE KEY", Bytes: keyBytes}
case *rsa.PrivateKey:
pemBlock = &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(key)}
break
case derCertificateBytes:
pemBlock = &pem.Block{Type: "CERTIFICATE", Bytes: []byte(data.(derCertificateBytes))}
}
return pem.EncodeToMemory(pemBlock)
}
func pemDecode(data []byte) (*pem.Block, error) {
pemBlock, _ := pem.Decode(data)
if pemBlock == nil {
return nil, fmt.Errorf("Pem decode did not yield a valid block. Is the certificate in the right format?")
}
return pemBlock, nil
}
func pemDecodeTox509(pem []byte) (*x509.Certificate, error) {
pemBlock, err := pemDecode(pem)
if pemBlock == nil {
return nil, err
}
return x509.ParseCertificate(pemBlock.Bytes)
}
// GetPEMCertExpiration returns the "NotAfter" date of a PEM encoded certificate.
// The certificate has to be PEM encoded. Any other encodings like DER will fail.
func GetPEMCertExpiration(cert []byte) (time.Time, error) {
pemBlock, err := pemDecode(cert)
if pemBlock == nil {
return time.Time{}, err
}
return getCertExpiration(pemBlock.Bytes)
}
// getCertExpiration returns the "NotAfter" date of a DER encoded certificate.
func getCertExpiration(cert []byte) (time.Time, error) {
pCert, err := x509.ParseCertificate(cert)
if err != nil {
return time.Time{}, err
}
return pCert.NotAfter, nil
}
func generatePemCert(privKey *rsa.PrivateKey, domain string) ([]byte, error) {
derBytes, err := generateDerCert(privKey, time.Time{}, domain)
if err != nil {
return nil, err
}
return pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: derBytes}), nil
}
func generateDerCert(privKey *rsa.PrivateKey, expiration time.Time, domain string) ([]byte, error) {
serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128)
serialNumber, err := rand.Int(rand.Reader, serialNumberLimit)
if err != nil {
return nil, err
}
if expiration.IsZero() {
expiration = time.Now().Add(365)
}
template := x509.Certificate{
SerialNumber: serialNumber,
Subject: pkix.Name{
CommonName: "ACME Challenge TEMP",
},
NotBefore: time.Now(),
NotAfter: expiration,
KeyUsage: x509.KeyUsageKeyEncipherment,
BasicConstraintsValid: true,
DNSNames: []string{domain},
}
return x509.CreateCertificate(rand.Reader, &template, &template, &privKey.PublicKey, privKey)
}
func limitReader(rd io.ReadCloser, numBytes int64) io.ReadCloser {
return http.MaxBytesReader(nil, rd, numBytes)
}

View file

@ -1,279 +0,0 @@
package acme
import (
"crypto/sha256"
"encoding/base64"
"errors"
"fmt"
"log"
"net"
"strings"
"time"
"github.com/miekg/dns"
"golang.org/x/net/publicsuffix"
)
type preCheckDNSFunc func(fqdn, value string) (bool, error)
var (
preCheckDNS preCheckDNSFunc = checkDNSPropagation
fqdnToZone = map[string]string{}
)
var RecursiveNameservers = []string{
"google-public-dns-a.google.com:53",
"google-public-dns-b.google.com:53",
}
// DNSTimeout is used to override the default DNS timeout of 10 seconds.
var DNSTimeout = 10 * time.Second
// DNS01Record returns a DNS record which will fulfill the `dns-01` challenge
func DNS01Record(domain, keyAuth string) (fqdn string, value string, ttl int) {
keyAuthShaBytes := sha256.Sum256([]byte(keyAuth))
// base64URL encoding without padding
keyAuthSha := base64.URLEncoding.EncodeToString(keyAuthShaBytes[:sha256.Size])
value = strings.TrimRight(keyAuthSha, "=")
ttl = 120
fqdn = fmt.Sprintf("_acme-challenge.%s.", domain)
return
}
// dnsChallenge implements the dns-01 challenge according to ACME 7.5
type dnsChallenge struct {
jws *jws
validate validateFunc
provider ChallengeProvider
}
func (s *dnsChallenge) Solve(chlng challenge, domain string) error {
logf("[INFO][%s] acme: Trying to solve DNS-01", domain)
if s.provider == nil {
return errors.New("No DNS Provider configured")
}
// Generate the Key Authorization for the challenge
keyAuth, err := getKeyAuthorization(chlng.Token, s.jws.privKey)
if err != nil {
return err
}
err = s.provider.Present(domain, chlng.Token, keyAuth)
if err != nil {
return fmt.Errorf("Error presenting token: %s", err)
}
defer func() {
err := s.provider.CleanUp(domain, chlng.Token, keyAuth)
if err != nil {
log.Printf("Error cleaning up %s: %v ", domain, err)
}
}()
fqdn, value, _ := DNS01Record(domain, keyAuth)
logf("[INFO][%s] Checking DNS record propagation...", domain)
var timeout, interval time.Duration
switch provider := s.provider.(type) {
case ChallengeProviderTimeout:
timeout, interval = provider.Timeout()
default:
timeout, interval = 60*time.Second, 2*time.Second
}
err = WaitFor(timeout, interval, func() (bool, error) {
return preCheckDNS(fqdn, value)
})
if err != nil {
return err
}
return s.validate(s.jws, domain, chlng.URI, challenge{Resource: "challenge", Type: chlng.Type, Token: chlng.Token, KeyAuthorization: keyAuth})
}
// checkDNSPropagation checks if the expected TXT record has been propagated to all authoritative nameservers.
func checkDNSPropagation(fqdn, value string) (bool, error) {
// Initial attempt to resolve at the recursive NS
r, err := dnsQuery(fqdn, dns.TypeTXT, RecursiveNameservers, true)
if err != nil {
return false, err
}
if r.Rcode == dns.RcodeSuccess {
// If we see a CNAME here then use the alias
for _, rr := range r.Answer {
if cn, ok := rr.(*dns.CNAME); ok {
if cn.Hdr.Name == fqdn {
fqdn = cn.Target
break
}
}
}
}
authoritativeNss, err := lookupNameservers(fqdn)
if err != nil {
return false, err
}
return checkAuthoritativeNss(fqdn, value, authoritativeNss)
}
// checkAuthoritativeNss queries each of the given nameservers for the expected TXT record.
func checkAuthoritativeNss(fqdn, value string, nameservers []string) (bool, error) {
for _, ns := range nameservers {
r, err := dnsQuery(fqdn, dns.TypeTXT, []string{net.JoinHostPort(ns, "53")}, false)
if err != nil {
return false, err
}
if r.Rcode != dns.RcodeSuccess {
return false, fmt.Errorf("NS %s returned %s for %s", ns, dns.RcodeToString[r.Rcode], fqdn)
}
var found bool
for _, rr := range r.Answer {
if txt, ok := rr.(*dns.TXT); ok {
if strings.Join(txt.Txt, "") == value {
found = true
break
}
}
}
if !found {
return false, fmt.Errorf("NS %s did not return the expected TXT record", ns)
}
}
return true, nil
}
// dnsQuery will query a nameserver, iterating through the supplied servers as it retries
// The nameserver should include a port, to facilitate testing where we talk to a mock dns server.
func dnsQuery(fqdn string, rtype uint16, nameservers []string, recursive bool) (in *dns.Msg, err error) {
m := new(dns.Msg)
m.SetQuestion(fqdn, rtype)
m.SetEdns0(4096, false)
if !recursive {
m.RecursionDesired = false
}
// Will retry the request based on the number of servers (n+1)
for i := 1; i <= len(nameservers)+1; i++ {
ns := nameservers[i%len(nameservers)]
udp := &dns.Client{Net: "udp", Timeout: DNSTimeout}
in, _, err = udp.Exchange(m, ns)
if err == dns.ErrTruncated {
tcp := &dns.Client{Net: "tcp", Timeout: DNSTimeout}
// If the TCP request suceeds, the err will reset to nil
in, _, err = tcp.Exchange(m, ns)
}
if err == nil {
break
}
}
return
}
// lookupNameservers returns the authoritative nameservers for the given fqdn.
func lookupNameservers(fqdn string) ([]string, error) {
var authoritativeNss []string
zone, err := FindZoneByFqdn(fqdn, RecursiveNameservers)
if err != nil {
return nil, err
}
r, err := dnsQuery(zone, dns.TypeNS, RecursiveNameservers, true)
if err != nil {
return nil, err
}
for _, rr := range r.Answer {
if ns, ok := rr.(*dns.NS); ok {
authoritativeNss = append(authoritativeNss, strings.ToLower(ns.Ns))
}
}
if len(authoritativeNss) > 0 {
return authoritativeNss, nil
}
return nil, fmt.Errorf("Could not determine authoritative nameservers")
}
// FindZoneByFqdn determines the zone of the given fqdn
func FindZoneByFqdn(fqdn string, nameservers []string) (string, error) {
// Do we have it cached?
if zone, ok := fqdnToZone[fqdn]; ok {
return zone, nil
}
// Query the authoritative nameserver for a hopefully non-existing SOA record,
// in the authority section of the reply it will have the SOA of the
// containing zone. rfc2308 has this to say on the subject:
// Name servers authoritative for a zone MUST include the SOA record of
// the zone in the authority section of the response when reporting an
// NXDOMAIN or indicating that no data (NODATA) of the requested type exists
in, err := dnsQuery(fqdn, dns.TypeSOA, nameservers, true)
if err != nil {
return "", err
}
if in.Rcode != dns.RcodeNameError {
if in.Rcode != dns.RcodeSuccess {
return "", fmt.Errorf("The NS returned %s for %s", dns.RcodeToString[in.Rcode], fqdn)
}
// We have a success, so one of the answers has to be a SOA RR
for _, ans := range in.Answer {
if soa, ok := ans.(*dns.SOA); ok {
return checkIfTLD(fqdn, soa)
}
}
// Or it is NODATA, fall through to NXDOMAIN
}
// Search the authority section for our precious SOA RR
for _, ns := range in.Ns {
if soa, ok := ns.(*dns.SOA); ok {
return checkIfTLD(fqdn, soa)
}
}
return "", fmt.Errorf("The NS did not return the expected SOA record in the authority section")
}
func checkIfTLD(fqdn string, soa *dns.SOA) (string, error) {
zone := soa.Hdr.Name
// If we ended up on one of the TLDs, it means the domain did not exist.
publicsuffix, _ := publicsuffix.PublicSuffix(UnFqdn(zone))
if publicsuffix == UnFqdn(zone) {
return "", fmt.Errorf("Could not determine zone authoritatively")
}
fqdnToZone[fqdn] = zone
return zone, nil
}
// ClearFqdnCache clears the cache of fqdn to zone mappings. Primarily used in testing.
func ClearFqdnCache() {
fqdnToZone = map[string]string{}
}
// ToFqdn converts the name into a fqdn appending a trailing dot.
func ToFqdn(name string) string {
n := len(name)
if n == 0 || name[n-1] == '.' {
return name
}
return name + "."
}
// UnFqdn converts the fqdn into a name removing the trailing dot.
func UnFqdn(name string) string {
n := len(name)
if n != 0 && name[n-1] == '.' {
return name[:n-1]
}
return name
}

View file

@ -1,53 +0,0 @@
package acme
import (
"bufio"
"fmt"
"os"
)
const (
dnsTemplate = "%s %d IN TXT \"%s\""
)
// DNSProviderManual is an implementation of the ChallengeProvider interface
type DNSProviderManual struct{}
// NewDNSProviderManual returns a DNSProviderManual instance.
func NewDNSProviderManual() (*DNSProviderManual, error) {
return &DNSProviderManual{}, nil
}
// Present prints instructions for manually creating the TXT record
func (*DNSProviderManual) Present(domain, token, keyAuth string) error {
fqdn, value, ttl := DNS01Record(domain, keyAuth)
dnsRecord := fmt.Sprintf(dnsTemplate, fqdn, ttl, value)
authZone, err := FindZoneByFqdn(fqdn, RecursiveNameservers)
if err != nil {
return err
}
logf("[INFO] acme: Please create the following TXT record in your %s zone:", authZone)
logf("[INFO] acme: %s", dnsRecord)
logf("[INFO] acme: Press 'Enter' when you are done")
reader := bufio.NewReader(os.Stdin)
_, _ = reader.ReadString('\n')
return nil
}
// CleanUp prints instructions for manually removing the TXT record
func (*DNSProviderManual) CleanUp(domain, token, keyAuth string) error {
fqdn, _, ttl := DNS01Record(domain, keyAuth)
dnsRecord := fmt.Sprintf(dnsTemplate, fqdn, ttl, "...")
authZone, err := FindZoneByFqdn(fqdn, RecursiveNameservers)
if err != nil {
return err
}
logf("[INFO] acme: You can now remove this TXT record from your %s zone:", authZone)
logf("[INFO] acme: %s", dnsRecord)
return nil
}

View file

@ -1,86 +0,0 @@
package acme
import (
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
"strings"
)
const (
tosAgreementError = "Must agree to subscriber agreement before any further actions"
)
// RemoteError is the base type for all errors specific to the ACME protocol.
type RemoteError struct {
StatusCode int `json:"status,omitempty"`
Type string `json:"type"`
Detail string `json:"detail"`
}
func (e RemoteError) Error() string {
return fmt.Sprintf("acme: Error %d - %s - %s", e.StatusCode, e.Type, e.Detail)
}
// TOSError represents the error which is returned if the user needs to
// accept the TOS.
// TODO: include the new TOS url if we can somehow obtain it.
type TOSError struct {
RemoteError
}
type domainError struct {
Domain string
Error error
}
type challengeError struct {
RemoteError
records []validationRecord
}
func (c challengeError) Error() string {
var errStr string
for _, validation := range c.records {
errStr = errStr + fmt.Sprintf("\tValidation for %s:%s\n\tResolved to:\n\t\t%s\n\tUsed: %s\n\n",
validation.Hostname, validation.Port, strings.Join(validation.ResolvedAddresses, "\n\t\t"), validation.UsedAddress)
}
return fmt.Sprintf("%s\nError Detail:\n%s", c.RemoteError.Error(), errStr)
}
func handleHTTPError(resp *http.Response) error {
var errorDetail RemoteError
contenType := resp.Header.Get("Content-Type")
// try to decode the content as JSON
if contenType == "application/json" || contenType == "application/problem+json" {
decoder := json.NewDecoder(resp.Body)
err := decoder.Decode(&errorDetail)
if err != nil {
return err
}
} else {
detailBytes, err := ioutil.ReadAll(limitReader(resp.Body, 1024*1024))
if err != nil {
return err
}
errorDetail.Detail = string(detailBytes)
}
errorDetail.StatusCode = resp.StatusCode
// Check for errors we handle specifically
if errorDetail.StatusCode == http.StatusForbidden && errorDetail.Detail == tosAgreementError {
return TOSError{errorDetail}
}
return errorDetail
}
func handleChallengeError(chlng challenge) error {
return challengeError{chlng.Error, chlng.ValidationRecords}
}

View file

@ -1,120 +0,0 @@
package acme
import (
"encoding/json"
"errors"
"fmt"
"io"
"net/http"
"runtime"
"strings"
"time"
)
// UserAgent (if non-empty) will be tacked onto the User-Agent string in requests.
var UserAgent string
// HTTPTimeout is used to override the default HTTP timeout of 10 seconds.
var HTTPTimeout = 10 * time.Second
// defaultClient is an HTTP client with a reasonable timeout value.
var defaultClient = http.Client{Timeout: HTTPTimeout}
const (
// defaultGoUserAgent is the Go HTTP package user agent string. Too
// bad it isn't exported. If it changes, we should update it here, too.
defaultGoUserAgent = "Go-http-client/1.1"
// ourUserAgent is the User-Agent of this underlying library package.
ourUserAgent = "xenolf-acme"
)
// httpHead performs a HEAD request with a proper User-Agent string.
// The response body (resp.Body) is already closed when this function returns.
func httpHead(url string) (resp *http.Response, err error) {
req, err := http.NewRequest("HEAD", url, nil)
if err != nil {
return nil, err
}
req.Header.Set("User-Agent", userAgent())
resp, err = defaultClient.Do(req)
if err != nil {
return resp, err
}
resp.Body.Close()
return resp, err
}
// httpPost performs a POST request with a proper User-Agent string.
// Callers should close resp.Body when done reading from it.
func httpPost(url string, bodyType string, body io.Reader) (resp *http.Response, err error) {
req, err := http.NewRequest("POST", url, body)
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", bodyType)
req.Header.Set("User-Agent", userAgent())
return defaultClient.Do(req)
}
// httpGet performs a GET request with a proper User-Agent string.
// Callers should close resp.Body when done reading from it.
func httpGet(url string) (resp *http.Response, err error) {
req, err := http.NewRequest("GET", url, nil)
if err != nil {
return nil, err
}
req.Header.Set("User-Agent", userAgent())
return defaultClient.Do(req)
}
// getJSON performs an HTTP GET request and parses the response body
// as JSON, into the provided respBody object.
func getJSON(uri string, respBody interface{}) (http.Header, error) {
resp, err := httpGet(uri)
if err != nil {
return nil, fmt.Errorf("failed to get %q: %v", uri, err)
}
defer resp.Body.Close()
if resp.StatusCode >= http.StatusBadRequest {
return resp.Header, handleHTTPError(resp)
}
return resp.Header, json.NewDecoder(resp.Body).Decode(respBody)
}
// postJSON performs an HTTP POST request and parses the response body
// as JSON, into the provided respBody object.
func postJSON(j *jws, uri string, reqBody, respBody interface{}) (http.Header, error) {
jsonBytes, err := json.Marshal(reqBody)
if err != nil {
return nil, errors.New("Failed to marshal network message...")
}
resp, err := j.post(uri, jsonBytes)
if err != nil {
return nil, fmt.Errorf("Failed to post JWS message. -> %v", err)
}
defer resp.Body.Close()
if resp.StatusCode >= http.StatusBadRequest {
return resp.Header, handleHTTPError(resp)
}
if respBody == nil {
return resp.Header, nil
}
return resp.Header, json.NewDecoder(resp.Body).Decode(respBody)
}
// userAgent builds and returns the User-Agent string to use in requests.
func userAgent() string {
ua := fmt.Sprintf("%s (%s; %s) %s %s", defaultGoUserAgent, runtime.GOOS, runtime.GOARCH, ourUserAgent, UserAgent)
return strings.TrimSpace(ua)
}

View file

@ -1,41 +0,0 @@
package acme
import (
"fmt"
"log"
)
type httpChallenge struct {
jws *jws
validate validateFunc
provider ChallengeProvider
}
// HTTP01ChallengePath returns the URL path for the `http-01` challenge
func HTTP01ChallengePath(token string) string {
return "/.well-known/acme-challenge/" + token
}
func (s *httpChallenge) Solve(chlng challenge, domain string) error {
logf("[INFO][%s] acme: Trying to solve HTTP-01", domain)
// Generate the Key Authorization for the challenge
keyAuth, err := getKeyAuthorization(chlng.Token, s.jws.privKey)
if err != nil {
return err
}
err = s.provider.Present(domain, chlng.Token, keyAuth)
if err != nil {
return fmt.Errorf("[%s] error presenting token: %v", domain, err)
}
defer func() {
err := s.provider.CleanUp(domain, chlng.Token, keyAuth)
if err != nil {
log.Printf("[%s] error cleaning up: %v", domain, err)
}
}()
return s.validate(s.jws, domain, chlng.URI, challenge{Resource: "challenge", Type: chlng.Type, Token: chlng.Token, KeyAuthorization: keyAuth})
}

View file

@ -1,79 +0,0 @@
package acme
import (
"fmt"
"net"
"net/http"
"strings"
)
// HTTPProviderServer implements ChallengeProvider for `http-01` challenge
// It may be instantiated without using the NewHTTPProviderServer function if
// you want only to use the default values.
type HTTPProviderServer struct {
iface string
port string
done chan bool
listener net.Listener
}
// NewHTTPProviderServer creates a new HTTPProviderServer on the selected interface and port.
// Setting iface and / or port to an empty string will make the server fall back to
// the "any" interface and port 80 respectively.
func NewHTTPProviderServer(iface, port string) *HTTPProviderServer {
return &HTTPProviderServer{iface: iface, port: port}
}
// Present starts a web server and makes the token available at `HTTP01ChallengePath(token)` for web requests.
func (s *HTTPProviderServer) Present(domain, token, keyAuth string) error {
if s.port == "" {
s.port = "80"
}
var err error
s.listener, err = net.Listen("tcp", net.JoinHostPort(s.iface, s.port))
if err != nil {
return fmt.Errorf("Could not start HTTP server for challenge -> %v", err)
}
s.done = make(chan bool)
go s.serve(domain, token, keyAuth)
return nil
}
// CleanUp closes the HTTP server and removes the token from `HTTP01ChallengePath(token)`
func (s *HTTPProviderServer) CleanUp(domain, token, keyAuth string) error {
if s.listener == nil {
return nil
}
s.listener.Close()
<-s.done
return nil
}
func (s *HTTPProviderServer) serve(domain, token, keyAuth string) {
path := HTTP01ChallengePath(token)
// The handler validates the HOST header and request type.
// For validation it then writes the token the server returned with the challenge
mux := http.NewServeMux()
mux.HandleFunc(path, func(w http.ResponseWriter, r *http.Request) {
if strings.HasPrefix(r.Host, domain) && r.Method == "GET" {
w.Header().Add("Content-Type", "text/plain")
w.Write([]byte(keyAuth))
logf("[INFO][%s] Served key authentication", domain)
} else {
logf("[INFO] Received request for domain %s with method %s", r.Host, r.Method)
w.Write([]byte("TEST"))
}
})
httpServer := &http.Server{
Handler: mux,
}
// Once httpServer is shut down we don't want any lingering
// connections, so disable KeepAlives.
httpServer.SetKeepAlivesEnabled(false)
httpServer.Serve(s.listener)
s.done <- true
}

View file

@ -1,109 +0,0 @@
package acme
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"fmt"
"net/http"
"gopkg.in/square/go-jose.v1"
)
type jws struct {
directoryURL string
privKey crypto.PrivateKey
nonces []string
}
func keyAsJWK(key interface{}) *jose.JsonWebKey {
switch k := key.(type) {
case *ecdsa.PublicKey:
return &jose.JsonWebKey{Key: k, Algorithm: "EC"}
case *rsa.PublicKey:
return &jose.JsonWebKey{Key: k, Algorithm: "RSA"}
default:
return nil
}
}
// Posts a JWS signed message to the specified URL
func (j *jws) post(url string, content []byte) (*http.Response, error) {
signedContent, err := j.signContent(content)
if err != nil {
return nil, err
}
resp, err := httpPost(url, "application/jose+json", bytes.NewBuffer([]byte(signedContent.FullSerialize())))
if err != nil {
return nil, err
}
j.getNonceFromResponse(resp)
return resp, err
}
func (j *jws) signContent(content []byte) (*jose.JsonWebSignature, error) {
var alg jose.SignatureAlgorithm
switch k := j.privKey.(type) {
case *rsa.PrivateKey:
alg = jose.RS256
case *ecdsa.PrivateKey:
if k.Curve == elliptic.P256() {
alg = jose.ES256
} else if k.Curve == elliptic.P384() {
alg = jose.ES384
}
}
signer, err := jose.NewSigner(alg, j.privKey)
if err != nil {
return nil, err
}
signer.SetNonceSource(j)
signed, err := signer.Sign(content)
if err != nil {
return nil, err
}
return signed, nil
}
func (j *jws) getNonceFromResponse(resp *http.Response) error {
nonce := resp.Header.Get("Replay-Nonce")
if nonce == "" {
return fmt.Errorf("Server did not respond with a proper nonce header.")
}
j.nonces = append(j.nonces, nonce)
return nil
}
func (j *jws) getNonce() error {
resp, err := httpHead(j.directoryURL)
if err != nil {
return err
}
return j.getNonceFromResponse(resp)
}
func (j *jws) Nonce() (string, error) {
nonce := ""
if len(j.nonces) == 0 {
err := j.getNonce()
if err != nil {
return nonce, err
}
}
if len(j.nonces) == 0 {
return "", fmt.Errorf("Can't get nonce")
}
nonce, j.nonces = j.nonces[len(j.nonces)-1], j.nonces[:len(j.nonces)-1]
return nonce, nil
}

View file

@ -1,116 +0,0 @@
package acme
import (
"time"
"gopkg.in/square/go-jose.v1"
)
type directory struct {
NewAuthzURL string `json:"new-authz"`
NewCertURL string `json:"new-cert"`
NewRegURL string `json:"new-reg"`
RevokeCertURL string `json:"revoke-cert"`
}
type recoveryKeyMessage struct {
Length int `json:"length,omitempty"`
Client jose.JsonWebKey `json:"client,omitempty"`
Server jose.JsonWebKey `json:"client,omitempty"`
}
type registrationMessage struct {
Resource string `json:"resource"`
Contact []string `json:"contact"`
Delete bool `json:"delete,omitempty"`
// RecoveryKey recoveryKeyMessage `json:"recoveryKey,omitempty"`
}
// Registration is returned by the ACME server after the registration
// The client implementation should save this registration somewhere.
type Registration struct {
Resource string `json:"resource,omitempty"`
ID int `json:"id"`
Key jose.JsonWebKey `json:"key"`
Contact []string `json:"contact"`
Agreement string `json:"agreement,omitempty"`
Authorizations string `json:"authorizations,omitempty"`
Certificates string `json:"certificates,omitempty"`
// RecoveryKey recoveryKeyMessage `json:"recoveryKey,omitempty"`
}
// RegistrationResource represents all important informations about a registration
// of which the client needs to keep track itself.
type RegistrationResource struct {
Body Registration `json:"body,omitempty"`
URI string `json:"uri,omitempty"`
NewAuthzURL string `json:"new_authzr_uri,omitempty"`
TosURL string `json:"terms_of_service,omitempty"`
}
type authorizationResource struct {
Body authorization
Domain string
NewCertURL string
AuthURL string
}
type authorization struct {
Resource string `json:"resource,omitempty"`
Identifier identifier `json:"identifier"`
Status string `json:"status,omitempty"`
Expires time.Time `json:"expires,omitempty"`
Challenges []challenge `json:"challenges,omitempty"`
Combinations [][]int `json:"combinations,omitempty"`
}
type identifier struct {
Type string `json:"type"`
Value string `json:"value"`
}
type validationRecord struct {
URI string `json:"url,omitempty"`
Hostname string `json:"hostname,omitempty"`
Port string `json:"port,omitempty"`
ResolvedAddresses []string `json:"addressesResolved,omitempty"`
UsedAddress string `json:"addressUsed,omitempty"`
}
type challenge struct {
Resource string `json:"resource,omitempty"`
Type Challenge `json:"type,omitempty"`
Status string `json:"status,omitempty"`
URI string `json:"uri,omitempty"`
Token string `json:"token,omitempty"`
KeyAuthorization string `json:"keyAuthorization,omitempty"`
TLS bool `json:"tls,omitempty"`
Iterations int `json:"n,omitempty"`
Error RemoteError `json:"error,omitempty"`
ValidationRecords []validationRecord `json:"validationRecord,omitempty"`
}
type csrMessage struct {
Resource string `json:"resource,omitempty"`
Csr string `json:"csr"`
Authorizations []string `json:"authorizations"`
}
type revokeCertMessage struct {
Resource string `json:"resource"`
Certificate string `json:"certificate"`
}
// CertificateResource represents a CA issued certificate.
// PrivateKey and Certificate are both already PEM encoded
// and can be directly written to disk. Certificate may
// be a certificate bundle, depending on the options supplied
// to create it.
type CertificateResource struct {
Domain string `json:"domain"`
CertURL string `json:"certUrl"`
CertStableURL string `json:"certStableUrl"`
AccountRef string `json:"accountRef,omitempty"`
PrivateKey []byte `json:"-"`
Certificate []byte `json:"-"`
}

View file

@ -1 +0,0 @@
package acme

View file

@ -1,28 +0,0 @@
package acme
import "time"
// ChallengeProvider enables implementing a custom challenge
// provider. Present presents the solution to a challenge available to
// be solved. CleanUp will be called by the challenge if Present ends
// in a non-error state.
type ChallengeProvider interface {
Present(domain, token, keyAuth string) error
CleanUp(domain, token, keyAuth string) error
}
// ChallengeProviderTimeout allows for implementing a
// ChallengeProvider where an unusually long timeout is required when
// waiting for an ACME challenge to be satisfied, such as when
// checking for DNS record progagation. If an implementor of a
// ChallengeProvider provides a Timeout method, then the return values
// of the Timeout method will be used when appropriate by the acme
// package. The interval value is the time between checks.
//
// The default values used for timeout and interval are 60 seconds and
// 2 seconds respectively. These are used when no Timeout method is
// defined for the ChallengeProvider.
type ChallengeProviderTimeout interface {
ChallengeProvider
Timeout() (timeout, interval time.Duration)
}

View file

@ -1,67 +0,0 @@
package acme
import (
"crypto/rsa"
"crypto/sha256"
"crypto/tls"
"encoding/hex"
"fmt"
"log"
)
type tlsSNIChallenge struct {
jws *jws
validate validateFunc
provider ChallengeProvider
}
func (t *tlsSNIChallenge) Solve(chlng challenge, domain string) error {
// FIXME: https://github.com/ietf-wg-acme/acme/pull/22
// Currently we implement this challenge to track boulder, not the current spec!
logf("[INFO][%s] acme: Trying to solve TLS-SNI-01", domain)
// Generate the Key Authorization for the challenge
keyAuth, err := getKeyAuthorization(chlng.Token, t.jws.privKey)
if err != nil {
return err
}
err = t.provider.Present(domain, chlng.Token, keyAuth)
if err != nil {
return fmt.Errorf("[%s] error presenting token: %v", domain, err)
}
defer func() {
err := t.provider.CleanUp(domain, chlng.Token, keyAuth)
if err != nil {
log.Printf("[%s] error cleaning up: %v", domain, err)
}
}()
return t.validate(t.jws, domain, chlng.URI, challenge{Resource: "challenge", Type: chlng.Type, Token: chlng.Token, KeyAuthorization: keyAuth})
}
// TLSSNI01ChallengeCert returns a certificate and target domain for the `tls-sni-01` challenge
func TLSSNI01ChallengeCert(keyAuth string) (tls.Certificate, string, error) {
// generate a new RSA key for the certificates
tempPrivKey, err := generatePrivateKey(RSA2048)
if err != nil {
return tls.Certificate{}, "", err
}
rsaPrivKey := tempPrivKey.(*rsa.PrivateKey)
rsaPrivPEM := pemEncode(rsaPrivKey)
zBytes := sha256.Sum256([]byte(keyAuth))
z := hex.EncodeToString(zBytes[:sha256.Size])
domain := fmt.Sprintf("%s.%s.acme.invalid", z[:32], z[32:])
tempCertPEM, err := generatePemCert(rsaPrivKey, domain)
if err != nil {
return tls.Certificate{}, "", err
}
certificate, err := tls.X509KeyPair(tempCertPEM, rsaPrivPEM)
if err != nil {
return tls.Certificate{}, "", err
}
return certificate, domain, nil
}

View file

@ -1,62 +0,0 @@
package acme
import (
"crypto/tls"
"fmt"
"net"
"net/http"
)
// TLSProviderServer implements ChallengeProvider for `TLS-SNI-01` challenge
// It may be instantiated without using the NewTLSProviderServer function if
// you want only to use the default values.
type TLSProviderServer struct {
iface string
port string
done chan bool
listener net.Listener
}
// NewTLSProviderServer creates a new TLSProviderServer on the selected interface and port.
// Setting iface and / or port to an empty string will make the server fall back to
// the "any" interface and port 443 respectively.
func NewTLSProviderServer(iface, port string) *TLSProviderServer {
return &TLSProviderServer{iface: iface, port: port}
}
// Present makes the keyAuth available as a cert
func (s *TLSProviderServer) Present(domain, token, keyAuth string) error {
if s.port == "" {
s.port = "443"
}
cert, _, err := TLSSNI01ChallengeCert(keyAuth)
if err != nil {
return err
}
tlsConf := new(tls.Config)
tlsConf.Certificates = []tls.Certificate{cert}
s.listener, err = tls.Listen("tcp", net.JoinHostPort(s.iface, s.port), tlsConf)
if err != nil {
return fmt.Errorf("Could not start HTTPS server for challenge -> %v", err)
}
s.done = make(chan bool)
go func() {
http.Serve(s.listener, nil)
s.done <- true
}()
return nil
}
// CleanUp closes the HTTP server.
func (s *TLSProviderServer) CleanUp(domain, token, keyAuth string) error {
if s.listener == nil {
return nil
}
s.listener.Close()
<-s.done
return nil
}

View file

@ -1,29 +0,0 @@
package acme
import (
"fmt"
"time"
)
// WaitFor polls the given function 'f', once every 'interval', up to 'timeout'.
func WaitFor(timeout, interval time.Duration, f func() (bool, error)) error {
var lastErr string
timeup := time.After(timeout)
for {
select {
case <-timeup:
return fmt.Errorf("Time limit exceeded. Last error: %s", lastErr)
default:
}
stop, err := f()
if stop {
return nil
}
if err != nil {
lastErr = err.Error()
}
time.Sleep(interval)
}
}

3
vendor/golang.org/x/crypto/README generated vendored
View file

@ -1,3 +0,0 @@
This repository holds supplementary Go cryptography libraries.
To submit changes to this repository, see http://golang.org/doc/contribute.html.

21
vendor/golang.org/x/crypto/README.md generated vendored Normal file
View file

@ -0,0 +1,21 @@
# Go Cryptography
This repository holds supplementary Go cryptography libraries.
## Download/Install
The easiest way to install is to run `go get -u golang.org/x/crypto/...`. You
can also manually git clone the repository to `$GOPATH/src/golang.org/x/crypto`.
## Report Issues / Send Patches
This repository uses Gerrit for code changes. To learn how to submit changes to
this repository, see https://golang.org/doc/contribute.html.
The main issue tracker for the crypto repository is located at
https://github.com/golang/go/issues. Prefix your issue with "x/crypto:" in the
subject line, so it is easy to find.
Note that contributions to the cryptography package receive additional scrutiny
due to their sensitive nature. Patches may take longer than normal to receive
feedback.

922
vendor/golang.org/x/crypto/acme/acme.go generated vendored Normal file
View file

@ -0,0 +1,922 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package acme provides an implementation of the
// Automatic Certificate Management Environment (ACME) spec.
// See https://tools.ietf.org/html/draft-ietf-acme-acme-02 for details.
//
// Most common scenarios will want to use autocert subdirectory instead,
// which provides automatic access to certificates from Let's Encrypt
// and any other ACME-based CA.
//
// This package is a work in progress and makes no API stability promises.
package acme
import (
"context"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"crypto/tls"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/base64"
"encoding/hex"
"encoding/json"
"encoding/pem"
"errors"
"fmt"
"io"
"io/ioutil"
"math/big"
"net/http"
"strings"
"sync"
"time"
)
const (
// LetsEncryptURL is the Directory endpoint of Let's Encrypt CA.
LetsEncryptURL = "https://acme-v01.api.letsencrypt.org/directory"
// ALPNProto is the ALPN protocol name used by a CA server when validating
// tls-alpn-01 challenges.
//
// Package users must ensure their servers can negotiate the ACME ALPN in
// order for tls-alpn-01 challenge verifications to succeed.
// See the crypto/tls package's Config.NextProtos field.
ALPNProto = "acme-tls/1"
)
// idPeACMEIdentifierV1 is the OID for the ACME extension for the TLS-ALPN challenge.
var idPeACMEIdentifierV1 = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 1, 30, 1}
const (
maxChainLen = 5 // max depth and breadth of a certificate chain
maxCertSize = 1 << 20 // max size of a certificate, in bytes
// Max number of collected nonces kept in memory.
// Expect usual peak of 1 or 2.
maxNonces = 100
)
// Client is an ACME client.
// The only required field is Key. An example of creating a client with a new key
// is as follows:
//
// key, err := rsa.GenerateKey(rand.Reader, 2048)
// if err != nil {
// log.Fatal(err)
// }
// client := &Client{Key: key}
//
type Client struct {
// Key is the account key used to register with a CA and sign requests.
// Key.Public() must return a *rsa.PublicKey or *ecdsa.PublicKey.
Key crypto.Signer
// HTTPClient optionally specifies an HTTP client to use
// instead of http.DefaultClient.
HTTPClient *http.Client
// DirectoryURL points to the CA directory endpoint.
// If empty, LetsEncryptURL is used.
// Mutating this value after a successful call of Client's Discover method
// will have no effect.
DirectoryURL string
// RetryBackoff computes the duration after which the nth retry of a failed request
// should occur. The value of n for the first call on failure is 1.
// The values of r and resp are the request and response of the last failed attempt.
// If the returned value is negative or zero, no more retries are done and an error
// is returned to the caller of the original method.
//
// Requests which result in a 4xx client error are not retried,
// except for 400 Bad Request due to "bad nonce" errors and 429 Too Many Requests.
//
// If RetryBackoff is nil, a truncated exponential backoff algorithm
// with the ceiling of 10 seconds is used, where each subsequent retry n
// is done after either ("Retry-After" + jitter) or (2^n seconds + jitter),
// preferring the former if "Retry-After" header is found in the resp.
// The jitter is a random value up to 1 second.
RetryBackoff func(n int, r *http.Request, resp *http.Response) time.Duration
dirMu sync.Mutex // guards writes to dir
dir *Directory // cached result of Client's Discover method
noncesMu sync.Mutex
nonces map[string]struct{} // nonces collected from previous responses
}
// Discover performs ACME server discovery using c.DirectoryURL.
//
// It caches successful result. So, subsequent calls will not result in
// a network round-trip. This also means mutating c.DirectoryURL after successful call
// of this method will have no effect.
func (c *Client) Discover(ctx context.Context) (Directory, error) {
c.dirMu.Lock()
defer c.dirMu.Unlock()
if c.dir != nil {
return *c.dir, nil
}
dirURL := c.DirectoryURL
if dirURL == "" {
dirURL = LetsEncryptURL
}
res, err := c.get(ctx, dirURL, wantStatus(http.StatusOK))
if err != nil {
return Directory{}, err
}
defer res.Body.Close()
c.addNonce(res.Header)
var v struct {
Reg string `json:"new-reg"`
Authz string `json:"new-authz"`
Cert string `json:"new-cert"`
Revoke string `json:"revoke-cert"`
Meta struct {
Terms string `json:"terms-of-service"`
Website string `json:"website"`
CAA []string `json:"caa-identities"`
}
}
if err := json.NewDecoder(res.Body).Decode(&v); err != nil {
return Directory{}, err
}
c.dir = &Directory{
RegURL: v.Reg,
AuthzURL: v.Authz,
CertURL: v.Cert,
RevokeURL: v.Revoke,
Terms: v.Meta.Terms,
Website: v.Meta.Website,
CAA: v.Meta.CAA,
}
return *c.dir, nil
}
// CreateCert requests a new certificate using the Certificate Signing Request csr encoded in DER format.
// The exp argument indicates the desired certificate validity duration. CA may issue a certificate
// with a different duration.
// If the bundle argument is true, the returned value will also contain the CA (issuer) certificate chain.
//
// In the case where CA server does not provide the issued certificate in the response,
// CreateCert will poll certURL using c.FetchCert, which will result in additional round-trips.
// In such a scenario, the caller can cancel the polling with ctx.
//
// CreateCert returns an error if the CA's response or chain was unreasonably large.
// Callers are encouraged to parse the returned value to ensure the certificate is valid and has the expected features.
func (c *Client) CreateCert(ctx context.Context, csr []byte, exp time.Duration, bundle bool) (der [][]byte, certURL string, err error) {
if _, err := c.Discover(ctx); err != nil {
return nil, "", err
}
req := struct {
Resource string `json:"resource"`
CSR string `json:"csr"`
NotBefore string `json:"notBefore,omitempty"`
NotAfter string `json:"notAfter,omitempty"`
}{
Resource: "new-cert",
CSR: base64.RawURLEncoding.EncodeToString(csr),
}
now := timeNow()
req.NotBefore = now.Format(time.RFC3339)
if exp > 0 {
req.NotAfter = now.Add(exp).Format(time.RFC3339)
}
res, err := c.post(ctx, c.Key, c.dir.CertURL, req, wantStatus(http.StatusCreated))
if err != nil {
return nil, "", err
}
defer res.Body.Close()
curl := res.Header.Get("Location") // cert permanent URL
if res.ContentLength == 0 {
// no cert in the body; poll until we get it
cert, err := c.FetchCert(ctx, curl, bundle)
return cert, curl, err
}
// slurp issued cert and CA chain, if requested
cert, err := c.responseCert(ctx, res, bundle)
return cert, curl, err
}
// FetchCert retrieves already issued certificate from the given url, in DER format.
// It retries the request until the certificate is successfully retrieved,
// context is cancelled by the caller or an error response is received.
//
// The returned value will also contain the CA (issuer) certificate if the bundle argument is true.
//
// FetchCert returns an error if the CA's response or chain was unreasonably large.
// Callers are encouraged to parse the returned value to ensure the certificate is valid
// and has expected features.
func (c *Client) FetchCert(ctx context.Context, url string, bundle bool) ([][]byte, error) {
res, err := c.get(ctx, url, wantStatus(http.StatusOK))
if err != nil {
return nil, err
}
return c.responseCert(ctx, res, bundle)
}
// RevokeCert revokes a previously issued certificate cert, provided in DER format.
//
// The key argument, used to sign the request, must be authorized
// to revoke the certificate. It's up to the CA to decide which keys are authorized.
// For instance, the key pair of the certificate may be authorized.
// If the key is nil, c.Key is used instead.
func (c *Client) RevokeCert(ctx context.Context, key crypto.Signer, cert []byte, reason CRLReasonCode) error {
if _, err := c.Discover(ctx); err != nil {
return err
}
body := &struct {
Resource string `json:"resource"`
Cert string `json:"certificate"`
Reason int `json:"reason"`
}{
Resource: "revoke-cert",
Cert: base64.RawURLEncoding.EncodeToString(cert),
Reason: int(reason),
}
if key == nil {
key = c.Key
}
res, err := c.post(ctx, key, c.dir.RevokeURL, body, wantStatus(http.StatusOK))
if err != nil {
return err
}
defer res.Body.Close()
return nil
}
// AcceptTOS always returns true to indicate the acceptance of a CA's Terms of Service
// during account registration. See Register method of Client for more details.
func AcceptTOS(tosURL string) bool { return true }
// Register creates a new account registration by following the "new-reg" flow.
// It returns the registered account. The account is not modified.
//
// The registration may require the caller to agree to the CA's Terms of Service (TOS).
// If so, and the account has not indicated the acceptance of the terms (see Account for details),
// Register calls prompt with a TOS URL provided by the CA. Prompt should report
// whether the caller agrees to the terms. To always accept the terms, the caller can use AcceptTOS.
func (c *Client) Register(ctx context.Context, a *Account, prompt func(tosURL string) bool) (*Account, error) {
if _, err := c.Discover(ctx); err != nil {
return nil, err
}
var err error
if a, err = c.doReg(ctx, c.dir.RegURL, "new-reg", a); err != nil {
return nil, err
}
var accept bool
if a.CurrentTerms != "" && a.CurrentTerms != a.AgreedTerms {
accept = prompt(a.CurrentTerms)
}
if accept {
a.AgreedTerms = a.CurrentTerms
a, err = c.UpdateReg(ctx, a)
}
return a, err
}
// GetReg retrieves an existing registration.
// The url argument is an Account URI.
func (c *Client) GetReg(ctx context.Context, url string) (*Account, error) {
a, err := c.doReg(ctx, url, "reg", nil)
if err != nil {
return nil, err
}
a.URI = url
return a, nil
}
// UpdateReg updates an existing registration.
// It returns an updated account copy. The provided account is not modified.
func (c *Client) UpdateReg(ctx context.Context, a *Account) (*Account, error) {
uri := a.URI
a, err := c.doReg(ctx, uri, "reg", a)
if err != nil {
return nil, err
}
a.URI = uri
return a, nil
}
// Authorize performs the initial step in an authorization flow.
// The caller will then need to choose from and perform a set of returned
// challenges using c.Accept in order to successfully complete authorization.
//
// If an authorization has been previously granted, the CA may return
// a valid authorization (Authorization.Status is StatusValid). If so, the caller
// need not fulfill any challenge and can proceed to requesting a certificate.
func (c *Client) Authorize(ctx context.Context, domain string) (*Authorization, error) {
if _, err := c.Discover(ctx); err != nil {
return nil, err
}
type authzID struct {
Type string `json:"type"`
Value string `json:"value"`
}
req := struct {
Resource string `json:"resource"`
Identifier authzID `json:"identifier"`
}{
Resource: "new-authz",
Identifier: authzID{Type: "dns", Value: domain},
}
res, err := c.post(ctx, c.Key, c.dir.AuthzURL, req, wantStatus(http.StatusCreated))
if err != nil {
return nil, err
}
defer res.Body.Close()
var v wireAuthz
if err := json.NewDecoder(res.Body).Decode(&v); err != nil {
return nil, fmt.Errorf("acme: invalid response: %v", err)
}
if v.Status != StatusPending && v.Status != StatusValid {
return nil, fmt.Errorf("acme: unexpected status: %s", v.Status)
}
return v.authorization(res.Header.Get("Location")), nil
}
// GetAuthorization retrieves an authorization identified by the given URL.
//
// If a caller needs to poll an authorization until its status is final,
// see the WaitAuthorization method.
func (c *Client) GetAuthorization(ctx context.Context, url string) (*Authorization, error) {
res, err := c.get(ctx, url, wantStatus(http.StatusOK, http.StatusAccepted))
if err != nil {
return nil, err
}
defer res.Body.Close()
var v wireAuthz
if err := json.NewDecoder(res.Body).Decode(&v); err != nil {
return nil, fmt.Errorf("acme: invalid response: %v", err)
}
return v.authorization(url), nil
}
// RevokeAuthorization relinquishes an existing authorization identified
// by the given URL.
// The url argument is an Authorization.URI value.
//
// If successful, the caller will be required to obtain a new authorization
// using the Authorize method before being able to request a new certificate
// for the domain associated with the authorization.
//
// It does not revoke existing certificates.
func (c *Client) RevokeAuthorization(ctx context.Context, url string) error {
req := struct {
Resource string `json:"resource"`
Status string `json:"status"`
Delete bool `json:"delete"`
}{
Resource: "authz",
Status: "deactivated",
Delete: true,
}
res, err := c.post(ctx, c.Key, url, req, wantStatus(http.StatusOK))
if err != nil {
return err
}
defer res.Body.Close()
return nil
}
// WaitAuthorization polls an authorization at the given URL
// until it is in one of the final states, StatusValid or StatusInvalid,
// the ACME CA responded with a 4xx error code, or the context is done.
//
// It returns a non-nil Authorization only if its Status is StatusValid.
// In all other cases WaitAuthorization returns an error.
// If the Status is StatusInvalid, the returned error is of type *AuthorizationError.
func (c *Client) WaitAuthorization(ctx context.Context, url string) (*Authorization, error) {
for {
res, err := c.get(ctx, url, wantStatus(http.StatusOK, http.StatusAccepted))
if err != nil {
return nil, err
}
var raw wireAuthz
err = json.NewDecoder(res.Body).Decode(&raw)
res.Body.Close()
switch {
case err != nil:
// Skip and retry.
case raw.Status == StatusValid:
return raw.authorization(url), nil
case raw.Status == StatusInvalid:
return nil, raw.error(url)
}
// Exponential backoff is implemented in c.get above.
// This is just to prevent continuously hitting the CA
// while waiting for a final authorization status.
d := retryAfter(res.Header.Get("Retry-After"))
if d == 0 {
// Given that the fastest challenges TLS-SNI and HTTP-01
// require a CA to make at least 1 network round trip
// and most likely persist a challenge state,
// this default delay seems reasonable.
d = time.Second
}
t := time.NewTimer(d)
select {
case <-ctx.Done():
t.Stop()
return nil, ctx.Err()
case <-t.C:
// Retry.
}
}
}
// GetChallenge retrieves the current status of an challenge.
//
// A client typically polls a challenge status using this method.
func (c *Client) GetChallenge(ctx context.Context, url string) (*Challenge, error) {
res, err := c.get(ctx, url, wantStatus(http.StatusOK, http.StatusAccepted))
if err != nil {
return nil, err
}
defer res.Body.Close()
v := wireChallenge{URI: url}
if err := json.NewDecoder(res.Body).Decode(&v); err != nil {
return nil, fmt.Errorf("acme: invalid response: %v", err)
}
return v.challenge(), nil
}
// Accept informs the server that the client accepts one of its challenges
// previously obtained with c.Authorize.
//
// The server will then perform the validation asynchronously.
func (c *Client) Accept(ctx context.Context, chal *Challenge) (*Challenge, error) {
auth, err := keyAuth(c.Key.Public(), chal.Token)
if err != nil {
return nil, err
}
req := struct {
Resource string `json:"resource"`
Type string `json:"type"`
Auth string `json:"keyAuthorization"`
}{
Resource: "challenge",
Type: chal.Type,
Auth: auth,
}
res, err := c.post(ctx, c.Key, chal.URI, req, wantStatus(
http.StatusOK, // according to the spec
http.StatusAccepted, // Let's Encrypt: see https://goo.gl/WsJ7VT (acme-divergences.md)
))
if err != nil {
return nil, err
}
defer res.Body.Close()
var v wireChallenge
if err := json.NewDecoder(res.Body).Decode(&v); err != nil {
return nil, fmt.Errorf("acme: invalid response: %v", err)
}
return v.challenge(), nil
}
// DNS01ChallengeRecord returns a DNS record value for a dns-01 challenge response.
// A TXT record containing the returned value must be provisioned under
// "_acme-challenge" name of the domain being validated.
//
// The token argument is a Challenge.Token value.
func (c *Client) DNS01ChallengeRecord(token string) (string, error) {
ka, err := keyAuth(c.Key.Public(), token)
if err != nil {
return "", err
}
b := sha256.Sum256([]byte(ka))
return base64.RawURLEncoding.EncodeToString(b[:]), nil
}
// HTTP01ChallengeResponse returns the response for an http-01 challenge.
// Servers should respond with the value to HTTP requests at the URL path
// provided by HTTP01ChallengePath to validate the challenge and prove control
// over a domain name.
//
// The token argument is a Challenge.Token value.
func (c *Client) HTTP01ChallengeResponse(token string) (string, error) {
return keyAuth(c.Key.Public(), token)
}
// HTTP01ChallengePath returns the URL path at which the response for an http-01 challenge
// should be provided by the servers.
// The response value can be obtained with HTTP01ChallengeResponse.
//
// The token argument is a Challenge.Token value.
func (c *Client) HTTP01ChallengePath(token string) string {
return "/.well-known/acme-challenge/" + token
}
// TLSSNI01ChallengeCert creates a certificate for TLS-SNI-01 challenge response.
// Servers can present the certificate to validate the challenge and prove control
// over a domain name.
//
// The implementation is incomplete in that the returned value is a single certificate,
// computed only for Z0 of the key authorization. ACME CAs are expected to update
// their implementations to use the newer version, TLS-SNI-02.
// For more details on TLS-SNI-01 see https://tools.ietf.org/html/draft-ietf-acme-acme-01#section-7.3.
//
// The token argument is a Challenge.Token value.
// If a WithKey option is provided, its private part signs the returned cert,
// and the public part is used to specify the signee.
// If no WithKey option is provided, a new ECDSA key is generated using P-256 curve.
//
// The returned certificate is valid for the next 24 hours and must be presented only when
// the server name of the TLS ClientHello matches exactly the returned name value.
func (c *Client) TLSSNI01ChallengeCert(token string, opt ...CertOption) (cert tls.Certificate, name string, err error) {
ka, err := keyAuth(c.Key.Public(), token)
if err != nil {
return tls.Certificate{}, "", err
}
b := sha256.Sum256([]byte(ka))
h := hex.EncodeToString(b[:])
name = fmt.Sprintf("%s.%s.acme.invalid", h[:32], h[32:])
cert, err = tlsChallengeCert([]string{name}, opt)
if err != nil {
return tls.Certificate{}, "", err
}
return cert, name, nil
}
// TLSSNI02ChallengeCert creates a certificate for TLS-SNI-02 challenge response.
// Servers can present the certificate to validate the challenge and prove control
// over a domain name. For more details on TLS-SNI-02 see
// https://tools.ietf.org/html/draft-ietf-acme-acme-03#section-7.3.
//
// The token argument is a Challenge.Token value.
// If a WithKey option is provided, its private part signs the returned cert,
// and the public part is used to specify the signee.
// If no WithKey option is provided, a new ECDSA key is generated using P-256 curve.
//
// The returned certificate is valid for the next 24 hours and must be presented only when
// the server name in the TLS ClientHello matches exactly the returned name value.
func (c *Client) TLSSNI02ChallengeCert(token string, opt ...CertOption) (cert tls.Certificate, name string, err error) {
b := sha256.Sum256([]byte(token))
h := hex.EncodeToString(b[:])
sanA := fmt.Sprintf("%s.%s.token.acme.invalid", h[:32], h[32:])
ka, err := keyAuth(c.Key.Public(), token)
if err != nil {
return tls.Certificate{}, "", err
}
b = sha256.Sum256([]byte(ka))
h = hex.EncodeToString(b[:])
sanB := fmt.Sprintf("%s.%s.ka.acme.invalid", h[:32], h[32:])
cert, err = tlsChallengeCert([]string{sanA, sanB}, opt)
if err != nil {
return tls.Certificate{}, "", err
}
return cert, sanA, nil
}
// TLSALPN01ChallengeCert creates a certificate for TLS-ALPN-01 challenge response.
// Servers can present the certificate to validate the challenge and prove control
// over a domain name. For more details on TLS-ALPN-01 see
// https://tools.ietf.org/html/draft-shoemaker-acme-tls-alpn-00#section-3
//
// The token argument is a Challenge.Token value.
// If a WithKey option is provided, its private part signs the returned cert,
// and the public part is used to specify the signee.
// If no WithKey option is provided, a new ECDSA key is generated using P-256 curve.
//
// The returned certificate is valid for the next 24 hours and must be presented only when
// the server name in the TLS ClientHello matches the domain, and the special acme-tls/1 ALPN protocol
// has been specified.
func (c *Client) TLSALPN01ChallengeCert(token, domain string, opt ...CertOption) (cert tls.Certificate, err error) {
ka, err := keyAuth(c.Key.Public(), token)
if err != nil {
return tls.Certificate{}, err
}
shasum := sha256.Sum256([]byte(ka))
extValue, err := asn1.Marshal(shasum[:])
if err != nil {
return tls.Certificate{}, err
}
acmeExtension := pkix.Extension{
Id: idPeACMEIdentifierV1,
Critical: true,
Value: extValue,
}
tmpl := defaultTLSChallengeCertTemplate()
var newOpt []CertOption
for _, o := range opt {
switch o := o.(type) {
case *certOptTemplate:
t := *(*x509.Certificate)(o) // shallow copy is ok
tmpl = &t
default:
newOpt = append(newOpt, o)
}
}
tmpl.ExtraExtensions = append(tmpl.ExtraExtensions, acmeExtension)
newOpt = append(newOpt, WithTemplate(tmpl))
return tlsChallengeCert([]string{domain}, newOpt)
}
// doReg sends all types of registration requests.
// The type of request is identified by typ argument, which is a "resource"
// in the ACME spec terms.
//
// A non-nil acct argument indicates whether the intention is to mutate data
// of the Account. Only Contact and Agreement of its fields are used
// in such cases.
func (c *Client) doReg(ctx context.Context, url string, typ string, acct *Account) (*Account, error) {
req := struct {
Resource string `json:"resource"`
Contact []string `json:"contact,omitempty"`
Agreement string `json:"agreement,omitempty"`
}{
Resource: typ,
}
if acct != nil {
req.Contact = acct.Contact
req.Agreement = acct.AgreedTerms
}
res, err := c.post(ctx, c.Key, url, req, wantStatus(
http.StatusOK, // updates and deletes
http.StatusCreated, // new account creation
http.StatusAccepted, // Let's Encrypt divergent implementation
))
if err != nil {
return nil, err
}
defer res.Body.Close()
var v struct {
Contact []string
Agreement string
Authorizations string
Certificates string
}
if err := json.NewDecoder(res.Body).Decode(&v); err != nil {
return nil, fmt.Errorf("acme: invalid response: %v", err)
}
var tos string
if v := linkHeader(res.Header, "terms-of-service"); len(v) > 0 {
tos = v[0]
}
var authz string
if v := linkHeader(res.Header, "next"); len(v) > 0 {
authz = v[0]
}
return &Account{
URI: res.Header.Get("Location"),
Contact: v.Contact,
AgreedTerms: v.Agreement,
CurrentTerms: tos,
Authz: authz,
Authorizations: v.Authorizations,
Certificates: v.Certificates,
}, nil
}
// popNonce returns a nonce value previously stored with c.addNonce
// or fetches a fresh one from the given URL.
func (c *Client) popNonce(ctx context.Context, url string) (string, error) {
c.noncesMu.Lock()
defer c.noncesMu.Unlock()
if len(c.nonces) == 0 {
return c.fetchNonce(ctx, url)
}
var nonce string
for nonce = range c.nonces {
delete(c.nonces, nonce)
break
}
return nonce, nil
}
// clearNonces clears any stored nonces
func (c *Client) clearNonces() {
c.noncesMu.Lock()
defer c.noncesMu.Unlock()
c.nonces = make(map[string]struct{})
}
// addNonce stores a nonce value found in h (if any) for future use.
func (c *Client) addNonce(h http.Header) {
v := nonceFromHeader(h)
if v == "" {
return
}
c.noncesMu.Lock()
defer c.noncesMu.Unlock()
if len(c.nonces) >= maxNonces {
return
}
if c.nonces == nil {
c.nonces = make(map[string]struct{})
}
c.nonces[v] = struct{}{}
}
func (c *Client) fetchNonce(ctx context.Context, url string) (string, error) {
r, err := http.NewRequest("HEAD", url, nil)
if err != nil {
return "", err
}
resp, err := c.doNoRetry(ctx, r)
if err != nil {
return "", err
}
defer resp.Body.Close()
nonce := nonceFromHeader(resp.Header)
if nonce == "" {
if resp.StatusCode > 299 {
return "", responseError(resp)
}
return "", errors.New("acme: nonce not found")
}
return nonce, nil
}
func nonceFromHeader(h http.Header) string {
return h.Get("Replay-Nonce")
}
func (c *Client) responseCert(ctx context.Context, res *http.Response, bundle bool) ([][]byte, error) {
b, err := ioutil.ReadAll(io.LimitReader(res.Body, maxCertSize+1))
if err != nil {
return nil, fmt.Errorf("acme: response stream: %v", err)
}
if len(b) > maxCertSize {
return nil, errors.New("acme: certificate is too big")
}
cert := [][]byte{b}
if !bundle {
return cert, nil
}
// Append CA chain cert(s).
// At least one is required according to the spec:
// https://tools.ietf.org/html/draft-ietf-acme-acme-03#section-6.3.1
up := linkHeader(res.Header, "up")
if len(up) == 0 {
return nil, errors.New("acme: rel=up link not found")
}
if len(up) > maxChainLen {
return nil, errors.New("acme: rel=up link is too large")
}
for _, url := range up {
cc, err := c.chainCert(ctx, url, 0)
if err != nil {
return nil, err
}
cert = append(cert, cc...)
}
return cert, nil
}
// chainCert fetches CA certificate chain recursively by following "up" links.
// Each recursive call increments the depth by 1, resulting in an error
// if the recursion level reaches maxChainLen.
//
// First chainCert call starts with depth of 0.
func (c *Client) chainCert(ctx context.Context, url string, depth int) ([][]byte, error) {
if depth >= maxChainLen {
return nil, errors.New("acme: certificate chain is too deep")
}
res, err := c.get(ctx, url, wantStatus(http.StatusOK))
if err != nil {
return nil, err
}
defer res.Body.Close()
b, err := ioutil.ReadAll(io.LimitReader(res.Body, maxCertSize+1))
if err != nil {
return nil, err
}
if len(b) > maxCertSize {
return nil, errors.New("acme: certificate is too big")
}
chain := [][]byte{b}
uplink := linkHeader(res.Header, "up")
if len(uplink) > maxChainLen {
return nil, errors.New("acme: certificate chain is too large")
}
for _, up := range uplink {
cc, err := c.chainCert(ctx, up, depth+1)
if err != nil {
return nil, err
}
chain = append(chain, cc...)
}
return chain, nil
}
// linkHeader returns URI-Reference values of all Link headers
// with relation-type rel.
// See https://tools.ietf.org/html/rfc5988#section-5 for details.
func linkHeader(h http.Header, rel string) []string {
var links []string
for _, v := range h["Link"] {
parts := strings.Split(v, ";")
for _, p := range parts {
p = strings.TrimSpace(p)
if !strings.HasPrefix(p, "rel=") {
continue
}
if v := strings.Trim(p[4:], `"`); v == rel {
links = append(links, strings.Trim(parts[0], "<>"))
}
}
}
return links
}
// keyAuth generates a key authorization string for a given token.
func keyAuth(pub crypto.PublicKey, token string) (string, error) {
th, err := JWKThumbprint(pub)
if err != nil {
return "", err
}
return fmt.Sprintf("%s.%s", token, th), nil
}
// defaultTLSChallengeCertTemplate is a template used to create challenge certs for TLS challenges.
func defaultTLSChallengeCertTemplate() *x509.Certificate {
return &x509.Certificate{
SerialNumber: big.NewInt(1),
NotBefore: time.Now(),
NotAfter: time.Now().Add(24 * time.Hour),
BasicConstraintsValid: true,
KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth},
}
}
// tlsChallengeCert creates a temporary certificate for TLS-SNI challenges
// with the given SANs and auto-generated public/private key pair.
// The Subject Common Name is set to the first SAN to aid debugging.
// To create a cert with a custom key pair, specify WithKey option.
func tlsChallengeCert(san []string, opt []CertOption) (tls.Certificate, error) {
var key crypto.Signer
tmpl := defaultTLSChallengeCertTemplate()
for _, o := range opt {
switch o := o.(type) {
case *certOptKey:
if key != nil {
return tls.Certificate{}, errors.New("acme: duplicate key option")
}
key = o.key
case *certOptTemplate:
t := *(*x509.Certificate)(o) // shallow copy is ok
tmpl = &t
default:
// package's fault, if we let this happen:
panic(fmt.Sprintf("unsupported option type %T", o))
}
}
if key == nil {
var err error
if key, err = ecdsa.GenerateKey(elliptic.P256(), rand.Reader); err != nil {
return tls.Certificate{}, err
}
}
tmpl.DNSNames = san
if len(san) > 0 {
tmpl.Subject.CommonName = san[0]
}
der, err := x509.CreateCertificate(rand.Reader, tmpl, tmpl, key.Public(), key)
if err != nil {
return tls.Certificate{}, err
}
return tls.Certificate{
Certificate: [][]byte{der},
PrivateKey: key,
}, nil
}
// encodePEM returns b encoded as PEM with block of type typ.
func encodePEM(typ string, b []byte) []byte {
pb := &pem.Block{Type: typ, Bytes: b}
return pem.EncodeToMemory(pb)
}
// timeNow is useful for testing for fixed current time.
var timeNow = time.Now

1139
vendor/golang.org/x/crypto/acme/autocert/autocert.go generated vendored Normal file

File diff suppressed because it is too large Load diff

130
vendor/golang.org/x/crypto/acme/autocert/cache.go generated vendored Normal file
View file

@ -0,0 +1,130 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package autocert
import (
"context"
"errors"
"io/ioutil"
"os"
"path/filepath"
)
// ErrCacheMiss is returned when a certificate is not found in cache.
var ErrCacheMiss = errors.New("acme/autocert: certificate cache miss")
// Cache is used by Manager to store and retrieve previously obtained certificates
// and other account data as opaque blobs.
//
// Cache implementations should not rely on the key naming pattern. Keys can
// include any printable ASCII characters, except the following: \/:*?"<>|
type Cache interface {
// Get returns a certificate data for the specified key.
// If there's no such key, Get returns ErrCacheMiss.
Get(ctx context.Context, key string) ([]byte, error)
// Put stores the data in the cache under the specified key.
// Underlying implementations may use any data storage format,
// as long as the reverse operation, Get, results in the original data.
Put(ctx context.Context, key string, data []byte) error
// Delete removes a certificate data from the cache under the specified key.
// If there's no such key in the cache, Delete returns nil.
Delete(ctx context.Context, key string) error
}
// DirCache implements Cache using a directory on the local filesystem.
// If the directory does not exist, it will be created with 0700 permissions.
type DirCache string
// Get reads a certificate data from the specified file name.
func (d DirCache) Get(ctx context.Context, name string) ([]byte, error) {
name = filepath.Join(string(d), name)
var (
data []byte
err error
done = make(chan struct{})
)
go func() {
data, err = ioutil.ReadFile(name)
close(done)
}()
select {
case <-ctx.Done():
return nil, ctx.Err()
case <-done:
}
if os.IsNotExist(err) {
return nil, ErrCacheMiss
}
return data, err
}
// Put writes the certificate data to the specified file name.
// The file will be created with 0600 permissions.
func (d DirCache) Put(ctx context.Context, name string, data []byte) error {
if err := os.MkdirAll(string(d), 0700); err != nil {
return err
}
done := make(chan struct{})
var err error
go func() {
defer close(done)
var tmp string
if tmp, err = d.writeTempFile(name, data); err != nil {
return
}
select {
case <-ctx.Done():
// Don't overwrite the file if the context was canceled.
default:
newName := filepath.Join(string(d), name)
err = os.Rename(tmp, newName)
}
}()
select {
case <-ctx.Done():
return ctx.Err()
case <-done:
}
return err
}
// Delete removes the specified file name.
func (d DirCache) Delete(ctx context.Context, name string) error {
name = filepath.Join(string(d), name)
var (
err error
done = make(chan struct{})
)
go func() {
err = os.Remove(name)
close(done)
}()
select {
case <-ctx.Done():
return ctx.Err()
case <-done:
}
if err != nil && !os.IsNotExist(err) {
return err
}
return nil
}
// writeTempFile writes b to a temporary file, closes the file and returns its path.
func (d DirCache) writeTempFile(prefix string, b []byte) (string, error) {
// TempFile uses 0600 permissions
f, err := ioutil.TempFile(string(d), prefix)
if err != nil {
return "", err
}
if _, err := f.Write(b); err != nil {
f.Close()
return "", err
}
return f.Name(), f.Close()
}

157
vendor/golang.org/x/crypto/acme/autocert/listener.go generated vendored Normal file
View file

@ -0,0 +1,157 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package autocert
import (
"crypto/tls"
"log"
"net"
"os"
"path/filepath"
"runtime"
"time"
)
// NewListener returns a net.Listener that listens on the standard TLS
// port (443) on all interfaces and returns *tls.Conn connections with
// LetsEncrypt certificates for the provided domain or domains.
//
// It enables one-line HTTPS servers:
//
// log.Fatal(http.Serve(autocert.NewListener("example.com"), handler))
//
// NewListener is a convenience function for a common configuration.
// More complex or custom configurations can use the autocert.Manager
// type instead.
//
// Use of this function implies acceptance of the LetsEncrypt Terms of
// Service. If domains is not empty, the provided domains are passed
// to HostWhitelist. If domains is empty, the listener will do
// LetsEncrypt challenges for any requested domain, which is not
// recommended.
//
// Certificates are cached in a "golang-autocert" directory under an
// operating system-specific cache or temp directory. This may not
// be suitable for servers spanning multiple machines.
//
// The returned listener uses a *tls.Config that enables HTTP/2, and
// should only be used with servers that support HTTP/2.
//
// The returned Listener also enables TCP keep-alives on the accepted
// connections. The returned *tls.Conn are returned before their TLS
// handshake has completed.
func NewListener(domains ...string) net.Listener {
m := &Manager{
Prompt: AcceptTOS,
}
if len(domains) > 0 {
m.HostPolicy = HostWhitelist(domains...)
}
dir := cacheDir()
if err := os.MkdirAll(dir, 0700); err != nil {
log.Printf("warning: autocert.NewListener not using a cache: %v", err)
} else {
m.Cache = DirCache(dir)
}
return m.Listener()
}
// Listener listens on the standard TLS port (443) on all interfaces
// and returns a net.Listener returning *tls.Conn connections.
//
// The returned listener uses a *tls.Config that enables HTTP/2, and
// should only be used with servers that support HTTP/2.
//
// The returned Listener also enables TCP keep-alives on the accepted
// connections. The returned *tls.Conn are returned before their TLS
// handshake has completed.
//
// Unlike NewListener, it is the caller's responsibility to initialize
// the Manager m's Prompt, Cache, HostPolicy, and other desired options.
func (m *Manager) Listener() net.Listener {
ln := &listener{
m: m,
conf: m.TLSConfig(),
}
ln.tcpListener, ln.tcpListenErr = net.Listen("tcp", ":443")
return ln
}
type listener struct {
m *Manager
conf *tls.Config
tcpListener net.Listener
tcpListenErr error
}
func (ln *listener) Accept() (net.Conn, error) {
if ln.tcpListenErr != nil {
return nil, ln.tcpListenErr
}
conn, err := ln.tcpListener.Accept()
if err != nil {
return nil, err
}
tcpConn := conn.(*net.TCPConn)
// Because Listener is a convenience function, help out with
// this too. This is not possible for the caller to set once
// we return a *tcp.Conn wrapping an inaccessible net.Conn.
// If callers don't want this, they can do things the manual
// way and tweak as needed. But this is what net/http does
// itself, so copy that. If net/http changes, we can change
// here too.
tcpConn.SetKeepAlive(true)
tcpConn.SetKeepAlivePeriod(3 * time.Minute)
return tls.Server(tcpConn, ln.conf), nil
}
func (ln *listener) Addr() net.Addr {
if ln.tcpListener != nil {
return ln.tcpListener.Addr()
}
// net.Listen failed. Return something non-nil in case callers
// call Addr before Accept:
return &net.TCPAddr{IP: net.IP{0, 0, 0, 0}, Port: 443}
}
func (ln *listener) Close() error {
if ln.tcpListenErr != nil {
return ln.tcpListenErr
}
return ln.tcpListener.Close()
}
func homeDir() string {
if runtime.GOOS == "windows" {
return os.Getenv("HOMEDRIVE") + os.Getenv("HOMEPATH")
}
if h := os.Getenv("HOME"); h != "" {
return h
}
return "/"
}
func cacheDir() string {
const base = "golang-autocert"
switch runtime.GOOS {
case "darwin":
return filepath.Join(homeDir(), "Library", "Caches", base)
case "windows":
for _, ev := range []string{"APPDATA", "CSIDL_APPDATA", "TEMP", "TMP"} {
if v := os.Getenv(ev); v != "" {
return filepath.Join(v, base)
}
}
// Worst case:
return filepath.Join(homeDir(), base)
}
if xdg := os.Getenv("XDG_CACHE_HOME"); xdg != "" {
return filepath.Join(xdg, base)
}
return filepath.Join(homeDir(), ".cache", base)
}

141
vendor/golang.org/x/crypto/acme/autocert/renewal.go generated vendored Normal file
View file

@ -0,0 +1,141 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package autocert
import (
"context"
"crypto"
"sync"
"time"
)
// renewJitter is the maximum deviation from Manager.RenewBefore.
const renewJitter = time.Hour
// domainRenewal tracks the state used by the periodic timers
// renewing a single domain's cert.
type domainRenewal struct {
m *Manager
ck certKey
key crypto.Signer
timerMu sync.Mutex
timer *time.Timer
}
// start starts a cert renewal timer at the time
// defined by the certificate expiration time exp.
//
// If the timer is already started, calling start is a noop.
func (dr *domainRenewal) start(exp time.Time) {
dr.timerMu.Lock()
defer dr.timerMu.Unlock()
if dr.timer != nil {
return
}
dr.timer = time.AfterFunc(dr.next(exp), dr.renew)
}
// stop stops the cert renewal timer.
// If the timer is already stopped, calling stop is a noop.
func (dr *domainRenewal) stop() {
dr.timerMu.Lock()
defer dr.timerMu.Unlock()
if dr.timer == nil {
return
}
dr.timer.Stop()
dr.timer = nil
}
// renew is called periodically by a timer.
// The first renew call is kicked off by dr.start.
func (dr *domainRenewal) renew() {
dr.timerMu.Lock()
defer dr.timerMu.Unlock()
if dr.timer == nil {
return
}
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
defer cancel()
// TODO: rotate dr.key at some point?
next, err := dr.do(ctx)
if err != nil {
next = renewJitter / 2
next += time.Duration(pseudoRand.int63n(int64(next)))
}
dr.timer = time.AfterFunc(next, dr.renew)
testDidRenewLoop(next, err)
}
// updateState locks and replaces the relevant Manager.state item with the given
// state. It additionally updates dr.key with the given state's key.
func (dr *domainRenewal) updateState(state *certState) {
dr.m.stateMu.Lock()
defer dr.m.stateMu.Unlock()
dr.key = state.key
dr.m.state[dr.ck] = state
}
// do is similar to Manager.createCert but it doesn't lock a Manager.state item.
// Instead, it requests a new certificate independently and, upon success,
// replaces dr.m.state item with a new one and updates cache for the given domain.
//
// It may lock and update the Manager.state if the expiration date of the currently
// cached cert is far enough in the future.
//
// The returned value is a time interval after which the renewal should occur again.
func (dr *domainRenewal) do(ctx context.Context) (time.Duration, error) {
// a race is likely unavoidable in a distributed environment
// but we try nonetheless
if tlscert, err := dr.m.cacheGet(ctx, dr.ck); err == nil {
next := dr.next(tlscert.Leaf.NotAfter)
if next > dr.m.renewBefore()+renewJitter {
signer, ok := tlscert.PrivateKey.(crypto.Signer)
if ok {
state := &certState{
key: signer,
cert: tlscert.Certificate,
leaf: tlscert.Leaf,
}
dr.updateState(state)
return next, nil
}
}
}
der, leaf, err := dr.m.authorizedCert(ctx, dr.key, dr.ck)
if err != nil {
return 0, err
}
state := &certState{
key: dr.key,
cert: der,
leaf: leaf,
}
tlscert, err := state.tlscert()
if err != nil {
return 0, err
}
if err := dr.m.cachePut(ctx, dr.ck, tlscert); err != nil {
return 0, err
}
dr.updateState(state)
return dr.next(leaf.NotAfter), nil
}
func (dr *domainRenewal) next(expiry time.Time) time.Duration {
d := expiry.Sub(dr.m.now()) - dr.m.renewBefore()
// add a bit of randomness to renew deadline
n := pseudoRand.int63n(int64(renewJitter))
d -= time.Duration(n)
if d < 0 {
return 0
}
return d
}
var testDidRenewLoop = func(next time.Duration, err error) {}

281
vendor/golang.org/x/crypto/acme/http.go generated vendored Normal file
View file

@ -0,0 +1,281 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package acme
import (
"bytes"
"context"
"crypto"
"crypto/rand"
"encoding/json"
"fmt"
"io/ioutil"
"math/big"
"net/http"
"strconv"
"strings"
"time"
)
// retryTimer encapsulates common logic for retrying unsuccessful requests.
// It is not safe for concurrent use.
type retryTimer struct {
// backoffFn provides backoff delay sequence for retries.
// See Client.RetryBackoff doc comment.
backoffFn func(n int, r *http.Request, res *http.Response) time.Duration
// n is the current retry attempt.
n int
}
func (t *retryTimer) inc() {
t.n++
}
// backoff pauses the current goroutine as described in Client.RetryBackoff.
func (t *retryTimer) backoff(ctx context.Context, r *http.Request, res *http.Response) error {
d := t.backoffFn(t.n, r, res)
if d <= 0 {
return fmt.Errorf("acme: no more retries for %s; tried %d time(s)", r.URL, t.n)
}
wakeup := time.NewTimer(d)
defer wakeup.Stop()
select {
case <-ctx.Done():
return ctx.Err()
case <-wakeup.C:
return nil
}
}
func (c *Client) retryTimer() *retryTimer {
f := c.RetryBackoff
if f == nil {
f = defaultBackoff
}
return &retryTimer{backoffFn: f}
}
// defaultBackoff provides default Client.RetryBackoff implementation
// using a truncated exponential backoff algorithm,
// as described in Client.RetryBackoff.
//
// The n argument is always bounded between 1 and 30.
// The returned value is always greater than 0.
func defaultBackoff(n int, r *http.Request, res *http.Response) time.Duration {
const max = 10 * time.Second
var jitter time.Duration
if x, err := rand.Int(rand.Reader, big.NewInt(1000)); err == nil {
// Set the minimum to 1ms to avoid a case where
// an invalid Retry-After value is parsed into 0 below,
// resulting in the 0 returned value which would unintentionally
// stop the retries.
jitter = (1 + time.Duration(x.Int64())) * time.Millisecond
}
if v, ok := res.Header["Retry-After"]; ok {
return retryAfter(v[0]) + jitter
}
if n < 1 {
n = 1
}
if n > 30 {
n = 30
}
d := time.Duration(1<<uint(n-1))*time.Second + jitter
if d > max {
return max
}
return d
}
// retryAfter parses a Retry-After HTTP header value,
// trying to convert v into an int (seconds) or use http.ParseTime otherwise.
// It returns zero value if v cannot be parsed.
func retryAfter(v string) time.Duration {
if i, err := strconv.Atoi(v); err == nil {
return time.Duration(i) * time.Second
}
t, err := http.ParseTime(v)
if err != nil {
return 0
}
return t.Sub(timeNow())
}
// resOkay is a function that reports whether the provided response is okay.
// It is expected to keep the response body unread.
type resOkay func(*http.Response) bool
// wantStatus returns a function which reports whether the code
// matches the status code of a response.
func wantStatus(codes ...int) resOkay {
return func(res *http.Response) bool {
for _, code := range codes {
if code == res.StatusCode {
return true
}
}
return false
}
}
// get issues an unsigned GET request to the specified URL.
// It returns a non-error value only when ok reports true.
//
// get retries unsuccessful attempts according to c.RetryBackoff
// until the context is done or a non-retriable error is received.
func (c *Client) get(ctx context.Context, url string, ok resOkay) (*http.Response, error) {
retry := c.retryTimer()
for {
req, err := http.NewRequest("GET", url, nil)
if err != nil {
return nil, err
}
res, err := c.doNoRetry(ctx, req)
switch {
case err != nil:
return nil, err
case ok(res):
return res, nil
case isRetriable(res.StatusCode):
retry.inc()
resErr := responseError(res)
res.Body.Close()
// Ignore the error value from retry.backoff
// and return the one from last retry, as received from the CA.
if retry.backoff(ctx, req, res) != nil {
return nil, resErr
}
default:
defer res.Body.Close()
return nil, responseError(res)
}
}
}
// post issues a signed POST request in JWS format using the provided key
// to the specified URL.
// It returns a non-error value only when ok reports true.
//
// post retries unsuccessful attempts according to c.RetryBackoff
// until the context is done or a non-retriable error is received.
// It uses postNoRetry to make individual requests.
func (c *Client) post(ctx context.Context, key crypto.Signer, url string, body interface{}, ok resOkay) (*http.Response, error) {
retry := c.retryTimer()
for {
res, req, err := c.postNoRetry(ctx, key, url, body)
if err != nil {
return nil, err
}
if ok(res) {
return res, nil
}
resErr := responseError(res)
res.Body.Close()
switch {
// Check for bad nonce before isRetriable because it may have been returned
// with an unretriable response code such as 400 Bad Request.
case isBadNonce(resErr):
// Consider any previously stored nonce values to be invalid.
c.clearNonces()
case !isRetriable(res.StatusCode):
return nil, resErr
}
retry.inc()
// Ignore the error value from retry.backoff
// and return the one from last retry, as received from the CA.
if err := retry.backoff(ctx, req, res); err != nil {
return nil, resErr
}
}
}
// postNoRetry signs the body with the given key and POSTs it to the provided url.
// The body argument must be JSON-serializable.
// It is used by c.post to retry unsuccessful attempts.
func (c *Client) postNoRetry(ctx context.Context, key crypto.Signer, url string, body interface{}) (*http.Response, *http.Request, error) {
nonce, err := c.popNonce(ctx, url)
if err != nil {
return nil, nil, err
}
b, err := jwsEncodeJSON(body, key, nonce)
if err != nil {
return nil, nil, err
}
req, err := http.NewRequest("POST", url, bytes.NewReader(b))
if err != nil {
return nil, nil, err
}
req.Header.Set("Content-Type", "application/jose+json")
res, err := c.doNoRetry(ctx, req)
if err != nil {
return nil, nil, err
}
c.addNonce(res.Header)
return res, req, nil
}
// doNoRetry issues a request req, replacing its context (if any) with ctx.
func (c *Client) doNoRetry(ctx context.Context, req *http.Request) (*http.Response, error) {
res, err := c.httpClient().Do(req.WithContext(ctx))
if err != nil {
select {
case <-ctx.Done():
// Prefer the unadorned context error.
// (The acme package had tests assuming this, previously from ctxhttp's
// behavior, predating net/http supporting contexts natively)
// TODO(bradfitz): reconsider this in the future. But for now this
// requires no test updates.
return nil, ctx.Err()
default:
return nil, err
}
}
return res, nil
}
func (c *Client) httpClient() *http.Client {
if c.HTTPClient != nil {
return c.HTTPClient
}
return http.DefaultClient
}
// isBadNonce reports whether err is an ACME "badnonce" error.
func isBadNonce(err error) bool {
// According to the spec badNonce is urn:ietf:params:acme:error:badNonce.
// However, ACME servers in the wild return their versions of the error.
// See https://tools.ietf.org/html/draft-ietf-acme-acme-02#section-5.4
// and https://github.com/letsencrypt/boulder/blob/0e07eacb/docs/acme-divergences.md#section-66.
ae, ok := err.(*Error)
return ok && strings.HasSuffix(strings.ToLower(ae.ProblemType), ":badnonce")
}
// isRetriable reports whether a request can be retried
// based on the response status code.
//
// Note that a "bad nonce" error is returned with a non-retriable 400 Bad Request code.
// Callers should parse the response and check with isBadNonce.
func isRetriable(code int) bool {
return code <= 399 || code >= 500 || code == http.StatusTooManyRequests
}
// responseError creates an error of Error type from resp.
func responseError(resp *http.Response) error {
// don't care if ReadAll returns an error:
// json.Unmarshal will fail in that case anyway
b, _ := ioutil.ReadAll(resp.Body)
e := &wireError{Status: resp.StatusCode}
if err := json.Unmarshal(b, e); err != nil {
// this is not a regular error response:
// populate detail with anything we received,
// e.Status will already contain HTTP response code value
e.Detail = string(b)
if e.Detail == "" {
e.Detail = resp.Status
}
}
return e.error(resp.Header)
}

153
vendor/golang.org/x/crypto/acme/jws.go generated vendored Normal file
View file

@ -0,0 +1,153 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package acme
import (
"crypto"
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"crypto/sha256"
_ "crypto/sha512" // need for EC keys
"encoding/base64"
"encoding/json"
"fmt"
"math/big"
)
// jwsEncodeJSON signs claimset using provided key and a nonce.
// The result is serialized in JSON format.
// See https://tools.ietf.org/html/rfc7515#section-7.
func jwsEncodeJSON(claimset interface{}, key crypto.Signer, nonce string) ([]byte, error) {
jwk, err := jwkEncode(key.Public())
if err != nil {
return nil, err
}
alg, sha := jwsHasher(key)
if alg == "" || !sha.Available() {
return nil, ErrUnsupportedKey
}
phead := fmt.Sprintf(`{"alg":%q,"jwk":%s,"nonce":%q}`, alg, jwk, nonce)
phead = base64.RawURLEncoding.EncodeToString([]byte(phead))
cs, err := json.Marshal(claimset)
if err != nil {
return nil, err
}
payload := base64.RawURLEncoding.EncodeToString(cs)
hash := sha.New()
hash.Write([]byte(phead + "." + payload))
sig, err := jwsSign(key, sha, hash.Sum(nil))
if err != nil {
return nil, err
}
enc := struct {
Protected string `json:"protected"`
Payload string `json:"payload"`
Sig string `json:"signature"`
}{
Protected: phead,
Payload: payload,
Sig: base64.RawURLEncoding.EncodeToString(sig),
}
return json.Marshal(&enc)
}
// jwkEncode encodes public part of an RSA or ECDSA key into a JWK.
// The result is also suitable for creating a JWK thumbprint.
// https://tools.ietf.org/html/rfc7517
func jwkEncode(pub crypto.PublicKey) (string, error) {
switch pub := pub.(type) {
case *rsa.PublicKey:
// https://tools.ietf.org/html/rfc7518#section-6.3.1
n := pub.N
e := big.NewInt(int64(pub.E))
// Field order is important.
// See https://tools.ietf.org/html/rfc7638#section-3.3 for details.
return fmt.Sprintf(`{"e":"%s","kty":"RSA","n":"%s"}`,
base64.RawURLEncoding.EncodeToString(e.Bytes()),
base64.RawURLEncoding.EncodeToString(n.Bytes()),
), nil
case *ecdsa.PublicKey:
// https://tools.ietf.org/html/rfc7518#section-6.2.1
p := pub.Curve.Params()
n := p.BitSize / 8
if p.BitSize%8 != 0 {
n++
}
x := pub.X.Bytes()
if n > len(x) {
x = append(make([]byte, n-len(x)), x...)
}
y := pub.Y.Bytes()
if n > len(y) {
y = append(make([]byte, n-len(y)), y...)
}
// Field order is important.
// See https://tools.ietf.org/html/rfc7638#section-3.3 for details.
return fmt.Sprintf(`{"crv":"%s","kty":"EC","x":"%s","y":"%s"}`,
p.Name,
base64.RawURLEncoding.EncodeToString(x),
base64.RawURLEncoding.EncodeToString(y),
), nil
}
return "", ErrUnsupportedKey
}
// jwsSign signs the digest using the given key.
// It returns ErrUnsupportedKey if the key type is unknown.
// The hash is used only for RSA keys.
func jwsSign(key crypto.Signer, hash crypto.Hash, digest []byte) ([]byte, error) {
switch key := key.(type) {
case *rsa.PrivateKey:
return key.Sign(rand.Reader, digest, hash)
case *ecdsa.PrivateKey:
r, s, err := ecdsa.Sign(rand.Reader, key, digest)
if err != nil {
return nil, err
}
rb, sb := r.Bytes(), s.Bytes()
size := key.Params().BitSize / 8
if size%8 > 0 {
size++
}
sig := make([]byte, size*2)
copy(sig[size-len(rb):], rb)
copy(sig[size*2-len(sb):], sb)
return sig, nil
}
return nil, ErrUnsupportedKey
}
// jwsHasher indicates suitable JWS algorithm name and a hash function
// to use for signing a digest with the provided key.
// It returns ("", 0) if the key is not supported.
func jwsHasher(key crypto.Signer) (string, crypto.Hash) {
switch key := key.(type) {
case *rsa.PrivateKey:
return "RS256", crypto.SHA256
case *ecdsa.PrivateKey:
switch key.Params().Name {
case "P-256":
return "ES256", crypto.SHA256
case "P-384":
return "ES384", crypto.SHA384
case "P-521":
return "ES512", crypto.SHA512
}
}
return "", 0
}
// JWKThumbprint creates a JWK thumbprint out of pub
// as specified in https://tools.ietf.org/html/rfc7638.
func JWKThumbprint(pub crypto.PublicKey) (string, error) {
jwk, err := jwkEncode(pub)
if err != nil {
return "", err
}
b := sha256.Sum256([]byte(jwk))
return base64.RawURLEncoding.EncodeToString(b[:]), nil
}

329
vendor/golang.org/x/crypto/acme/types.go generated vendored Normal file
View file

@ -0,0 +1,329 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package acme
import (
"crypto"
"crypto/x509"
"errors"
"fmt"
"net/http"
"strings"
"time"
)
// ACME server response statuses used to describe Authorization and Challenge states.
const (
StatusUnknown = "unknown"
StatusPending = "pending"
StatusProcessing = "processing"
StatusValid = "valid"
StatusInvalid = "invalid"
StatusRevoked = "revoked"
)
// CRLReasonCode identifies the reason for a certificate revocation.
type CRLReasonCode int
// CRL reason codes as defined in RFC 5280.
const (
CRLReasonUnspecified CRLReasonCode = 0
CRLReasonKeyCompromise CRLReasonCode = 1
CRLReasonCACompromise CRLReasonCode = 2
CRLReasonAffiliationChanged CRLReasonCode = 3
CRLReasonSuperseded CRLReasonCode = 4
CRLReasonCessationOfOperation CRLReasonCode = 5
CRLReasonCertificateHold CRLReasonCode = 6
CRLReasonRemoveFromCRL CRLReasonCode = 8
CRLReasonPrivilegeWithdrawn CRLReasonCode = 9
CRLReasonAACompromise CRLReasonCode = 10
)
// ErrUnsupportedKey is returned when an unsupported key type is encountered.
var ErrUnsupportedKey = errors.New("acme: unknown key type; only RSA and ECDSA are supported")
// Error is an ACME error, defined in Problem Details for HTTP APIs doc
// http://tools.ietf.org/html/draft-ietf-appsawg-http-problem.
type Error struct {
// StatusCode is The HTTP status code generated by the origin server.
StatusCode int
// ProblemType is a URI reference that identifies the problem type,
// typically in a "urn:acme:error:xxx" form.
ProblemType string
// Detail is a human-readable explanation specific to this occurrence of the problem.
Detail string
// Header is the original server error response headers.
// It may be nil.
Header http.Header
}
func (e *Error) Error() string {
return fmt.Sprintf("%d %s: %s", e.StatusCode, e.ProblemType, e.Detail)
}
// AuthorizationError indicates that an authorization for an identifier
// did not succeed.
// It contains all errors from Challenge items of the failed Authorization.
type AuthorizationError struct {
// URI uniquely identifies the failed Authorization.
URI string
// Identifier is an AuthzID.Value of the failed Authorization.
Identifier string
// Errors is a collection of non-nil error values of Challenge items
// of the failed Authorization.
Errors []error
}
func (a *AuthorizationError) Error() string {
e := make([]string, len(a.Errors))
for i, err := range a.Errors {
e[i] = err.Error()
}
return fmt.Sprintf("acme: authorization error for %s: %s", a.Identifier, strings.Join(e, "; "))
}
// RateLimit reports whether err represents a rate limit error and
// any Retry-After duration returned by the server.
//
// See the following for more details on rate limiting:
// https://tools.ietf.org/html/draft-ietf-acme-acme-05#section-5.6
func RateLimit(err error) (time.Duration, bool) {
e, ok := err.(*Error)
if !ok {
return 0, false
}
// Some CA implementations may return incorrect values.
// Use case-insensitive comparison.
if !strings.HasSuffix(strings.ToLower(e.ProblemType), ":ratelimited") {
return 0, false
}
if e.Header == nil {
return 0, true
}
return retryAfter(e.Header.Get("Retry-After")), true
}
// Account is a user account. It is associated with a private key.
type Account struct {
// URI is the account unique ID, which is also a URL used to retrieve
// account data from the CA.
URI string
// Contact is a slice of contact info used during registration.
Contact []string
// The terms user has agreed to.
// A value not matching CurrentTerms indicates that the user hasn't agreed
// to the actual Terms of Service of the CA.
AgreedTerms string
// Actual terms of a CA.
CurrentTerms string
// Authz is the authorization URL used to initiate a new authz flow.
Authz string
// Authorizations is a URI from which a list of authorizations
// granted to this account can be fetched via a GET request.
Authorizations string
// Certificates is a URI from which a list of certificates
// issued for this account can be fetched via a GET request.
Certificates string
}
// Directory is ACME server discovery data.
type Directory struct {
// RegURL is an account endpoint URL, allowing for creating new
// and modifying existing accounts.
RegURL string
// AuthzURL is used to initiate Identifier Authorization flow.
AuthzURL string
// CertURL is a new certificate issuance endpoint URL.
CertURL string
// RevokeURL is used to initiate a certificate revocation flow.
RevokeURL string
// Term is a URI identifying the current terms of service.
Terms string
// Website is an HTTP or HTTPS URL locating a website
// providing more information about the ACME server.
Website string
// CAA consists of lowercase hostname elements, which the ACME server
// recognises as referring to itself for the purposes of CAA record validation
// as defined in RFC6844.
CAA []string
}
// Challenge encodes a returned CA challenge.
// Its Error field may be non-nil if the challenge is part of an Authorization
// with StatusInvalid.
type Challenge struct {
// Type is the challenge type, e.g. "http-01", "tls-sni-02", "dns-01".
Type string
// URI is where a challenge response can be posted to.
URI string
// Token is a random value that uniquely identifies the challenge.
Token string
// Status identifies the status of this challenge.
Status string
// Error indicates the reason for an authorization failure
// when this challenge was used.
// The type of a non-nil value is *Error.
Error error
}
// Authorization encodes an authorization response.
type Authorization struct {
// URI uniquely identifies a authorization.
URI string
// Status identifies the status of an authorization.
Status string
// Identifier is what the account is authorized to represent.
Identifier AuthzID
// Challenges that the client needs to fulfill in order to prove possession
// of the identifier (for pending authorizations).
// For final authorizations, the challenges that were used.
Challenges []*Challenge
// A collection of sets of challenges, each of which would be sufficient
// to prove possession of the identifier.
// Clients must complete a set of challenges that covers at least one set.
// Challenges are identified by their indices in the challenges array.
// If this field is empty, the client needs to complete all challenges.
Combinations [][]int
}
// AuthzID is an identifier that an account is authorized to represent.
type AuthzID struct {
Type string // The type of identifier, e.g. "dns".
Value string // The identifier itself, e.g. "example.org".
}
// wireAuthz is ACME JSON representation of Authorization objects.
type wireAuthz struct {
Status string
Challenges []wireChallenge
Combinations [][]int
Identifier struct {
Type string
Value string
}
}
func (z *wireAuthz) authorization(uri string) *Authorization {
a := &Authorization{
URI: uri,
Status: z.Status,
Identifier: AuthzID{Type: z.Identifier.Type, Value: z.Identifier.Value},
Combinations: z.Combinations, // shallow copy
Challenges: make([]*Challenge, len(z.Challenges)),
}
for i, v := range z.Challenges {
a.Challenges[i] = v.challenge()
}
return a
}
func (z *wireAuthz) error(uri string) *AuthorizationError {
err := &AuthorizationError{
URI: uri,
Identifier: z.Identifier.Value,
}
for _, raw := range z.Challenges {
if raw.Error != nil {
err.Errors = append(err.Errors, raw.Error.error(nil))
}
}
return err
}
// wireChallenge is ACME JSON challenge representation.
type wireChallenge struct {
URI string `json:"uri"`
Type string
Token string
Status string
Error *wireError
}
func (c *wireChallenge) challenge() *Challenge {
v := &Challenge{
URI: c.URI,
Type: c.Type,
Token: c.Token,
Status: c.Status,
}
if v.Status == "" {
v.Status = StatusPending
}
if c.Error != nil {
v.Error = c.Error.error(nil)
}
return v
}
// wireError is a subset of fields of the Problem Details object
// as described in https://tools.ietf.org/html/rfc7807#section-3.1.
type wireError struct {
Status int
Type string
Detail string
}
func (e *wireError) error(h http.Header) *Error {
return &Error{
StatusCode: e.Status,
ProblemType: e.Type,
Detail: e.Detail,
Header: h,
}
}
// CertOption is an optional argument type for the TLS ChallengeCert methods for
// customizing a temporary certificate for TLS-based challenges.
type CertOption interface {
privateCertOpt()
}
// WithKey creates an option holding a private/public key pair.
// The private part signs a certificate, and the public part represents the signee.
func WithKey(key crypto.Signer) CertOption {
return &certOptKey{key}
}
type certOptKey struct {
key crypto.Signer
}
func (*certOptKey) privateCertOpt() {}
// WithTemplate creates an option for specifying a certificate template.
// See x509.CreateCertificate for template usage details.
//
// In TLS ChallengeCert methods, the template is also used as parent,
// resulting in a self-signed certificate.
// The DNSNames field of t is always overwritten for tls-sni challenge certs.
func WithTemplate(t *x509.Certificate) CertOption {
return (*certOptTemplate)(t)
}
type certOptTemplate x509.Certificate
func (*certOptTemplate) privateCertOpt() {}

View file

@ -12,9 +12,10 @@ import (
"crypto/subtle"
"errors"
"fmt"
"golang.org/x/crypto/blowfish"
"io"
"strconv"
"golang.org/x/crypto/blowfish"
)
const (
@ -205,7 +206,6 @@ func bcrypt(password []byte, cost int, salt []byte) ([]byte, error) {
}
func expensiveBlowfishSetup(key []byte, cost uint32, salt []byte) (*blowfish.Cipher, error) {
csalt, err := base64Decode(salt)
if err != nil {
return nil, err
@ -213,7 +213,8 @@ func expensiveBlowfishSetup(key []byte, cost uint32, salt []byte) (*blowfish.Cip
// Bug compatibility with C bcrypt implementations. They use the trailing
// NULL in the key string during expansion.
ckey := append(key, 0)
// We copy the key to prevent changing the underlying array.
ckey := append(key[:len(key):len(key)], 0)
c, err := blowfish.NewSaltedCipher(ckey, csalt)
if err != nil {
@ -240,11 +241,11 @@ func (p *hashed) Hash() []byte {
n = 3
}
arr[n] = '$'
n += 1
n++
copy(arr[n:], []byte(fmt.Sprintf("%02d", p.cost)))
n += 2
arr[n] = '$'
n += 1
n++
copy(arr[n:], p.salt)
n += encodedSaltSize
copy(arr[n:], p.hash)

View file

@ -6,7 +6,7 @@
package blowfish // import "golang.org/x/crypto/blowfish"
// The code is a port of Bruce Schneier's C implementation.
// See http://www.schneier.com/blowfish.html.
// See https://www.schneier.com/blowfish.html.
import "strconv"
@ -39,7 +39,7 @@ func NewCipher(key []byte) (*Cipher, error) {
// NewSaltedCipher creates a returns a Cipher that folds a salt into its key
// schedule. For most purposes, NewCipher, instead of NewSaltedCipher, is
// sufficient and desirable. For bcrypt compatiblity, the key can be over 56
// sufficient and desirable. For bcrypt compatibility, the key can be over 56
// bytes.
func NewSaltedCipher(key, salt []byte) (*Cipher, error) {
if len(salt) == 0 {

View file

@ -4,7 +4,7 @@
// The startup permutation array and substitution boxes.
// They are the hexadecimal digits of PI; see:
// http://www.schneier.com/code/constants.txt.
// https://www.schneier.com/code/constants.txt.
package blowfish

8
vendor/golang.org/x/crypto/curve25519/const_amd64.h generated vendored Normal file
View file

@ -0,0 +1,8 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
#define REDMASK51 0x0007FFFFFFFFFFFF

20
vendor/golang.org/x/crypto/curve25519/const_amd64.s generated vendored Normal file
View file

@ -0,0 +1,20 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
// +build amd64,!gccgo,!appengine
// These constants cannot be encoded in non-MOVQ immediates.
// We access them directly from memory instead.
DATA ·_121666_213(SB)/8, $996687872
GLOBL ·_121666_213(SB), 8, $8
DATA ·_2P0(SB)/8, $0xFFFFFFFFFFFDA
GLOBL ·_2P0(SB), 8, $8
DATA ·_2P1234(SB)/8, $0xFFFFFFFFFFFFE
GLOBL ·_2P1234(SB), 8, $8

65
vendor/golang.org/x/crypto/curve25519/cswap_amd64.s generated vendored Normal file
View file

@ -0,0 +1,65 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine
// func cswap(inout *[4][5]uint64, v uint64)
TEXT ·cswap(SB),7,$0
MOVQ inout+0(FP),DI
MOVQ v+8(FP),SI
SUBQ $1, SI
NOTQ SI
MOVQ SI, X15
PSHUFD $0x44, X15, X15
MOVOU 0(DI), X0
MOVOU 16(DI), X2
MOVOU 32(DI), X4
MOVOU 48(DI), X6
MOVOU 64(DI), X8
MOVOU 80(DI), X1
MOVOU 96(DI), X3
MOVOU 112(DI), X5
MOVOU 128(DI), X7
MOVOU 144(DI), X9
MOVO X1, X10
MOVO X3, X11
MOVO X5, X12
MOVO X7, X13
MOVO X9, X14
PXOR X0, X10
PXOR X2, X11
PXOR X4, X12
PXOR X6, X13
PXOR X8, X14
PAND X15, X10
PAND X15, X11
PAND X15, X12
PAND X15, X13
PAND X15, X14
PXOR X10, X0
PXOR X10, X1
PXOR X11, X2
PXOR X11, X3
PXOR X12, X4
PXOR X12, X5
PXOR X13, X6
PXOR X13, X7
PXOR X14, X8
PXOR X14, X9
MOVOU X0, 0(DI)
MOVOU X2, 16(DI)
MOVOU X4, 32(DI)
MOVOU X6, 48(DI)
MOVOU X8, 64(DI)
MOVOU X1, 80(DI)
MOVOU X3, 96(DI)
MOVOU X5, 112(DI)
MOVOU X7, 128(DI)
MOVOU X9, 144(DI)
RET

834
vendor/golang.org/x/crypto/curve25519/curve25519.go generated vendored Normal file
View file

@ -0,0 +1,834 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// We have an implementation in amd64 assembly so this code is only run on
// non-amd64 platforms. The amd64 assembly does not support gccgo.
// +build !amd64 gccgo appengine
package curve25519
import (
"encoding/binary"
)
// This code is a port of the public domain, "ref10" implementation of
// curve25519 from SUPERCOP 20130419 by D. J. Bernstein.
// fieldElement represents an element of the field GF(2^255 - 19). An element
// t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
// t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
// context.
type fieldElement [10]int32
func feZero(fe *fieldElement) {
for i := range fe {
fe[i] = 0
}
}
func feOne(fe *fieldElement) {
feZero(fe)
fe[0] = 1
}
func feAdd(dst, a, b *fieldElement) {
for i := range dst {
dst[i] = a[i] + b[i]
}
}
func feSub(dst, a, b *fieldElement) {
for i := range dst {
dst[i] = a[i] - b[i]
}
}
func feCopy(dst, src *fieldElement) {
for i := range dst {
dst[i] = src[i]
}
}
// feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0.
//
// Preconditions: b in {0,1}.
func feCSwap(f, g *fieldElement, b int32) {
b = -b
for i := range f {
t := b & (f[i] ^ g[i])
f[i] ^= t
g[i] ^= t
}
}
// load3 reads a 24-bit, little-endian value from in.
func load3(in []byte) int64 {
var r int64
r = int64(in[0])
r |= int64(in[1]) << 8
r |= int64(in[2]) << 16
return r
}
// load4 reads a 32-bit, little-endian value from in.
func load4(in []byte) int64 {
return int64(binary.LittleEndian.Uint32(in))
}
func feFromBytes(dst *fieldElement, src *[32]byte) {
h0 := load4(src[:])
h1 := load3(src[4:]) << 6
h2 := load3(src[7:]) << 5
h3 := load3(src[10:]) << 3
h4 := load3(src[13:]) << 2
h5 := load4(src[16:])
h6 := load3(src[20:]) << 7
h7 := load3(src[23:]) << 5
h8 := load3(src[26:]) << 4
h9 := load3(src[29:]) << 2
var carry [10]int64
carry[9] = (h9 + 1<<24) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[1] = (h1 + 1<<24) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[3] = (h3 + 1<<24) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[5] = (h5 + 1<<24) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[7] = (h7 + 1<<24) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[0] = (h0 + 1<<25) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[2] = (h2 + 1<<25) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[4] = (h4 + 1<<25) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[6] = (h6 + 1<<25) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[8] = (h8 + 1<<25) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
dst[0] = int32(h0)
dst[1] = int32(h1)
dst[2] = int32(h2)
dst[3] = int32(h3)
dst[4] = int32(h4)
dst[5] = int32(h5)
dst[6] = int32(h6)
dst[7] = int32(h7)
dst[8] = int32(h8)
dst[9] = int32(h9)
}
// feToBytes marshals h to s.
// Preconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
//
// Write p=2^255-19; q=floor(h/p).
// Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
//
// Proof:
// Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
// Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.
//
// Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
// Then 0<y<1.
//
// Write r=h-pq.
// Have 0<=r<=p-1=2^255-20.
// Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
//
// Write x=r+19(2^-255)r+y.
// Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
//
// Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
// so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
func feToBytes(s *[32]byte, h *fieldElement) {
var carry [10]int32
q := (19*h[9] + (1 << 24)) >> 25
q = (h[0] + q) >> 26
q = (h[1] + q) >> 25
q = (h[2] + q) >> 26
q = (h[3] + q) >> 25
q = (h[4] + q) >> 26
q = (h[5] + q) >> 25
q = (h[6] + q) >> 26
q = (h[7] + q) >> 25
q = (h[8] + q) >> 26
q = (h[9] + q) >> 25
// Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
h[0] += 19 * q
// Goal: Output h-2^255 q, which is between 0 and 2^255-20.
carry[0] = h[0] >> 26
h[1] += carry[0]
h[0] -= carry[0] << 26
carry[1] = h[1] >> 25
h[2] += carry[1]
h[1] -= carry[1] << 25
carry[2] = h[2] >> 26
h[3] += carry[2]
h[2] -= carry[2] << 26
carry[3] = h[3] >> 25
h[4] += carry[3]
h[3] -= carry[3] << 25
carry[4] = h[4] >> 26
h[5] += carry[4]
h[4] -= carry[4] << 26
carry[5] = h[5] >> 25
h[6] += carry[5]
h[5] -= carry[5] << 25
carry[6] = h[6] >> 26
h[7] += carry[6]
h[6] -= carry[6] << 26
carry[7] = h[7] >> 25
h[8] += carry[7]
h[7] -= carry[7] << 25
carry[8] = h[8] >> 26
h[9] += carry[8]
h[8] -= carry[8] << 26
carry[9] = h[9] >> 25
h[9] -= carry[9] << 25
// h10 = carry9
// Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
// Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
// evidently 2^255 h10-2^255 q = 0.
// Goal: Output h[0]+...+2^230 h[9].
s[0] = byte(h[0] >> 0)
s[1] = byte(h[0] >> 8)
s[2] = byte(h[0] >> 16)
s[3] = byte((h[0] >> 24) | (h[1] << 2))
s[4] = byte(h[1] >> 6)
s[5] = byte(h[1] >> 14)
s[6] = byte((h[1] >> 22) | (h[2] << 3))
s[7] = byte(h[2] >> 5)
s[8] = byte(h[2] >> 13)
s[9] = byte((h[2] >> 21) | (h[3] << 5))
s[10] = byte(h[3] >> 3)
s[11] = byte(h[3] >> 11)
s[12] = byte((h[3] >> 19) | (h[4] << 6))
s[13] = byte(h[4] >> 2)
s[14] = byte(h[4] >> 10)
s[15] = byte(h[4] >> 18)
s[16] = byte(h[5] >> 0)
s[17] = byte(h[5] >> 8)
s[18] = byte(h[5] >> 16)
s[19] = byte((h[5] >> 24) | (h[6] << 1))
s[20] = byte(h[6] >> 7)
s[21] = byte(h[6] >> 15)
s[22] = byte((h[6] >> 23) | (h[7] << 3))
s[23] = byte(h[7] >> 5)
s[24] = byte(h[7] >> 13)
s[25] = byte((h[7] >> 21) | (h[8] << 4))
s[26] = byte(h[8] >> 4)
s[27] = byte(h[8] >> 12)
s[28] = byte((h[8] >> 20) | (h[9] << 6))
s[29] = byte(h[9] >> 2)
s[30] = byte(h[9] >> 10)
s[31] = byte(h[9] >> 18)
}
// feMul calculates h = f * g
// Can overlap h with f or g.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
// |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
//
// Notes on implementation strategy:
//
// Using schoolbook multiplication.
// Karatsuba would save a little in some cost models.
//
// Most multiplications by 2 and 19 are 32-bit precomputations;
// cheaper than 64-bit postcomputations.
//
// There is one remaining multiplication by 19 in the carry chain;
// one *19 precomputation can be merged into this,
// but the resulting data flow is considerably less clean.
//
// There are 12 carries below.
// 10 of them are 2-way parallelizable and vectorizable.
// Can get away with 11 carries, but then data flow is much deeper.
//
// With tighter constraints on inputs can squeeze carries into int32.
func feMul(h, f, g *fieldElement) {
f0 := f[0]
f1 := f[1]
f2 := f[2]
f3 := f[3]
f4 := f[4]
f5 := f[5]
f6 := f[6]
f7 := f[7]
f8 := f[8]
f9 := f[9]
g0 := g[0]
g1 := g[1]
g2 := g[2]
g3 := g[3]
g4 := g[4]
g5 := g[5]
g6 := g[6]
g7 := g[7]
g8 := g[8]
g9 := g[9]
g1_19 := 19 * g1 // 1.4*2^29
g2_19 := 19 * g2 // 1.4*2^30; still ok
g3_19 := 19 * g3
g4_19 := 19 * g4
g5_19 := 19 * g5
g6_19 := 19 * g6
g7_19 := 19 * g7
g8_19 := 19 * g8
g9_19 := 19 * g9
f1_2 := 2 * f1
f3_2 := 2 * f3
f5_2 := 2 * f5
f7_2 := 2 * f7
f9_2 := 2 * f9
f0g0 := int64(f0) * int64(g0)
f0g1 := int64(f0) * int64(g1)
f0g2 := int64(f0) * int64(g2)
f0g3 := int64(f0) * int64(g3)
f0g4 := int64(f0) * int64(g4)
f0g5 := int64(f0) * int64(g5)
f0g6 := int64(f0) * int64(g6)
f0g7 := int64(f0) * int64(g7)
f0g8 := int64(f0) * int64(g8)
f0g9 := int64(f0) * int64(g9)
f1g0 := int64(f1) * int64(g0)
f1g1_2 := int64(f1_2) * int64(g1)
f1g2 := int64(f1) * int64(g2)
f1g3_2 := int64(f1_2) * int64(g3)
f1g4 := int64(f1) * int64(g4)
f1g5_2 := int64(f1_2) * int64(g5)
f1g6 := int64(f1) * int64(g6)
f1g7_2 := int64(f1_2) * int64(g7)
f1g8 := int64(f1) * int64(g8)
f1g9_38 := int64(f1_2) * int64(g9_19)
f2g0 := int64(f2) * int64(g0)
f2g1 := int64(f2) * int64(g1)
f2g2 := int64(f2) * int64(g2)
f2g3 := int64(f2) * int64(g3)
f2g4 := int64(f2) * int64(g4)
f2g5 := int64(f2) * int64(g5)
f2g6 := int64(f2) * int64(g6)
f2g7 := int64(f2) * int64(g7)
f2g8_19 := int64(f2) * int64(g8_19)
f2g9_19 := int64(f2) * int64(g9_19)
f3g0 := int64(f3) * int64(g0)
f3g1_2 := int64(f3_2) * int64(g1)
f3g2 := int64(f3) * int64(g2)
f3g3_2 := int64(f3_2) * int64(g3)
f3g4 := int64(f3) * int64(g4)
f3g5_2 := int64(f3_2) * int64(g5)
f3g6 := int64(f3) * int64(g6)
f3g7_38 := int64(f3_2) * int64(g7_19)
f3g8_19 := int64(f3) * int64(g8_19)
f3g9_38 := int64(f3_2) * int64(g9_19)
f4g0 := int64(f4) * int64(g0)
f4g1 := int64(f4) * int64(g1)
f4g2 := int64(f4) * int64(g2)
f4g3 := int64(f4) * int64(g3)
f4g4 := int64(f4) * int64(g4)
f4g5 := int64(f4) * int64(g5)
f4g6_19 := int64(f4) * int64(g6_19)
f4g7_19 := int64(f4) * int64(g7_19)
f4g8_19 := int64(f4) * int64(g8_19)
f4g9_19 := int64(f4) * int64(g9_19)
f5g0 := int64(f5) * int64(g0)
f5g1_2 := int64(f5_2) * int64(g1)
f5g2 := int64(f5) * int64(g2)
f5g3_2 := int64(f5_2) * int64(g3)
f5g4 := int64(f5) * int64(g4)
f5g5_38 := int64(f5_2) * int64(g5_19)
f5g6_19 := int64(f5) * int64(g6_19)
f5g7_38 := int64(f5_2) * int64(g7_19)
f5g8_19 := int64(f5) * int64(g8_19)
f5g9_38 := int64(f5_2) * int64(g9_19)
f6g0 := int64(f6) * int64(g0)
f6g1 := int64(f6) * int64(g1)
f6g2 := int64(f6) * int64(g2)
f6g3 := int64(f6) * int64(g3)
f6g4_19 := int64(f6) * int64(g4_19)
f6g5_19 := int64(f6) * int64(g5_19)
f6g6_19 := int64(f6) * int64(g6_19)
f6g7_19 := int64(f6) * int64(g7_19)
f6g8_19 := int64(f6) * int64(g8_19)
f6g9_19 := int64(f6) * int64(g9_19)
f7g0 := int64(f7) * int64(g0)
f7g1_2 := int64(f7_2) * int64(g1)
f7g2 := int64(f7) * int64(g2)
f7g3_38 := int64(f7_2) * int64(g3_19)
f7g4_19 := int64(f7) * int64(g4_19)
f7g5_38 := int64(f7_2) * int64(g5_19)
f7g6_19 := int64(f7) * int64(g6_19)
f7g7_38 := int64(f7_2) * int64(g7_19)
f7g8_19 := int64(f7) * int64(g8_19)
f7g9_38 := int64(f7_2) * int64(g9_19)
f8g0 := int64(f8) * int64(g0)
f8g1 := int64(f8) * int64(g1)
f8g2_19 := int64(f8) * int64(g2_19)
f8g3_19 := int64(f8) * int64(g3_19)
f8g4_19 := int64(f8) * int64(g4_19)
f8g5_19 := int64(f8) * int64(g5_19)
f8g6_19 := int64(f8) * int64(g6_19)
f8g7_19 := int64(f8) * int64(g7_19)
f8g8_19 := int64(f8) * int64(g8_19)
f8g9_19 := int64(f8) * int64(g9_19)
f9g0 := int64(f9) * int64(g0)
f9g1_38 := int64(f9_2) * int64(g1_19)
f9g2_19 := int64(f9) * int64(g2_19)
f9g3_38 := int64(f9_2) * int64(g3_19)
f9g4_19 := int64(f9) * int64(g4_19)
f9g5_38 := int64(f9_2) * int64(g5_19)
f9g6_19 := int64(f9) * int64(g6_19)
f9g7_38 := int64(f9_2) * int64(g7_19)
f9g8_19 := int64(f9) * int64(g8_19)
f9g9_38 := int64(f9_2) * int64(g9_19)
h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38
h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19
h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38
h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19
h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38
h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19
h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38
h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19
h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38
h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0
var carry [10]int64
// |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
// i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8
// |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
// i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
// |h0| <= 2^25
// |h4| <= 2^25
// |h1| <= 1.51*2^58
// |h5| <= 1.51*2^58
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
// |h1| <= 2^24; from now on fits into int32
// |h5| <= 2^24; from now on fits into int32
// |h2| <= 1.21*2^59
// |h6| <= 1.21*2^59
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
// |h2| <= 2^25; from now on fits into int32 unchanged
// |h6| <= 2^25; from now on fits into int32 unchanged
// |h3| <= 1.51*2^58
// |h7| <= 1.51*2^58
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
// |h3| <= 2^24; from now on fits into int32 unchanged
// |h7| <= 2^24; from now on fits into int32 unchanged
// |h4| <= 1.52*2^33
// |h8| <= 1.52*2^33
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
// |h4| <= 2^25; from now on fits into int32 unchanged
// |h8| <= 2^25; from now on fits into int32 unchanged
// |h5| <= 1.01*2^24
// |h9| <= 1.51*2^58
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
// |h9| <= 2^24; from now on fits into int32 unchanged
// |h0| <= 1.8*2^37
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
// |h0| <= 2^25; from now on fits into int32 unchanged
// |h1| <= 1.01*2^24
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feSquare calculates h = f*f. Can overlap h with f.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
func feSquare(h, f *fieldElement) {
f0 := f[0]
f1 := f[1]
f2 := f[2]
f3 := f[3]
f4 := f[4]
f5 := f[5]
f6 := f[6]
f7 := f[7]
f8 := f[8]
f9 := f[9]
f0_2 := 2 * f0
f1_2 := 2 * f1
f2_2 := 2 * f2
f3_2 := 2 * f3
f4_2 := 2 * f4
f5_2 := 2 * f5
f6_2 := 2 * f6
f7_2 := 2 * f7
f5_38 := 38 * f5 // 1.31*2^30
f6_19 := 19 * f6 // 1.31*2^30
f7_38 := 38 * f7 // 1.31*2^30
f8_19 := 19 * f8 // 1.31*2^30
f9_38 := 38 * f9 // 1.31*2^30
f0f0 := int64(f0) * int64(f0)
f0f1_2 := int64(f0_2) * int64(f1)
f0f2_2 := int64(f0_2) * int64(f2)
f0f3_2 := int64(f0_2) * int64(f3)
f0f4_2 := int64(f0_2) * int64(f4)
f0f5_2 := int64(f0_2) * int64(f5)
f0f6_2 := int64(f0_2) * int64(f6)
f0f7_2 := int64(f0_2) * int64(f7)
f0f8_2 := int64(f0_2) * int64(f8)
f0f9_2 := int64(f0_2) * int64(f9)
f1f1_2 := int64(f1_2) * int64(f1)
f1f2_2 := int64(f1_2) * int64(f2)
f1f3_4 := int64(f1_2) * int64(f3_2)
f1f4_2 := int64(f1_2) * int64(f4)
f1f5_4 := int64(f1_2) * int64(f5_2)
f1f6_2 := int64(f1_2) * int64(f6)
f1f7_4 := int64(f1_2) * int64(f7_2)
f1f8_2 := int64(f1_2) * int64(f8)
f1f9_76 := int64(f1_2) * int64(f9_38)
f2f2 := int64(f2) * int64(f2)
f2f3_2 := int64(f2_2) * int64(f3)
f2f4_2 := int64(f2_2) * int64(f4)
f2f5_2 := int64(f2_2) * int64(f5)
f2f6_2 := int64(f2_2) * int64(f6)
f2f7_2 := int64(f2_2) * int64(f7)
f2f8_38 := int64(f2_2) * int64(f8_19)
f2f9_38 := int64(f2) * int64(f9_38)
f3f3_2 := int64(f3_2) * int64(f3)
f3f4_2 := int64(f3_2) * int64(f4)
f3f5_4 := int64(f3_2) * int64(f5_2)
f3f6_2 := int64(f3_2) * int64(f6)
f3f7_76 := int64(f3_2) * int64(f7_38)
f3f8_38 := int64(f3_2) * int64(f8_19)
f3f9_76 := int64(f3_2) * int64(f9_38)
f4f4 := int64(f4) * int64(f4)
f4f5_2 := int64(f4_2) * int64(f5)
f4f6_38 := int64(f4_2) * int64(f6_19)
f4f7_38 := int64(f4) * int64(f7_38)
f4f8_38 := int64(f4_2) * int64(f8_19)
f4f9_38 := int64(f4) * int64(f9_38)
f5f5_38 := int64(f5) * int64(f5_38)
f5f6_38 := int64(f5_2) * int64(f6_19)
f5f7_76 := int64(f5_2) * int64(f7_38)
f5f8_38 := int64(f5_2) * int64(f8_19)
f5f9_76 := int64(f5_2) * int64(f9_38)
f6f6_19 := int64(f6) * int64(f6_19)
f6f7_38 := int64(f6) * int64(f7_38)
f6f8_38 := int64(f6_2) * int64(f8_19)
f6f9_38 := int64(f6) * int64(f9_38)
f7f7_38 := int64(f7) * int64(f7_38)
f7f8_38 := int64(f7_2) * int64(f8_19)
f7f9_76 := int64(f7_2) * int64(f9_38)
f8f8_19 := int64(f8) * int64(f8_19)
f8f9_38 := int64(f8) * int64(f9_38)
f9f9_38 := int64(f9) * int64(f9_38)
h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38
h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38
h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19
h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38
h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38
h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38
h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19
h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38
h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38
h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2
var carry [10]int64
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feMul121666 calculates h = f * 121666. Can overlap h with f.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
func feMul121666(h, f *fieldElement) {
h0 := int64(f[0]) * 121666
h1 := int64(f[1]) * 121666
h2 := int64(f[2]) * 121666
h3 := int64(f[3]) * 121666
h4 := int64(f[4]) * 121666
h5 := int64(f[5]) * 121666
h6 := int64(f[6]) * 121666
h7 := int64(f[7]) * 121666
h8 := int64(f[8]) * 121666
h9 := int64(f[9]) * 121666
var carry [10]int64
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feInvert sets out = z^-1.
func feInvert(out, z *fieldElement) {
var t0, t1, t2, t3 fieldElement
var i int
feSquare(&t0, z)
for i = 1; i < 1; i++ {
feSquare(&t0, &t0)
}
feSquare(&t1, &t0)
for i = 1; i < 2; i++ {
feSquare(&t1, &t1)
}
feMul(&t1, z, &t1)
feMul(&t0, &t0, &t1)
feSquare(&t2, &t0)
for i = 1; i < 1; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t1, &t2)
feSquare(&t2, &t1)
for i = 1; i < 5; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t2, &t1)
for i = 1; i < 10; i++ {
feSquare(&t2, &t2)
}
feMul(&t2, &t2, &t1)
feSquare(&t3, &t2)
for i = 1; i < 20; i++ {
feSquare(&t3, &t3)
}
feMul(&t2, &t3, &t2)
feSquare(&t2, &t2)
for i = 1; i < 10; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t2, &t1)
for i = 1; i < 50; i++ {
feSquare(&t2, &t2)
}
feMul(&t2, &t2, &t1)
feSquare(&t3, &t2)
for i = 1; i < 100; i++ {
feSquare(&t3, &t3)
}
feMul(&t2, &t3, &t2)
feSquare(&t2, &t2)
for i = 1; i < 50; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t1, &t1)
for i = 1; i < 5; i++ {
feSquare(&t1, &t1)
}
feMul(out, &t1, &t0)
}
func scalarMult(out, in, base *[32]byte) {
var e [32]byte
copy(e[:], in[:])
e[0] &= 248
e[31] &= 127
e[31] |= 64
var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement
feFromBytes(&x1, base)
feOne(&x2)
feCopy(&x3, &x1)
feOne(&z3)
swap := int32(0)
for pos := 254; pos >= 0; pos-- {
b := e[pos/8] >> uint(pos&7)
b &= 1
swap ^= int32(b)
feCSwap(&x2, &x3, swap)
feCSwap(&z2, &z3, swap)
swap = int32(b)
feSub(&tmp0, &x3, &z3)
feSub(&tmp1, &x2, &z2)
feAdd(&x2, &x2, &z2)
feAdd(&z2, &x3, &z3)
feMul(&z3, &tmp0, &x2)
feMul(&z2, &z2, &tmp1)
feSquare(&tmp0, &tmp1)
feSquare(&tmp1, &x2)
feAdd(&x3, &z3, &z2)
feSub(&z2, &z3, &z2)
feMul(&x2, &tmp1, &tmp0)
feSub(&tmp1, &tmp1, &tmp0)
feSquare(&z2, &z2)
feMul121666(&z3, &tmp1)
feSquare(&x3, &x3)
feAdd(&tmp0, &tmp0, &z3)
feMul(&z3, &x1, &z2)
feMul(&z2, &tmp1, &tmp0)
}
feCSwap(&x2, &x3, swap)
feCSwap(&z2, &z3, swap)
feInvert(&z2, &z2)
feMul(&x2, &x2, &z2)
feToBytes(out, &x2)
}

23
vendor/golang.org/x/crypto/curve25519/doc.go generated vendored Normal file
View file

@ -0,0 +1,23 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package curve25519 provides an implementation of scalar multiplication on
// the elliptic curve known as curve25519. See https://cr.yp.to/ecdh.html
package curve25519 // import "golang.org/x/crypto/curve25519"
// basePoint is the x coordinate of the generator of the curve.
var basePoint = [32]byte{9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
// ScalarMult sets dst to the product in*base where dst and base are the x
// coordinates of group points and all values are in little-endian form.
func ScalarMult(dst, in, base *[32]byte) {
scalarMult(dst, in, base)
}
// ScalarBaseMult sets dst to the product in*base where dst and base are the x
// coordinates of group points, base is the standard generator and all values
// are in little-endian form.
func ScalarBaseMult(dst, in *[32]byte) {
ScalarMult(dst, in, &basePoint)
}

73
vendor/golang.org/x/crypto/curve25519/freeze_amd64.s generated vendored Normal file
View file

@ -0,0 +1,73 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
// +build amd64,!gccgo,!appengine
#include "const_amd64.h"
// func freeze(inout *[5]uint64)
TEXT ·freeze(SB),7,$0-8
MOVQ inout+0(FP), DI
MOVQ 0(DI),SI
MOVQ 8(DI),DX
MOVQ 16(DI),CX
MOVQ 24(DI),R8
MOVQ 32(DI),R9
MOVQ $REDMASK51,AX
MOVQ AX,R10
SUBQ $18,R10
MOVQ $3,R11
REDUCELOOP:
MOVQ SI,R12
SHRQ $51,R12
ANDQ AX,SI
ADDQ R12,DX
MOVQ DX,R12
SHRQ $51,R12
ANDQ AX,DX
ADDQ R12,CX
MOVQ CX,R12
SHRQ $51,R12
ANDQ AX,CX
ADDQ R12,R8
MOVQ R8,R12
SHRQ $51,R12
ANDQ AX,R8
ADDQ R12,R9
MOVQ R9,R12
SHRQ $51,R12
ANDQ AX,R9
IMUL3Q $19,R12,R12
ADDQ R12,SI
SUBQ $1,R11
JA REDUCELOOP
MOVQ $1,R12
CMPQ R10,SI
CMOVQLT R11,R12
CMPQ AX,DX
CMOVQNE R11,R12
CMPQ AX,CX
CMOVQNE R11,R12
CMPQ AX,R8
CMOVQNE R11,R12
CMPQ AX,R9
CMOVQNE R11,R12
NEGQ R12
ANDQ R12,AX
ANDQ R12,R10
SUBQ R10,SI
SUBQ AX,DX
SUBQ AX,CX
SUBQ AX,R8
SUBQ AX,R9
MOVQ SI,0(DI)
MOVQ DX,8(DI)
MOVQ CX,16(DI)
MOVQ R8,24(DI)
MOVQ R9,32(DI)
RET

1377
vendor/golang.org/x/crypto/curve25519/ladderstep_amd64.s generated vendored Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,240 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine
package curve25519
// These functions are implemented in the .s files. The names of the functions
// in the rest of the file are also taken from the SUPERCOP sources to help
// people following along.
//go:noescape
func cswap(inout *[5]uint64, v uint64)
//go:noescape
func ladderstep(inout *[5][5]uint64)
//go:noescape
func freeze(inout *[5]uint64)
//go:noescape
func mul(dest, a, b *[5]uint64)
//go:noescape
func square(out, in *[5]uint64)
// mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
func mladder(xr, zr *[5]uint64, s *[32]byte) {
var work [5][5]uint64
work[0] = *xr
setint(&work[1], 1)
setint(&work[2], 0)
work[3] = *xr
setint(&work[4], 1)
j := uint(6)
var prevbit byte
for i := 31; i >= 0; i-- {
for j < 8 {
bit := ((*s)[i] >> j) & 1
swap := bit ^ prevbit
prevbit = bit
cswap(&work[1], uint64(swap))
ladderstep(&work)
j--
}
j = 7
}
*xr = work[1]
*zr = work[2]
}
func scalarMult(out, in, base *[32]byte) {
var e [32]byte
copy(e[:], (*in)[:])
e[0] &= 248
e[31] &= 127
e[31] |= 64
var t, z [5]uint64
unpack(&t, base)
mladder(&t, &z, &e)
invert(&z, &z)
mul(&t, &t, &z)
pack(out, &t)
}
func setint(r *[5]uint64, v uint64) {
r[0] = v
r[1] = 0
r[2] = 0
r[3] = 0
r[4] = 0
}
// unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
// order.
func unpack(r *[5]uint64, x *[32]byte) {
r[0] = uint64(x[0]) |
uint64(x[1])<<8 |
uint64(x[2])<<16 |
uint64(x[3])<<24 |
uint64(x[4])<<32 |
uint64(x[5])<<40 |
uint64(x[6]&7)<<48
r[1] = uint64(x[6])>>3 |
uint64(x[7])<<5 |
uint64(x[8])<<13 |
uint64(x[9])<<21 |
uint64(x[10])<<29 |
uint64(x[11])<<37 |
uint64(x[12]&63)<<45
r[2] = uint64(x[12])>>6 |
uint64(x[13])<<2 |
uint64(x[14])<<10 |
uint64(x[15])<<18 |
uint64(x[16])<<26 |
uint64(x[17])<<34 |
uint64(x[18])<<42 |
uint64(x[19]&1)<<50
r[3] = uint64(x[19])>>1 |
uint64(x[20])<<7 |
uint64(x[21])<<15 |
uint64(x[22])<<23 |
uint64(x[23])<<31 |
uint64(x[24])<<39 |
uint64(x[25]&15)<<47
r[4] = uint64(x[25])>>4 |
uint64(x[26])<<4 |
uint64(x[27])<<12 |
uint64(x[28])<<20 |
uint64(x[29])<<28 |
uint64(x[30])<<36 |
uint64(x[31]&127)<<44
}
// pack sets out = x where out is the usual, little-endian form of the 5,
// 51-bit limbs in x.
func pack(out *[32]byte, x *[5]uint64) {
t := *x
freeze(&t)
out[0] = byte(t[0])
out[1] = byte(t[0] >> 8)
out[2] = byte(t[0] >> 16)
out[3] = byte(t[0] >> 24)
out[4] = byte(t[0] >> 32)
out[5] = byte(t[0] >> 40)
out[6] = byte(t[0] >> 48)
out[6] ^= byte(t[1]<<3) & 0xf8
out[7] = byte(t[1] >> 5)
out[8] = byte(t[1] >> 13)
out[9] = byte(t[1] >> 21)
out[10] = byte(t[1] >> 29)
out[11] = byte(t[1] >> 37)
out[12] = byte(t[1] >> 45)
out[12] ^= byte(t[2]<<6) & 0xc0
out[13] = byte(t[2] >> 2)
out[14] = byte(t[2] >> 10)
out[15] = byte(t[2] >> 18)
out[16] = byte(t[2] >> 26)
out[17] = byte(t[2] >> 34)
out[18] = byte(t[2] >> 42)
out[19] = byte(t[2] >> 50)
out[19] ^= byte(t[3]<<1) & 0xfe
out[20] = byte(t[3] >> 7)
out[21] = byte(t[3] >> 15)
out[22] = byte(t[3] >> 23)
out[23] = byte(t[3] >> 31)
out[24] = byte(t[3] >> 39)
out[25] = byte(t[3] >> 47)
out[25] ^= byte(t[4]<<4) & 0xf0
out[26] = byte(t[4] >> 4)
out[27] = byte(t[4] >> 12)
out[28] = byte(t[4] >> 20)
out[29] = byte(t[4] >> 28)
out[30] = byte(t[4] >> 36)
out[31] = byte(t[4] >> 44)
}
// invert calculates r = x^-1 mod p using Fermat's little theorem.
func invert(r *[5]uint64, x *[5]uint64) {
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64
square(&z2, x) /* 2 */
square(&t, &z2) /* 4 */
square(&t, &t) /* 8 */
mul(&z9, &t, x) /* 9 */
mul(&z11, &z9, &z2) /* 11 */
square(&t, &z11) /* 22 */
mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */
square(&t, &z2_5_0) /* 2^6 - 2^1 */
for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
square(&t, &t)
}
mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */
square(&t, &z2_10_0) /* 2^11 - 2^1 */
for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
square(&t, &t)
}
mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */
square(&t, &z2_20_0) /* 2^21 - 2^1 */
for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
square(&t, &t)
}
mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */
square(&t, &t) /* 2^41 - 2^1 */
for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
square(&t, &t)
}
mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */
square(&t, &z2_50_0) /* 2^51 - 2^1 */
for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
square(&t, &t)
}
mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */
square(&t, &z2_100_0) /* 2^101 - 2^1 */
for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
square(&t, &t)
}
mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */
square(&t, &t) /* 2^201 - 2^1 */
for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
square(&t, &t)
}
mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */
square(&t, &t) /* 2^251 - 2^1 */
square(&t, &t) /* 2^252 - 2^2 */
square(&t, &t) /* 2^253 - 2^3 */
square(&t, &t) /* 2^254 - 2^4 */
square(&t, &t) /* 2^255 - 2^5 */
mul(r, &t, &z11) /* 2^255 - 21 */
}

169
vendor/golang.org/x/crypto/curve25519/mul_amd64.s generated vendored Normal file
View file

@ -0,0 +1,169 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
// +build amd64,!gccgo,!appengine
#include "const_amd64.h"
// func mul(dest, a, b *[5]uint64)
TEXT ·mul(SB),0,$16-24
MOVQ dest+0(FP), DI
MOVQ a+8(FP), SI
MOVQ b+16(FP), DX
MOVQ DX,CX
MOVQ 24(SI),DX
IMUL3Q $19,DX,AX
MOVQ AX,0(SP)
MULQ 16(CX)
MOVQ AX,R8
MOVQ DX,R9
MOVQ 32(SI),DX
IMUL3Q $19,DX,AX
MOVQ AX,8(SP)
MULQ 8(CX)
ADDQ AX,R8
ADCQ DX,R9
MOVQ 0(SI),AX
MULQ 0(CX)
ADDQ AX,R8
ADCQ DX,R9
MOVQ 0(SI),AX
MULQ 8(CX)
MOVQ AX,R10
MOVQ DX,R11
MOVQ 0(SI),AX
MULQ 16(CX)
MOVQ AX,R12
MOVQ DX,R13
MOVQ 0(SI),AX
MULQ 24(CX)
MOVQ AX,R14
MOVQ DX,R15
MOVQ 0(SI),AX
MULQ 32(CX)
MOVQ AX,BX
MOVQ DX,BP
MOVQ 8(SI),AX
MULQ 0(CX)
ADDQ AX,R10
ADCQ DX,R11
MOVQ 8(SI),AX
MULQ 8(CX)
ADDQ AX,R12
ADCQ DX,R13
MOVQ 8(SI),AX
MULQ 16(CX)
ADDQ AX,R14
ADCQ DX,R15
MOVQ 8(SI),AX
MULQ 24(CX)
ADDQ AX,BX
ADCQ DX,BP
MOVQ 8(SI),DX
IMUL3Q $19,DX,AX
MULQ 32(CX)
ADDQ AX,R8
ADCQ DX,R9
MOVQ 16(SI),AX
MULQ 0(CX)
ADDQ AX,R12
ADCQ DX,R13
MOVQ 16(SI),AX
MULQ 8(CX)
ADDQ AX,R14
ADCQ DX,R15
MOVQ 16(SI),AX
MULQ 16(CX)
ADDQ AX,BX
ADCQ DX,BP
MOVQ 16(SI),DX
IMUL3Q $19,DX,AX
MULQ 24(CX)
ADDQ AX,R8
ADCQ DX,R9
MOVQ 16(SI),DX
IMUL3Q $19,DX,AX
MULQ 32(CX)
ADDQ AX,R10
ADCQ DX,R11
MOVQ 24(SI),AX
MULQ 0(CX)
ADDQ AX,R14
ADCQ DX,R15
MOVQ 24(SI),AX
MULQ 8(CX)
ADDQ AX,BX
ADCQ DX,BP
MOVQ 0(SP),AX
MULQ 24(CX)
ADDQ AX,R10
ADCQ DX,R11
MOVQ 0(SP),AX
MULQ 32(CX)
ADDQ AX,R12
ADCQ DX,R13
MOVQ 32(SI),AX
MULQ 0(CX)
ADDQ AX,BX
ADCQ DX,BP
MOVQ 8(SP),AX
MULQ 16(CX)
ADDQ AX,R10
ADCQ DX,R11
MOVQ 8(SP),AX
MULQ 24(CX)
ADDQ AX,R12
ADCQ DX,R13
MOVQ 8(SP),AX
MULQ 32(CX)
ADDQ AX,R14
ADCQ DX,R15
MOVQ $REDMASK51,SI
SHLQ $13,R9:R8
ANDQ SI,R8
SHLQ $13,R11:R10
ANDQ SI,R10
ADDQ R9,R10
SHLQ $13,R13:R12
ANDQ SI,R12
ADDQ R11,R12
SHLQ $13,R15:R14
ANDQ SI,R14
ADDQ R13,R14
SHLQ $13,BP:BX
ANDQ SI,BX
ADDQ R15,BX
IMUL3Q $19,BP,DX
ADDQ DX,R8
MOVQ R8,DX
SHRQ $51,DX
ADDQ R10,DX
MOVQ DX,CX
SHRQ $51,DX
ANDQ SI,R8
ADDQ R12,DX
MOVQ DX,R9
SHRQ $51,DX
ANDQ SI,CX
ADDQ R14,DX
MOVQ DX,AX
SHRQ $51,DX
ANDQ SI,R9
ADDQ BX,DX
MOVQ DX,R10
SHRQ $51,DX
ANDQ SI,AX
IMUL3Q $19,DX,DX
ADDQ DX,R8
ANDQ SI,R10
MOVQ R8,0(DI)
MOVQ CX,8(DI)
MOVQ R9,16(DI)
MOVQ AX,24(DI)
MOVQ R10,32(DI)
RET

132
vendor/golang.org/x/crypto/curve25519/square_amd64.s generated vendored Normal file
View file

@ -0,0 +1,132 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html
// +build amd64,!gccgo,!appengine
#include "const_amd64.h"
// func square(out, in *[5]uint64)
TEXT ·square(SB),7,$0-16
MOVQ out+0(FP), DI
MOVQ in+8(FP), SI
MOVQ 0(SI),AX
MULQ 0(SI)
MOVQ AX,CX
MOVQ DX,R8
MOVQ 0(SI),AX
SHLQ $1,AX
MULQ 8(SI)
MOVQ AX,R9
MOVQ DX,R10
MOVQ 0(SI),AX
SHLQ $1,AX
MULQ 16(SI)
MOVQ AX,R11
MOVQ DX,R12
MOVQ 0(SI),AX
SHLQ $1,AX
MULQ 24(SI)
MOVQ AX,R13
MOVQ DX,R14
MOVQ 0(SI),AX
SHLQ $1,AX
MULQ 32(SI)
MOVQ AX,R15
MOVQ DX,BX
MOVQ 8(SI),AX
MULQ 8(SI)
ADDQ AX,R11
ADCQ DX,R12
MOVQ 8(SI),AX
SHLQ $1,AX
MULQ 16(SI)
ADDQ AX,R13
ADCQ DX,R14
MOVQ 8(SI),AX
SHLQ $1,AX
MULQ 24(SI)
ADDQ AX,R15
ADCQ DX,BX
MOVQ 8(SI),DX
IMUL3Q $38,DX,AX
MULQ 32(SI)
ADDQ AX,CX
ADCQ DX,R8
MOVQ 16(SI),AX
MULQ 16(SI)
ADDQ AX,R15
ADCQ DX,BX
MOVQ 16(SI),DX
IMUL3Q $38,DX,AX
MULQ 24(SI)
ADDQ AX,CX
ADCQ DX,R8
MOVQ 16(SI),DX
IMUL3Q $38,DX,AX
MULQ 32(SI)
ADDQ AX,R9
ADCQ DX,R10
MOVQ 24(SI),DX
IMUL3Q $19,DX,AX
MULQ 24(SI)
ADDQ AX,R9
ADCQ DX,R10
MOVQ 24(SI),DX
IMUL3Q $38,DX,AX
MULQ 32(SI)
ADDQ AX,R11
ADCQ DX,R12
MOVQ 32(SI),DX
IMUL3Q $19,DX,AX
MULQ 32(SI)
ADDQ AX,R13
ADCQ DX,R14
MOVQ $REDMASK51,SI
SHLQ $13,R8:CX
ANDQ SI,CX
SHLQ $13,R10:R9
ANDQ SI,R9
ADDQ R8,R9
SHLQ $13,R12:R11
ANDQ SI,R11
ADDQ R10,R11
SHLQ $13,R14:R13
ANDQ SI,R13
ADDQ R12,R13
SHLQ $13,BX:R15
ANDQ SI,R15
ADDQ R14,R15
IMUL3Q $19,BX,DX
ADDQ DX,CX
MOVQ CX,DX
SHRQ $51,DX
ADDQ R9,DX
ANDQ SI,CX
MOVQ DX,R8
SHRQ $51,DX
ADDQ R11,DX
ANDQ SI,R8
MOVQ DX,R9
SHRQ $51,DX
ADDQ R13,DX
ANDQ SI,R9
MOVQ DX,AX
SHRQ $51,DX
ADDQ R15,DX
ANDQ SI,AX
MOVQ DX,R10
SHRQ $51,DX
IMUL3Q $19,DX,DX
ADDQ DX,CX
ANDQ SI,R10
MOVQ CX,0(DI)
MOVQ R8,8(DI)
MOVQ R9,16(DI)
MOVQ AX,24(DI)
MOVQ R10,32(DI)
RET

View file

@ -1,592 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ocsp parses OCSP responses as specified in RFC 2560. OCSP responses
// are signed messages attesting to the validity of a certificate for a small
// period of time. This is used to manage revocation for X.509 certificates.
package ocsp // import "golang.org/x/crypto/ocsp"
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"errors"
"math/big"
"time"
)
var idPKIXOCSPBasic = asn1.ObjectIdentifier([]int{1, 3, 6, 1, 5, 5, 7, 48, 1, 1})
// These are internal structures that reflect the ASN.1 structure of an OCSP
// response. See RFC 2560, section 4.2.
const (
ocspSuccess = 0
ocspMalformed = 1
ocspInternalError = 2
ocspTryLater = 3
ocspSigRequired = 4
ocspUnauthorized = 5
)
type certID struct {
HashAlgorithm pkix.AlgorithmIdentifier
NameHash []byte
IssuerKeyHash []byte
SerialNumber *big.Int
}
// https://tools.ietf.org/html/rfc2560#section-4.1.1
type ocspRequest struct {
TBSRequest tbsRequest
}
type tbsRequest struct {
Version int `asn1:"explicit,tag:0,default:0,optional"`
RequestorName pkix.RDNSequence `asn1:"explicit,tag:1,optional"`
RequestList []request
}
type request struct {
Cert certID
}
type responseASN1 struct {
Status asn1.Enumerated
Response responseBytes `asn1:"explicit,tag:0"`
}
type responseBytes struct {
ResponseType asn1.ObjectIdentifier
Response []byte
}
type basicResponse struct {
TBSResponseData responseData
SignatureAlgorithm pkix.AlgorithmIdentifier
Signature asn1.BitString
Certificates []asn1.RawValue `asn1:"explicit,tag:0,optional"`
}
type responseData struct {
Raw asn1.RawContent
Version int `asn1:"optional,default:1,explicit,tag:0"`
RawResponderName asn1.RawValue `asn1:"optional,explicit,tag:1"`
KeyHash []byte `asn1:"optional,explicit,tag:2"`
ProducedAt time.Time `asn1:"generalized"`
Responses []singleResponse
}
type singleResponse struct {
CertID certID
Good asn1.Flag `asn1:"tag:0,optional"`
Revoked revokedInfo `asn1:"explicit,tag:1,optional"`
Unknown asn1.Flag `asn1:"tag:2,optional"`
ThisUpdate time.Time `asn1:"generalized"`
NextUpdate time.Time `asn1:"generalized,explicit,tag:0,optional"`
}
type revokedInfo struct {
RevocationTime time.Time `asn1:"generalized"`
Reason int `asn1:"explicit,tag:0,optional"`
}
var (
oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2}
oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4}
oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5}
oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11}
oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12}
oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13}
oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3}
oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 4, 3, 2}
oidSignatureECDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1}
oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2}
oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3}
oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4}
)
var hashOIDs = map[crypto.Hash]asn1.ObjectIdentifier{
crypto.SHA1: asn1.ObjectIdentifier([]int{1, 3, 14, 3, 2, 26}),
crypto.SHA256: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 1}),
crypto.SHA384: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 2}),
crypto.SHA512: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 3}),
}
// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
var signatureAlgorithmDetails = []struct {
algo x509.SignatureAlgorithm
oid asn1.ObjectIdentifier
pubKeyAlgo x509.PublicKeyAlgorithm
hash crypto.Hash
}{
{x509.MD2WithRSA, oidSignatureMD2WithRSA, x509.RSA, crypto.Hash(0) /* no value for MD2 */},
{x509.MD5WithRSA, oidSignatureMD5WithRSA, x509.RSA, crypto.MD5},
{x509.SHA1WithRSA, oidSignatureSHA1WithRSA, x509.RSA, crypto.SHA1},
{x509.SHA256WithRSA, oidSignatureSHA256WithRSA, x509.RSA, crypto.SHA256},
{x509.SHA384WithRSA, oidSignatureSHA384WithRSA, x509.RSA, crypto.SHA384},
{x509.SHA512WithRSA, oidSignatureSHA512WithRSA, x509.RSA, crypto.SHA512},
{x509.DSAWithSHA1, oidSignatureDSAWithSHA1, x509.DSA, crypto.SHA1},
{x509.DSAWithSHA256, oidSignatureDSAWithSHA256, x509.DSA, crypto.SHA256},
{x509.ECDSAWithSHA1, oidSignatureECDSAWithSHA1, x509.ECDSA, crypto.SHA1},
{x509.ECDSAWithSHA256, oidSignatureECDSAWithSHA256, x509.ECDSA, crypto.SHA256},
{x509.ECDSAWithSHA384, oidSignatureECDSAWithSHA384, x509.ECDSA, crypto.SHA384},
{x509.ECDSAWithSHA512, oidSignatureECDSAWithSHA512, x509.ECDSA, crypto.SHA512},
}
// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
func signingParamsForPublicKey(pub interface{}, requestedSigAlgo x509.SignatureAlgorithm) (hashFunc crypto.Hash, sigAlgo pkix.AlgorithmIdentifier, err error) {
var pubType x509.PublicKeyAlgorithm
switch pub := pub.(type) {
case *rsa.PublicKey:
pubType = x509.RSA
hashFunc = crypto.SHA256
sigAlgo.Algorithm = oidSignatureSHA256WithRSA
sigAlgo.Parameters = asn1.RawValue{
Tag: 5,
}
case *ecdsa.PublicKey:
pubType = x509.ECDSA
switch pub.Curve {
case elliptic.P224(), elliptic.P256():
hashFunc = crypto.SHA256
sigAlgo.Algorithm = oidSignatureECDSAWithSHA256
case elliptic.P384():
hashFunc = crypto.SHA384
sigAlgo.Algorithm = oidSignatureECDSAWithSHA384
case elliptic.P521():
hashFunc = crypto.SHA512
sigAlgo.Algorithm = oidSignatureECDSAWithSHA512
default:
err = errors.New("x509: unknown elliptic curve")
}
default:
err = errors.New("x509: only RSA and ECDSA keys supported")
}
if err != nil {
return
}
if requestedSigAlgo == 0 {
return
}
found := false
for _, details := range signatureAlgorithmDetails {
if details.algo == requestedSigAlgo {
if details.pubKeyAlgo != pubType {
err = errors.New("x509: requested SignatureAlgorithm does not match private key type")
return
}
sigAlgo.Algorithm, hashFunc = details.oid, details.hash
if hashFunc == 0 {
err = errors.New("x509: cannot sign with hash function requested")
return
}
found = true
break
}
}
if !found {
err = errors.New("x509: unknown SignatureAlgorithm")
}
return
}
// TODO(agl): this is taken from crypto/x509 and so should probably be exported
// from crypto/x509 or crypto/x509/pkix.
func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) x509.SignatureAlgorithm {
for _, details := range signatureAlgorithmDetails {
if oid.Equal(details.oid) {
return details.algo
}
}
return x509.UnknownSignatureAlgorithm
}
// TODO(rlb): This is not taken from crypto/x509, but it's of the same general form.
func getHashAlgorithmFromOID(target asn1.ObjectIdentifier) crypto.Hash {
for hash, oid := range hashOIDs {
if oid.Equal(target) {
return hash
}
}
return crypto.Hash(0)
}
// This is the exposed reflection of the internal OCSP structures.
const (
// Good means that the certificate is valid.
Good = iota
// Revoked means that the certificate has been deliberately revoked.
Revoked = iota
// Unknown means that the OCSP responder doesn't know about the certificate.
Unknown = iota
// ServerFailed means that the OCSP responder failed to process the request.
ServerFailed = iota
)
// Request represents an OCSP request. See RFC 2560.
type Request struct {
HashAlgorithm crypto.Hash
IssuerNameHash []byte
IssuerKeyHash []byte
SerialNumber *big.Int
}
// Response represents an OCSP response. See RFC 2560.
type Response struct {
// Status is one of {Good, Revoked, Unknown, ServerFailed}
Status int
SerialNumber *big.Int
ProducedAt, ThisUpdate, NextUpdate, RevokedAt time.Time
RevocationReason int
Certificate *x509.Certificate
// TBSResponseData contains the raw bytes of the signed response. If
// Certificate is nil then this can be used to verify Signature.
TBSResponseData []byte
Signature []byte
SignatureAlgorithm x509.SignatureAlgorithm
}
// These are pre-serialized error responses for the various non-success codes
// defined by OCSP. The Unauthorized code in particular can be used by an OCSP
// responder that supports only pre-signed responses as a response to requests
// for certificates with unknown status. See RFC 5019.
var (
MalformedRequestErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x01}
InternalErrorErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x02}
TryLaterErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x03}
SigRequredErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x05}
UnauthorizedErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x06}
)
// CheckSignatureFrom checks that the signature in resp is a valid signature
// from issuer. This should only be used if resp.Certificate is nil. Otherwise,
// the OCSP response contained an intermediate certificate that created the
// signature. That signature is checked by ParseResponse and only
// resp.Certificate remains to be validated.
func (resp *Response) CheckSignatureFrom(issuer *x509.Certificate) error {
return issuer.CheckSignature(resp.SignatureAlgorithm, resp.TBSResponseData, resp.Signature)
}
// ParseError results from an invalid OCSP response.
type ParseError string
func (p ParseError) Error() string {
return string(p)
}
// ParseRequest parses an OCSP request in DER form. It only supports
// requests for a single certificate. Signed requests are not supported.
// If a request includes a signature, it will result in a ParseError.
func ParseRequest(bytes []byte) (*Request, error) {
var req ocspRequest
rest, err := asn1.Unmarshal(bytes, &req)
if err != nil {
return nil, err
}
if len(rest) > 0 {
return nil, ParseError("trailing data in OCSP request")
}
if len(req.TBSRequest.RequestList) == 0 {
return nil, ParseError("OCSP request contains no request body")
}
innerRequest := req.TBSRequest.RequestList[0]
hashFunc := getHashAlgorithmFromOID(innerRequest.Cert.HashAlgorithm.Algorithm)
if hashFunc == crypto.Hash(0) {
return nil, ParseError("OCSP request uses unknown hash function")
}
return &Request{
HashAlgorithm: hashFunc,
IssuerNameHash: innerRequest.Cert.NameHash,
IssuerKeyHash: innerRequest.Cert.IssuerKeyHash,
SerialNumber: innerRequest.Cert.SerialNumber,
}, nil
}
// ParseResponse parses an OCSP response in DER form. It only supports
// responses for a single certificate. If the response contains a certificate
// then the signature over the response is checked. If issuer is not nil then
// it will be used to validate the signature or embedded certificate. Invalid
// signatures or parse failures will result in a ParseError.
func ParseResponse(bytes []byte, issuer *x509.Certificate) (*Response, error) {
var resp responseASN1
rest, err := asn1.Unmarshal(bytes, &resp)
if err != nil {
return nil, err
}
if len(rest) > 0 {
return nil, ParseError("trailing data in OCSP response")
}
ret := new(Response)
if resp.Status != ocspSuccess {
ret.Status = ServerFailed
return ret, nil
}
if !resp.Response.ResponseType.Equal(idPKIXOCSPBasic) {
return nil, ParseError("bad OCSP response type")
}
var basicResp basicResponse
rest, err = asn1.Unmarshal(resp.Response.Response, &basicResp)
if err != nil {
return nil, err
}
if len(basicResp.Certificates) > 1 {
return nil, ParseError("OCSP response contains bad number of certificates")
}
if len(basicResp.TBSResponseData.Responses) != 1 {
return nil, ParseError("OCSP response contains bad number of responses")
}
ret.TBSResponseData = basicResp.TBSResponseData.Raw
ret.Signature = basicResp.Signature.RightAlign()
ret.SignatureAlgorithm = getSignatureAlgorithmFromOID(basicResp.SignatureAlgorithm.Algorithm)
if len(basicResp.Certificates) > 0 {
ret.Certificate, err = x509.ParseCertificate(basicResp.Certificates[0].FullBytes)
if err != nil {
return nil, err
}
if err := ret.CheckSignatureFrom(ret.Certificate); err != nil {
return nil, ParseError("bad OCSP signature")
}
if issuer != nil {
if err := issuer.CheckSignature(ret.Certificate.SignatureAlgorithm, ret.Certificate.RawTBSCertificate, ret.Certificate.Signature); err != nil {
return nil, ParseError("bad signature on embedded certificate")
}
}
} else if issuer != nil {
if err := ret.CheckSignatureFrom(issuer); err != nil {
return nil, ParseError("bad OCSP signature")
}
}
r := basicResp.TBSResponseData.Responses[0]
ret.SerialNumber = r.CertID.SerialNumber
switch {
case bool(r.Good):
ret.Status = Good
case bool(r.Unknown):
ret.Status = Unknown
default:
ret.Status = Revoked
ret.RevokedAt = r.Revoked.RevocationTime
ret.RevocationReason = r.Revoked.Reason
}
ret.ProducedAt = basicResp.TBSResponseData.ProducedAt
ret.ThisUpdate = r.ThisUpdate
ret.NextUpdate = r.NextUpdate
return ret, nil
}
// RequestOptions contains options for constructing OCSP requests.
type RequestOptions struct {
// Hash contains the hash function that should be used when
// constructing the OCSP request. If zero, SHA-1 will be used.
Hash crypto.Hash
}
func (opts *RequestOptions) hash() crypto.Hash {
if opts == nil || opts.Hash == 0 {
// SHA-1 is nearly universally used in OCSP.
return crypto.SHA1
}
return opts.Hash
}
// CreateRequest returns a DER-encoded, OCSP request for the status of cert. If
// opts is nil then sensible defaults are used.
func CreateRequest(cert, issuer *x509.Certificate, opts *RequestOptions) ([]byte, error) {
hashFunc := opts.hash()
// OCSP seems to be the only place where these raw hash identifiers are
// used. I took the following from
// http://msdn.microsoft.com/en-us/library/ff635603.aspx
var hashOID asn1.ObjectIdentifier
hashOID, ok := hashOIDs[hashFunc]
if !ok {
return nil, x509.ErrUnsupportedAlgorithm
}
if !hashFunc.Available() {
return nil, x509.ErrUnsupportedAlgorithm
}
h := opts.hash().New()
var publicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
PublicKey asn1.BitString
}
if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
return nil, err
}
h.Write(publicKeyInfo.PublicKey.RightAlign())
issuerKeyHash := h.Sum(nil)
h.Reset()
h.Write(issuer.RawSubject)
issuerNameHash := h.Sum(nil)
return asn1.Marshal(ocspRequest{
tbsRequest{
Version: 0,
RequestList: []request{
{
Cert: certID{
pkix.AlgorithmIdentifier{
Algorithm: hashOID,
Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
},
issuerNameHash,
issuerKeyHash,
cert.SerialNumber,
},
},
},
},
})
}
// CreateResponse returns a DER-encoded OCSP response with the specified contents.
// The fields in the response are populated as follows:
//
// The responder cert is used to populate the ResponderName field, and the certificate
// itself is provided alongside the OCSP response signature.
//
// The issuer cert is used to puplate the IssuerNameHash and IssuerKeyHash fields.
// (SHA-1 is used for the hash function; this is not configurable.)
//
// The template is used to populate the SerialNumber, RevocationStatus, RevokedAt,
// RevocationReason, ThisUpdate, and NextUpdate fields.
//
// The ProducedAt date is automatically set to the current date, to the nearest minute.
func CreateResponse(issuer, responderCert *x509.Certificate, template Response, priv crypto.Signer) ([]byte, error) {
var publicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
PublicKey asn1.BitString
}
if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
return nil, err
}
h := sha1.New()
h.Write(publicKeyInfo.PublicKey.RightAlign())
issuerKeyHash := h.Sum(nil)
h.Reset()
h.Write(issuer.RawSubject)
issuerNameHash := h.Sum(nil)
innerResponse := singleResponse{
CertID: certID{
HashAlgorithm: pkix.AlgorithmIdentifier{
Algorithm: hashOIDs[crypto.SHA1],
Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
},
NameHash: issuerNameHash,
IssuerKeyHash: issuerKeyHash,
SerialNumber: template.SerialNumber,
},
ThisUpdate: template.ThisUpdate.UTC(),
NextUpdate: template.NextUpdate.UTC(),
}
switch template.Status {
case Good:
innerResponse.Good = true
case Unknown:
innerResponse.Unknown = true
case Revoked:
innerResponse.Revoked = revokedInfo{
RevocationTime: template.RevokedAt.UTC(),
Reason: template.RevocationReason,
}
}
responderName := asn1.RawValue{
Class: 2, // context-specific
Tag: 1, // explicit tag
IsCompound: true,
Bytes: responderCert.RawSubject,
}
tbsResponseData := responseData{
Version: 0,
RawResponderName: responderName,
ProducedAt: time.Now().Truncate(time.Minute).UTC(),
Responses: []singleResponse{innerResponse},
}
tbsResponseDataDER, err := asn1.Marshal(tbsResponseData)
if err != nil {
return nil, err
}
hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(priv.Public(), template.SignatureAlgorithm)
if err != nil {
return nil, err
}
responseHash := hashFunc.New()
responseHash.Write(tbsResponseDataDER)
signature, err := priv.Sign(rand.Reader, responseHash.Sum(nil), hashFunc)
if err != nil {
return nil, err
}
response := basicResponse{
TBSResponseData: tbsResponseData,
SignatureAlgorithm: signatureAlgorithm,
Signature: asn1.BitString{
Bytes: signature,
BitLength: 8 * len(signature),
},
}
if template.Certificate != nil {
response.Certificates = []asn1.RawValue{
asn1.RawValue{FullBytes: template.Certificate.Raw},
}
}
responseDER, err := asn1.Marshal(response)
if err != nil {
return nil, err
}
return asn1.Marshal(responseASN1{
Status: ocspSuccess,
Response: responseBytes{
ResponseType: idPKIXOCSPBasic,
Response: responseDER,
},
})
}

View file

@ -13,6 +13,7 @@
#include <proto.h>
#include <message.h>
#include <privkey.h>
static int g_session_established = 0;
@ -20,65 +21,61 @@ OtrlPolicy policy(void *opdata, ConnContext *context) {
return OTRL_POLICY_ALWAYS;
}
int is_logged_in(void *opdata, const char *accountname, const char *protocol, const char *recipient) {
int is_logged_in(void *opdata, const char *accountname, const char *protocol,
const char *recipient) {
return 1;
}
void inject_message(void *opdata, const char *accountname, const char *protocol, const char *recipient, const char *message) {
void inject_message(void *opdata, const char *accountname, const char *protocol,
const char *recipient, const char *message) {
printf("%s\n", message);
fflush(stdout);
fprintf(stderr, "libotr helper sent: %s\n", message);
}
void notify(void *opdata, OtrlNotifyLevel level, const char *accountname, const char *protocol, const char *username, const char *title, const char *primary, const char *secondary) {
fprintf(stderr, "NOTIFY: %s %s %s %s\n", username, title, primary, secondary);
}
void update_context_list(void *opdata) {}
int display_otr_message(void *opdata, const char *accountname, const char *protocol, const char *username, const char *msg) {
fprintf(stderr, "MESSAGE: %s %s\n", username, msg);
return 1;
}
void update_context_list(void *opdata) {
}
const char *protocol_name(void *opdata, const char *protocol) {
return "PROTOCOL";
}
void protocol_name_free(void *opdata, const char *protocol_name) {
}
void new_fingerprint(void *opdata, OtrlUserState us, const char *accountname, const char *protocol, const char *username, unsigned char fingerprint[20]) {
void new_fingerprint(void *opdata, OtrlUserState us, const char *accountname,
const char *protocol, const char *username,
unsigned char fingerprint[20]) {
fprintf(stderr, "NEW FINGERPRINT\n");
g_session_established = 1;
}
void write_fingerprints(void *opdata) {
}
void write_fingerprints(void *opdata) {}
void gone_secure(void *opdata, ConnContext *context) {
}
void gone_secure(void *opdata, ConnContext *context) {}
void gone_insecure(void *opdata, ConnContext *context) {
}
void gone_insecure(void *opdata, ConnContext *context) {}
void still_secure(void *opdata, ConnContext *context, int is_reply) {
}
void still_secure(void *opdata, ConnContext *context, int is_reply) {}
void log_message(void *opdata, const char *message) {
fprintf(stderr, "MESSAGE: %s\n", message);
}
int max_message_size(void *opdata, ConnContext *context) { return 99999; }
int max_message_size(void *opdata, ConnContext *context) {
return 99999;
}
const char *account_name(void *opdata, const char *account, const char *protocol) {
const char *account_name(void *opdata, const char *account,
const char *protocol) {
return "ACCOUNT";
}
void account_name_free(void *opdata, const char *account_name) {
void account_name_free(void *opdata, const char *account_name) {}
const char *error_message(void *opdata, ConnContext *context,
OtrlErrorCode err_code) {
return "ERR";
}
void error_message_free(void *opdata, const char *msg) {}
void resent_msg_prefix_free(void *opdata, const char *prefix) {}
void handle_smp_event(void *opdata, OtrlSMPEvent smp_event,
ConnContext *context, unsigned short progress_event,
char *question) {}
void handle_msg_event(void *opdata, OtrlMessageEvent msg_event,
ConnContext *context, const char *message,
gcry_error_t err) {
fprintf(stderr, "msg event: %d %s\n", msg_event, message);
}
OtrlMessageAppOps uiops = {
@ -86,26 +83,47 @@ OtrlMessageAppOps uiops = {
NULL,
is_logged_in,
inject_message,
notify,
display_otr_message,
update_context_list,
protocol_name,
protocol_name_free,
new_fingerprint,
write_fingerprints,
gone_secure,
gone_insecure,
still_secure,
log_message,
max_message_size,
account_name,
account_name_free,
NULL, /* received_symkey */
error_message,
error_message_free,
NULL, /* resent_msg_prefix */
resent_msg_prefix_free,
handle_smp_event,
handle_msg_event,
NULL /* create_instag */,
NULL /* convert_msg */,
NULL /* convert_free */,
NULL /* timer_control */,
};
static const char kPrivateKeyData[] = "(privkeys (account (name \"account\") (protocol proto) (private-key (dsa (p #00FC07ABCF0DC916AFF6E9AE47BEF60C7AB9B4D6B2469E436630E36F8A489BE812486A09F30B71224508654940A835301ACC525A4FF133FC152CC53DCC59D65C30A54F1993FE13FE63E5823D4C746DB21B90F9B9C00B49EC7404AB1D929BA7FBA12F2E45C6E0A651689750E8528AB8C031D3561FECEE72EBB4A090D450A9B7A857#) (q #00997BD266EF7B1F60A5C23F3A741F2AEFD07A2081#) (g #535E360E8A95EBA46A4F7DE50AD6E9B2A6DB785A66B64EB9F20338D2A3E8FB0E94725848F1AA6CC567CB83A1CC517EC806F2E92EAE71457E80B2210A189B91250779434B41FC8A8873F6DB94BEA7D177F5D59E7E114EE10A49CFD9CEF88AE43387023B672927BA74B04EB6BBB5E57597766A2F9CE3857D7ACE3E1E3BC1FC6F26#) (y #0AC8670AD767D7A8D9D14CC1AC6744CD7D76F993B77FFD9E39DF01E5A6536EF65E775FCEF2A983E2A19BD6415500F6979715D9FD1257E1FE2B6F5E1E74B333079E7C880D39868462A93454B41877BE62E5EF0A041C2EE9C9E76BD1E12AE25D9628DECB097025DD625EF49C3258A1A3C0FF501E3DC673B76D7BABF349009B6ECF#) (x #14D0345A3562C480A039E3C72764F72D79043216#)))))\n";
static const char kPrivateKeyData[] =
"(privkeys (account (name \"account\") (protocol proto) (private-key (dsa "
"(p "
"#00FC07ABCF0DC916AFF6E9AE47BEF60C7AB9B4D6B2469E436630E36F8A489BE812486A09F"
"30B71224508654940A835301ACC525A4FF133FC152CC53DCC59D65C30A54F1993FE13FE63E"
"5823D4C746DB21B90F9B9C00B49EC7404AB1D929BA7FBA12F2E45C6E0A651689750E8528AB"
"8C031D3561FECEE72EBB4A090D450A9B7A857#) (q "
"#00997BD266EF7B1F60A5C23F3A741F2AEFD07A2081#) (g "
"#535E360E8A95EBA46A4F7DE50AD6E9B2A6DB785A66B64EB9F20338D2A3E8FB0E94725848F"
"1AA6CC567CB83A1CC517EC806F2E92EAE71457E80B2210A189B91250779434B41FC8A8873F"
"6DB94BEA7D177F5D59E7E114EE10A49CFD9CEF88AE43387023B672927BA74B04EB6BBB5E57"
"597766A2F9CE3857D7ACE3E1E3BC1FC6F26#) (y "
"#0AC8670AD767D7A8D9D14CC1AC6744CD7D76F993B77FFD9E39DF01E5A6536EF65E775FCEF"
"2A983E2A19BD6415500F6979715D9FD1257E1FE2B6F5E1E74B333079E7C880D39868462A93"
"454B41877BE62E5EF0A041C2EE9C9E76BD1E12AE25D9628DECB097025DD625EF49C3258A1A"
"3C0FF501E3DC673B76D7BABF349009B6ECF#) (x "
"#14D0345A3562C480A039E3C72764F72D79043216#)))))\n";
int
main() {
int main() {
OTRL_INIT;
// We have to write the private key information to a file because the libotr
@ -116,12 +134,13 @@ main() {
}
char private_key_file[256];
snprintf(private_key_file, sizeof(private_key_file), "%s/libotr_test_helper_privatekeys-XXXXXX", tmpdir);
snprintf(private_key_file, sizeof(private_key_file),
"%s/libotr_test_helper_privatekeys-XXXXXX", tmpdir);
int fd = mkstemp(private_key_file);
if (fd == -1) {
perror("creating temp file");
}
write(fd, kPrivateKeyData, sizeof(kPrivateKeyData)-1);
write(fd, kPrivateKeyData, sizeof(kPrivateKeyData) - 1);
close(fd);
OtrlUserState userstate = otrl_userstate_create();
@ -133,7 +152,7 @@ main() {
char buf[4096];
for (;;) {
char* message = fgets(buf, sizeof(buf), stdin);
char *message = fgets(buf, sizeof(buf), stdin);
if (strlen(message) == 0) {
break;
}
@ -142,7 +161,9 @@ main() {
char *newmessage = NULL;
OtrlTLV *tlvs;
int ignore_message = otrl_message_receiving(userstate, &uiops, NULL, "account", "proto", "peer", message, &newmessage, &tlvs, NULL, NULL);
int ignore_message = otrl_message_receiving(
userstate, &uiops, NULL, "account", "proto", "peer", message,
&newmessage, &tlvs, NULL, NULL, NULL);
if (tlvs) {
otrl_tlv_free(tlvs);
}
@ -154,16 +175,21 @@ main() {
gcry_error_t err;
char *newmessage = NULL;
err = otrl_message_sending(userstate, &uiops, NULL, "account", "proto", "peer", "test message", NULL, &newmessage, NULL, NULL);
err = otrl_message_sending(userstate, &uiops, NULL, "account", "proto",
"peer", 0, "test message", NULL, &newmessage,
OTRL_FRAGMENT_SEND_SKIP, NULL, NULL, NULL);
if (newmessage == NULL) {
fprintf(stderr, "libotr didn't encrypt message\n");
return 1;
}
write(1, newmessage, strlen(newmessage));
write(1, "\n", 1);
g_session_established = 0;
fprintf(stderr, "libotr sent: %s\n", newmessage);
otrl_message_free(newmessage);
g_session_established = 0;
write(1, "?OTRv2?\n", 8);
fprintf(stderr, "libotr sent: ?OTRv2\n");
}
}

View file

@ -277,7 +277,7 @@ func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change Se
in = in[len(msgPrefix) : len(in)-1]
} else if version := isQuery(in); version > 0 {
c.authState = authStateAwaitingDHKey
c.myKeyId = 0
c.reset()
toSend = c.encode(c.generateDHCommit())
return
} else {
@ -311,7 +311,7 @@ func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change Se
if err = c.processDHCommit(msg); err != nil {
return
}
c.myKeyId = 0
c.reset()
toSend = c.encode(c.generateDHKey())
return
case authStateAwaitingDHKey:
@ -330,7 +330,7 @@ func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change Se
if err = c.processDHCommit(msg); err != nil {
return
}
c.myKeyId = 0
c.reset()
toSend = c.encode(c.generateDHKey())
return
}
@ -343,7 +343,7 @@ func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change Se
if err = c.processDHCommit(msg); err != nil {
return
}
c.myKeyId = 0
c.reset()
toSend = c.encode(c.generateDHKey())
c.authState = authStateAwaitingRevealSig
default:
@ -417,12 +417,11 @@ func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change Se
change = SMPSecretNeeded
c.smp.saved = &inTLV
return
} else if err == smpFailureError {
}
if err == smpFailureError {
err = nil
change = SMPFailed
return
}
if complete {
} else if complete {
change = SMPComplete
}
if reply.typ != 0 {
@ -848,7 +847,6 @@ func (c *Conversation) rotateDHKeys() {
slot := &c.keySlots[i]
if slot.used && slot.myKeyId == c.myKeyId-1 {
slot.used = false
c.oldMACs = append(c.oldMACs, slot.sendMACKey...)
c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
}
}
@ -924,7 +922,6 @@ func (c *Conversation) processData(in []byte) (out []byte, tlvs []tlv, err error
slot := &c.keySlots[i]
if slot.used && slot.theirKeyId == theirKeyId-1 {
slot.used = false
c.oldMACs = append(c.oldMACs, slot.sendMACKey...)
c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
}
}
@ -946,6 +943,7 @@ func (c *Conversation) processData(in []byte) (out []byte, tlvs []tlv, err error
t.data, tlvData, ok3 = getNBytes(tlvData, int(t.length))
if !ok1 || !ok2 || !ok3 {
err = errors.New("otr: corrupt tlv data")
return
}
tlvs = append(tlvs, t)
}
@ -1039,8 +1037,7 @@ func (c *Conversation) calcDataKeys(myKeyId, theirKeyId uint32) (slot *keySlot,
}
}
if slot == nil {
err = errors.New("otr: internal error: no key slots")
return
return nil, errors.New("otr: internal error: no more key slots")
}
var myPriv, myPub, theirPub *big.Int
@ -1096,6 +1093,10 @@ func (c *Conversation) calcDataKeys(myKeyId, theirKeyId uint32) (slot *keySlot,
h.Write(slot.recvAESKey)
slot.recvMACKey = h.Sum(slot.recvMACKey[:0])
slot.theirKeyId = theirKeyId
slot.myKeyId = myKeyId
slot.used = true
zero(slot.theirLastCtr[:])
return
}
@ -1162,6 +1163,14 @@ func (c *Conversation) encode(msg []byte) [][]byte {
return ret
}
func (c *Conversation) reset() {
c.myKeyId = 0
for i := range c.keySlots {
c.keySlots[i].used = false
}
}
type PublicKey struct {
dsa.PublicKey
}
@ -1305,6 +1314,12 @@ func (priv *PrivateKey) Import(in []byte) bool {
mpis[i] = new(big.Int).SetBytes(mpiBytes)
}
for _, mpi := range mpis {
if mpi.Sign() <= 0 {
return false
}
}
priv.PrivateKey.P = mpis[0]
priv.PrivateKey.Q = mpis[1]
priv.PrivateKey.G = mpis[2]

7
vendor/golang.org/x/crypto/ssh/test/doc.go generated vendored Normal file
View file

@ -0,0 +1,7 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package test contains integration tests for the
// golang.org/x/crypto/ssh package.
package test // import "golang.org/x/crypto/ssh/test"

173
vendor/golang.org/x/crypto/ssh/test/sshd_test_pw.c generated vendored Normal file
View file

@ -0,0 +1,173 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// sshd_test_pw.c
// Wrapper to inject test password data for sshd PAM authentication
//
// This wrapper implements custom versions of getpwnam, getpwnam_r,
// getspnam and getspnam_r. These functions first call their real
// libc versions, then check if the requested user matches test user
// specified in env variable TEST_USER and if so replace the password
// with crypted() value of TEST_PASSWD env variable.
//
// Compile:
// gcc -Wall -shared -o sshd_test_pw.so -fPIC sshd_test_pw.c
//
// Compile with debug:
// gcc -DVERBOSE -Wall -shared -o sshd_test_pw.so -fPIC sshd_test_pw.c
//
// Run sshd:
// LD_PRELOAD="sshd_test_pw.so" TEST_USER="..." TEST_PASSWD="..." sshd ...
// +build ignore
#define _GNU_SOURCE
#include <string.h>
#include <pwd.h>
#include <shadow.h>
#include <dlfcn.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#ifdef VERBOSE
#define DEBUG(X...) fprintf(stderr, X)
#else
#define DEBUG(X...) while (0) { }
#endif
/* crypt() password */
static char *
pwhash(char *passwd) {
return strdup(crypt(passwd, "$6$"));
}
/* Pointers to real functions in libc */
static struct passwd * (*real_getpwnam)(const char *) = NULL;
static int (*real_getpwnam_r)(const char *, struct passwd *, char *, size_t, struct passwd **) = NULL;
static struct spwd * (*real_getspnam)(const char *) = NULL;
static int (*real_getspnam_r)(const char *, struct spwd *, char *, size_t, struct spwd **) = NULL;
/* Cached test user and test password */
static char *test_user = NULL;
static char *test_passwd_hash = NULL;
static void
init(void) {
/* Fetch real libc function pointers */
real_getpwnam = dlsym(RTLD_NEXT, "getpwnam");
real_getpwnam_r = dlsym(RTLD_NEXT, "getpwnam_r");
real_getspnam = dlsym(RTLD_NEXT, "getspnam");
real_getspnam_r = dlsym(RTLD_NEXT, "getspnam_r");
/* abort if env variables are not defined */
if (getenv("TEST_USER") == NULL || getenv("TEST_PASSWD") == NULL) {
fprintf(stderr, "env variables TEST_USER and TEST_PASSWD are missing\n");
abort();
}
/* Fetch test user and test password from env */
test_user = strdup(getenv("TEST_USER"));
test_passwd_hash = pwhash(getenv("TEST_PASSWD"));
DEBUG("sshd_test_pw init():\n");
DEBUG("\treal_getpwnam: %p\n", real_getpwnam);
DEBUG("\treal_getpwnam_r: %p\n", real_getpwnam_r);
DEBUG("\treal_getspnam: %p\n", real_getspnam);
DEBUG("\treal_getspnam_r: %p\n", real_getspnam_r);
DEBUG("\tTEST_USER: '%s'\n", test_user);
DEBUG("\tTEST_PASSWD: '%s'\n", getenv("TEST_PASSWD"));
DEBUG("\tTEST_PASSWD_HASH: '%s'\n", test_passwd_hash);
}
static int
is_test_user(const char *name) {
if (test_user != NULL && strcmp(test_user, name) == 0)
return 1;
return 0;
}
/* getpwnam */
struct passwd *
getpwnam(const char *name) {
struct passwd *pw;
DEBUG("sshd_test_pw getpwnam(%s)\n", name);
if (real_getpwnam == NULL)
init();
if ((pw = real_getpwnam(name)) == NULL)
return NULL;
if (is_test_user(name))
pw->pw_passwd = strdup(test_passwd_hash);
return pw;
}
/* getpwnam_r */
int
getpwnam_r(const char *name,
struct passwd *pwd,
char *buf,
size_t buflen,
struct passwd **result) {
int r;
DEBUG("sshd_test_pw getpwnam_r(%s)\n", name);
if (real_getpwnam_r == NULL)
init();
if ((r = real_getpwnam_r(name, pwd, buf, buflen, result)) != 0 || *result == NULL)
return r;
if (is_test_user(name))
pwd->pw_passwd = strdup(test_passwd_hash);
return 0;
}
/* getspnam */
struct spwd *
getspnam(const char *name) {
struct spwd *sp;
DEBUG("sshd_test_pw getspnam(%s)\n", name);
if (real_getspnam == NULL)
init();
if ((sp = real_getspnam(name)) == NULL)
return NULL;
if (is_test_user(name))
sp->sp_pwdp = strdup(test_passwd_hash);
return sp;
}
/* getspnam_r */
int
getspnam_r(const char *name,
struct spwd *spbuf,
char *buf,
size_t buflen,
struct spwd **spbufp) {
int r;
DEBUG("sshd_test_pw getspnam_r(%s)\n", name);
if (real_getspnam_r == NULL)
init();
if ((r = real_getspnam_r(name, spbuf, buf, buflen, spbufp)) != 0)
return r;
if (is_test_user(name))
spbuf->sp_pwdp = strdup(test_passwd_hash);
return r;
}

View file

@ -1,133 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package publicsuffix provides a public suffix list based on data from
// http://publicsuffix.org/. A public suffix is one under which Internet users
// can directly register names.
package publicsuffix // import "golang.org/x/net/publicsuffix"
// TODO: specify case sensitivity and leading/trailing dot behavior for
// func PublicSuffix and func EffectiveTLDPlusOne.
import (
"fmt"
"net/http/cookiejar"
"strings"
)
// List implements the cookiejar.PublicSuffixList interface by calling the
// PublicSuffix function.
var List cookiejar.PublicSuffixList = list{}
type list struct{}
func (list) PublicSuffix(domain string) string {
ps, _ := PublicSuffix(domain)
return ps
}
func (list) String() string {
return version
}
// PublicSuffix returns the public suffix of the domain using a copy of the
// publicsuffix.org database compiled into the library.
//
// icann is whether the public suffix is managed by the Internet Corporation
// for Assigned Names and Numbers. If not, the public suffix is privately
// managed. For example, foo.org and foo.co.uk are ICANN domains,
// foo.dyndns.org and foo.blogspot.co.uk are private domains.
//
// Use cases for distinguishing ICANN domains like foo.com from private
// domains like foo.appspot.com can be found at
// https://wiki.mozilla.org/Public_Suffix_List/Use_Cases
func PublicSuffix(domain string) (publicSuffix string, icann bool) {
lo, hi := uint32(0), uint32(numTLD)
s, suffix, wildcard := domain, len(domain), false
loop:
for {
dot := strings.LastIndex(s, ".")
if wildcard {
suffix = 1 + dot
}
if lo == hi {
break
}
f := find(s[1+dot:], lo, hi)
if f == notFound {
break
}
u := nodes[f] >> (nodesBitsTextOffset + nodesBitsTextLength)
icann = u&(1<<nodesBitsICANN-1) != 0
u >>= nodesBitsICANN
u = children[u&(1<<nodesBitsChildren-1)]
lo = u & (1<<childrenBitsLo - 1)
u >>= childrenBitsLo
hi = u & (1<<childrenBitsHi - 1)
u >>= childrenBitsHi
switch u & (1<<childrenBitsNodeType - 1) {
case nodeTypeNormal:
suffix = 1 + dot
case nodeTypeException:
suffix = 1 + len(s)
break loop
}
u >>= childrenBitsNodeType
wildcard = u&(1<<childrenBitsWildcard-1) != 0
if dot == -1 {
break
}
s = s[:dot]
}
if suffix == len(domain) {
// If no rules match, the prevailing rule is "*".
return domain[1+strings.LastIndex(domain, "."):], icann
}
return domain[suffix:], icann
}
const notFound uint32 = 1<<32 - 1
// find returns the index of the node in the range [lo, hi) whose label equals
// label, or notFound if there is no such node. The range is assumed to be in
// strictly increasing node label order.
func find(label string, lo, hi uint32) uint32 {
for lo < hi {
mid := lo + (hi-lo)/2
s := nodeLabel(mid)
if s < label {
lo = mid + 1
} else if s == label {
return mid
} else {
hi = mid
}
}
return notFound
}
// nodeLabel returns the label for the i'th node.
func nodeLabel(i uint32) string {
x := nodes[i]
length := x & (1<<nodesBitsTextLength - 1)
x >>= nodesBitsTextLength
offset := x & (1<<nodesBitsTextOffset - 1)
return text[offset : offset+length]
}
// EffectiveTLDPlusOne returns the effective top level domain plus one more
// label. For example, the eTLD+1 for "foo.bar.golang.org" is "golang.org".
func EffectiveTLDPlusOne(domain string) (string, error) {
suffix, _ := PublicSuffix(domain)
if len(domain) <= len(suffix) {
return "", fmt.Errorf("publicsuffix: cannot derive eTLD+1 for domain %q", domain)
}
i := len(domain) - len(suffix) - 1
if domain[i] != '.' {
return "", fmt.Errorf("publicsuffix: invalid public suffix %q for domain %q", suffix, domain)
}
return domain[1+strings.LastIndex(domain[:i], "."):], nil
}

File diff suppressed because it is too large Load diff

27
vendor/golang.org/x/time/LICENSE generated vendored
View file

@ -1,27 +0,0 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/time/PATENTS generated vendored
View file

@ -1,22 +0,0 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

1
vendor/golang.org/x/time/README generated vendored
View file

@ -1 +0,0 @@
This repository provides supplementary Go time packages.

368
vendor/golang.org/x/time/rate/rate.go generated vendored
View file

@ -1,368 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rate provides a rate limiter.
package rate
import (
"fmt"
"math"
"sync"
"time"
"golang.org/x/net/context"
)
// Limit defines the maximum frequency of some events.
// Limit is represented as number of events per second.
// A zero Limit allows no events.
type Limit float64
// Inf is the infinite rate limit; it allows all events (even if burst is zero).
const Inf = Limit(math.MaxFloat64)
// Every converts a minimum time interval between events to a Limit.
func Every(interval time.Duration) Limit {
if interval <= 0 {
return Inf
}
return 1 / Limit(interval.Seconds())
}
// A Limiter controls how frequently events are allowed to happen.
// It implements a "token bucket" of size b, initially full and refilled
// at rate r tokens per second.
// Informally, in any large enough time interval, the Limiter limits the
// rate to r tokens per second, with a maximum burst size of b events.
// As a special case, if r == Inf (the infinite rate), b is ignored.
// See https://en.wikipedia.org/wiki/Token_bucket for more about token buckets.
//
// The zero value is a valid Limiter, but it will reject all events.
// Use NewLimiter to create non-zero Limiters.
//
// Limiter has three main methods, Allow, Reserve, and Wait.
// Most callers should use Wait.
//
// Each of the three methods consumes a single token.
// They differ in their behavior when no token is available.
// If no token is available, Allow returns false.
// If no token is available, Reserve returns a reservation for a future token
// and the amount of time the caller must wait before using it.
// If no token is available, Wait blocks until one can be obtained
// or its associated context.Context is canceled.
//
// The methods AllowN, ReserveN, and WaitN consume n tokens.
type Limiter struct {
limit Limit
burst int
mu sync.Mutex
tokens float64
// last is the last time the limiter's tokens field was updated
last time.Time
// lastEvent is the latest time of a rate-limited event (past or future)
lastEvent time.Time
}
// Limit returns the maximum overall event rate.
func (lim *Limiter) Limit() Limit {
lim.mu.Lock()
defer lim.mu.Unlock()
return lim.limit
}
// Burst returns the maximum burst size. Burst is the maximum number of tokens
// that can be consumed in a single call to Allow, Reserve, or Wait, so higher
// Burst values allow more events to happen at once.
// A zero Burst allows no events, unless limit == Inf.
func (lim *Limiter) Burst() int {
return lim.burst
}
// NewLimiter returns a new Limiter that allows events up to rate r and permits
// bursts of at most b tokens.
func NewLimiter(r Limit, b int) *Limiter {
return &Limiter{
limit: r,
burst: b,
}
}
// Allow is shorthand for AllowN(time.Now(), 1).
func (lim *Limiter) Allow() bool {
return lim.AllowN(time.Now(), 1)
}
// AllowN reports whether n events may happen at time now.
// Use this method if you intend to drop / skip events that exceed the rate limit.
// Otherwise use Reserve or Wait.
func (lim *Limiter) AllowN(now time.Time, n int) bool {
return lim.reserveN(now, n, 0).ok
}
// A Reservation holds information about events that are permitted by a Limiter to happen after a delay.
// A Reservation may be canceled, which may enable the Limiter to permit additional events.
type Reservation struct {
ok bool
lim *Limiter
tokens int
timeToAct time.Time
// This is the Limit at reservation time, it can change later.
limit Limit
}
// OK returns whether the limiter can provide the requested number of tokens
// within the maximum wait time. If OK is false, Delay returns InfDuration, and
// Cancel does nothing.
func (r *Reservation) OK() bool {
return r.ok
}
// Delay is shorthand for DelayFrom(time.Now()).
func (r *Reservation) Delay() time.Duration {
return r.DelayFrom(time.Now())
}
// InfDuration is the duration returned by Delay when a Reservation is not OK.
const InfDuration = time.Duration(1<<63 - 1)
// DelayFrom returns the duration for which the reservation holder must wait
// before taking the reserved action. Zero duration means act immediately.
// InfDuration means the limiter cannot grant the tokens requested in this
// Reservation within the maximum wait time.
func (r *Reservation) DelayFrom(now time.Time) time.Duration {
if !r.ok {
return InfDuration
}
delay := r.timeToAct.Sub(now)
if delay < 0 {
return 0
}
return delay
}
// Cancel is shorthand for CancelAt(time.Now()).
func (r *Reservation) Cancel() {
r.CancelAt(time.Now())
return
}
// CancelAt indicates that the reservation holder will not perform the reserved action
// and reverses the effects of this Reservation on the rate limit as much as possible,
// considering that other reservations may have already been made.
func (r *Reservation) CancelAt(now time.Time) {
if !r.ok {
return
}
r.lim.mu.Lock()
defer r.lim.mu.Unlock()
if r.lim.limit == Inf || r.tokens == 0 || r.timeToAct.Before(now) {
return
}
// calculate tokens to restore
// The duration between lim.lastEvent and r.timeToAct tells us how many tokens were reserved
// after r was obtained. These tokens should not be restored.
restoreTokens := float64(r.tokens) - r.limit.tokensFromDuration(r.lim.lastEvent.Sub(r.timeToAct))
if restoreTokens <= 0 {
return
}
// advance time to now
now, _, tokens := r.lim.advance(now)
// calculate new number of tokens
tokens += restoreTokens
if burst := float64(r.lim.burst); tokens > burst {
tokens = burst
}
// update state
r.lim.last = now
r.lim.tokens = tokens
if r.timeToAct == r.lim.lastEvent {
prevEvent := r.timeToAct.Add(r.limit.durationFromTokens(float64(-r.tokens)))
if !prevEvent.Before(now) {
r.lim.lastEvent = prevEvent
}
}
return
}
// Reserve is shorthand for ReserveN(time.Now(), 1).
func (lim *Limiter) Reserve() *Reservation {
return lim.ReserveN(time.Now(), 1)
}
// ReserveN returns a Reservation that indicates how long the caller must wait before n events happen.
// The Limiter takes this Reservation into account when allowing future events.
// ReserveN returns false if n exceeds the Limiter's burst size.
// Usage example:
// r, ok := lim.ReserveN(time.Now(), 1)
// if !ok {
// // Not allowed to act! Did you remember to set lim.burst to be > 0 ?
// }
// time.Sleep(r.Delay())
// Act()
// Use this method if you wish to wait and slow down in accordance with the rate limit without dropping events.
// If you need to respect a deadline or cancel the delay, use Wait instead.
// To drop or skip events exceeding rate limit, use Allow instead.
func (lim *Limiter) ReserveN(now time.Time, n int) *Reservation {
r := lim.reserveN(now, n, InfDuration)
return &r
}
// Wait is shorthand for WaitN(ctx, 1).
func (lim *Limiter) Wait(ctx context.Context) (err error) {
return lim.WaitN(ctx, 1)
}
// WaitN blocks until lim permits n events to happen.
// It returns an error if n exceeds the Limiter's burst size, the Context is
// canceled, or the expected wait time exceeds the Context's Deadline.
func (lim *Limiter) WaitN(ctx context.Context, n int) (err error) {
if n > lim.burst {
return fmt.Errorf("rate: Wait(n=%d) exceeds limiter's burst %d", n, lim.burst)
}
// Check if ctx is already cancelled
select {
case <-ctx.Done():
return ctx.Err()
default:
}
// Determine wait limit
now := time.Now()
waitLimit := InfDuration
if deadline, ok := ctx.Deadline(); ok {
waitLimit = deadline.Sub(now)
}
// Reserve
r := lim.reserveN(now, n, waitLimit)
if !r.ok {
return fmt.Errorf("rate: Wait(n=%d) would exceed context deadline", n)
}
// Wait
t := time.NewTimer(r.DelayFrom(now))
defer t.Stop()
select {
case <-t.C:
// We can proceed.
return nil
case <-ctx.Done():
// Context was canceled before we could proceed. Cancel the
// reservation, which may permit other events to proceed sooner.
r.Cancel()
return ctx.Err()
}
}
// SetLimit is shorthand for SetLimitAt(time.Now(), newLimit).
func (lim *Limiter) SetLimit(newLimit Limit) {
lim.SetLimitAt(time.Now(), newLimit)
}
// SetLimitAt sets a new Limit for the limiter. The new Limit, and Burst, may be violated
// or underutilized by those which reserved (using Reserve or Wait) but did not yet act
// before SetLimitAt was called.
func (lim *Limiter) SetLimitAt(now time.Time, newLimit Limit) {
lim.mu.Lock()
defer lim.mu.Unlock()
now, _, tokens := lim.advance(now)
lim.last = now
lim.tokens = tokens
lim.limit = newLimit
}
// reserveN is a helper method for AllowN, ReserveN, and WaitN.
// maxFutureReserve specifies the maximum reservation wait duration allowed.
// reserveN returns Reservation, not *Reservation, to avoid allocation in AllowN and WaitN.
func (lim *Limiter) reserveN(now time.Time, n int, maxFutureReserve time.Duration) Reservation {
lim.mu.Lock()
defer lim.mu.Unlock()
if lim.limit == Inf {
return Reservation{
ok: true,
lim: lim,
tokens: n,
timeToAct: now,
}
}
now, last, tokens := lim.advance(now)
// Calculate the remaining number of tokens resulting from the request.
tokens -= float64(n)
// Calculate the wait duration
var waitDuration time.Duration
if tokens < 0 {
waitDuration = lim.limit.durationFromTokens(-tokens)
}
// Decide result
ok := n <= lim.burst && waitDuration <= maxFutureReserve
// Prepare reservation
r := Reservation{
ok: ok,
lim: lim,
limit: lim.limit,
}
if ok {
r.tokens = n
r.timeToAct = now.Add(waitDuration)
}
// Update state
if ok {
lim.last = now
lim.tokens = tokens
lim.lastEvent = r.timeToAct
} else {
lim.last = last
}
return r
}
// advance calculates and returns an updated state for lim resulting from the passage of time.
// lim is not changed.
func (lim *Limiter) advance(now time.Time) (newNow time.Time, newLast time.Time, newTokens float64) {
last := lim.last
if now.Before(last) {
last = now
}
// Avoid making delta overflow below when last is very old.
maxElapsed := lim.limit.durationFromTokens(float64(lim.burst) - lim.tokens)
elapsed := now.Sub(last)
if elapsed > maxElapsed {
elapsed = maxElapsed
}
// Calculate the new number of tokens, due to time that passed.
delta := lim.limit.tokensFromDuration(elapsed)
tokens := lim.tokens + delta
if burst := float64(lim.burst); tokens > burst {
tokens = burst
}
return now, last, tokens
}
// durationFromTokens is a unit conversion function from the number of tokens to the duration
// of time it takes to accumulate them at a rate of limit tokens per second.
func (limit Limit) durationFromTokens(tokens float64) time.Duration {
seconds := tokens / float64(limit)
return time.Nanosecond * time.Duration(1e9*seconds)
}
// tokensFromDuration is a unit conversion function from a time duration to the number of tokens
// which could be accumulated during that duration at a rate of limit tokens per second.
func (limit Limit) tokensFromDuration(d time.Duration) float64 {
return d.Seconds() * float64(limit)
}

View file

@ -1,202 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View file

@ -1,209 +0,0 @@
# Go JOSE
[![godoc](http://img.shields.io/badge/godoc-reference-blue.svg?style=flat)](https://godoc.org/gopkg.in/square/go-jose.v1) [![license](http://img.shields.io/badge/license-apache_2.0-red.svg?style=flat)](https://raw.githubusercontent.com/square/go-jose/master/LICENSE) [![build](https://travis-ci.org/square/go-jose.svg?branch=master)](https://travis-ci.org/square/go-jose) [![coverage](https://coveralls.io/repos/github/square/go-jose/badge.svg?branch=master)](https://coveralls.io/r/square/go-jose)
Package jose aims to provide an implementation of the Javascript Object Signing
and Encryption set of standards. For the moment, it mainly focuses on encryption
and signing based on the JSON Web Encryption and JSON Web Signature standards.
**Disclaimer**: This library contains encryption software that is subject to
the U.S. Export Administration Regulations. You may not export, re-export,
transfer or download this code or any part of it in violation of any United
States law, directive or regulation. In particular this software may not be
exported or re-exported in any form or on any media to Iran, North Sudan,
Syria, Cuba, or North Korea, or to denied persons or entities mentioned on any
US maintained blocked list.
## Overview
The implementation follows the
[JSON Web Encryption](http://dx.doi.org/10.17487/RFC7516)
standard (RFC 7516) and
[JSON Web Signature](http://dx.doi.org/10.17487/RFC7515)
standard (RFC 7515). Tables of supported algorithms are shown below.
The library supports both the compact and full serialization formats, and has
optional support for multiple recipients. It also comes with a small
command-line utility
([`jose-util`](https://github.com/square/go-jose/tree/master/jose-util))
for dealing with JOSE messages in a shell.
**Note**: We use a forked version of the `encoding/json` package from the Go
standard library which uses case-sensitive matching for member names (instead
of [case-insensitive matching](https://www.ietf.org/mail-archive/web/json/current/msg03763.html)).
This is to avoid differences in interpretation of messages between go-jose and
libraries in other languages. If you do not like this behavior, you can use the
`std_json` build tag to disable it (though we do not recommend doing so).
### Versions
We use [gopkg.in](https://gopkg.in) for versioning.
[Version 1](https://gopkg.in/square/go-jose.v1) is the current stable version:
import "gopkg.in/square/go-jose.v1"
The interface for [go-jose.v1](https://gopkg.in/square/go-jose.v1) will remain
backwards compatible. We're currently sketching out ideas for a new version, to
clean up the interface a bit. If you have ideas or feature requests [please let
us know](https://github.com/square/go-jose/issues/64)!
### Supported algorithms
See below for a table of supported algorithms. Algorithm identifiers match
the names in the
[JSON Web Algorithms](http://dx.doi.org/10.17487/RFC7518)
standard where possible. The
[Godoc reference](https://godoc.org/github.com/square/go-jose#pkg-constants)
has a list of constants.
Key encryption | Algorithm identifier(s)
:------------------------- | :------------------------------
RSA-PKCS#1v1.5 | RSA1_5
RSA-OAEP | RSA-OAEP, RSA-OAEP-256
AES key wrap | A128KW, A192KW, A256KW
AES-GCM key wrap | A128GCMKW, A192GCMKW, A256GCMKW
ECDH-ES + AES key wrap | ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW
ECDH-ES (direct) | ECDH-ES<sup>1</sup>
Direct encryption | dir<sup>1</sup>
<sup>1. Not supported in multi-recipient mode</sup>
Signing / MAC | Algorithm identifier(s)
:------------------------- | :------------------------------
RSASSA-PKCS#1v1.5 | RS256, RS384, RS512
RSASSA-PSS | PS256, PS384, PS512
HMAC | HS256, HS384, HS512
ECDSA | ES256, ES384, ES512
Content encryption | Algorithm identifier(s)
:------------------------- | :------------------------------
AES-CBC+HMAC | A128CBC-HS256, A192CBC-HS384, A256CBC-HS512
AES-GCM | A128GCM, A192GCM, A256GCM
Compression | Algorithm identifiers(s)
:------------------------- | -------------------------------
DEFLATE (RFC 1951) | DEF
### Supported key types
See below for a table of supported key types. These are understood by the
library, and can be passed to corresponding functions such as `NewEncrypter` or
`NewSigner`. Note that if you are creating a new encrypter or signer with a
JsonWebKey, the key id of the JsonWebKey (if present) will be added to any
resulting messages.
Algorithm(s) | Corresponding types
:------------------------- | -------------------------------
RSA | *[rsa.PublicKey](http://golang.org/pkg/crypto/rsa/#PublicKey), *[rsa.PrivateKey](http://golang.org/pkg/crypto/rsa/#PrivateKey), *[jose.JsonWebKey](https://godoc.org/github.com/square/go-jose#JsonWebKey)
ECDH, ECDSA | *[ecdsa.PublicKey](http://golang.org/pkg/crypto/ecdsa/#PublicKey), *[ecdsa.PrivateKey](http://golang.org/pkg/crypto/ecdsa/#PrivateKey), *[jose.JsonWebKey](https://godoc.org/github.com/square/go-jose#JsonWebKey)
AES, HMAC | []byte, *[jose.JsonWebKey](https://godoc.org/github.com/square/go-jose#JsonWebKey)
## Examples
Encryption/decryption example using RSA:
```Go
// Generate a public/private key pair to use for this example. The library
// also provides two utility functions (LoadPublicKey and LoadPrivateKey)
// that can be used to load keys from PEM/DER-encoded data.
privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
// Instantiate an encrypter using RSA-OAEP with AES128-GCM. An error would
// indicate that the selected algorithm(s) are not currently supported.
publicKey := &privateKey.PublicKey
encrypter, err := NewEncrypter(RSA_OAEP, A128GCM, publicKey)
if err != nil {
panic(err)
}
// Encrypt a sample plaintext. Calling the encrypter returns an encrypted
// JWE object, which can then be serialized for output afterwards. An error
// would indicate a problem in an underlying cryptographic primitive.
var plaintext = []byte("Lorem ipsum dolor sit amet")
object, err := encrypter.Encrypt(plaintext)
if err != nil {
panic(err)
}
// Serialize the encrypted object using the full serialization format.
// Alternatively you can also use the compact format here by calling
// object.CompactSerialize() instead.
serialized := object.FullSerialize()
// Parse the serialized, encrypted JWE object. An error would indicate that
// the given input did not represent a valid message.
object, err = ParseEncrypted(serialized)
if err != nil {
panic(err)
}
// Now we can decrypt and get back our original plaintext. An error here
// would indicate the the message failed to decrypt, e.g. because the auth
// tag was broken or the message was tampered with.
decrypted, err := object.Decrypt(privateKey)
if err != nil {
panic(err)
}
fmt.Printf(string(decrypted))
// output: Lorem ipsum dolor sit amet
```
Signing/verification example using RSA:
```Go
// Generate a public/private key pair to use for this example. The library
// also provides two utility functions (LoadPublicKey and LoadPrivateKey)
// that can be used to load keys from PEM/DER-encoded data.
privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
// Instantiate a signer using RSASSA-PSS (SHA512) with the given private key.
signer, err := NewSigner(PS512, privateKey)
if err != nil {
panic(err)
}
// Sign a sample payload. Calling the signer returns a protected JWS object,
// which can then be serialized for output afterwards. An error would
// indicate a problem in an underlying cryptographic primitive.
var payload = []byte("Lorem ipsum dolor sit amet")
object, err := signer.Sign(payload)
if err != nil {
panic(err)
}
// Serialize the encrypted object using the full serialization format.
// Alternatively you can also use the compact format here by calling
// object.CompactSerialize() instead.
serialized := object.FullSerialize()
// Parse the serialized, protected JWS object. An error would indicate that
// the given input did not represent a valid message.
object, err = ParseSigned(serialized)
if err != nil {
panic(err)
}
// Now we can verify the signature on the payload. An error here would
// indicate the the message failed to verify, e.g. because the signature was
// broken or the message was tampered with.
output, err := object.Verify(&privateKey.PublicKey)
if err != nil {
panic(err)
}
fmt.Printf(string(output))
// output: Lorem ipsum dolor sit amet
```
More examples can be found in the [Godoc
reference](https://godoc.org/github.com/square/go-jose) for this package. The
[`jose-util`](https://github.com/square/go-jose/tree/master/jose-util)
subdirectory also contains a small command-line utility which might
be useful as an example.

Some files were not shown because too many files have changed in this diff Show more