Commit graph

9 commits

Author SHA1 Message Date
Brian Bland
07ba5db168 Serializes upload state to an HMAC token for subsequent requests
To support clustered registry, upload UUIDs must be recognizable by
registries that did not issue the UUID. By creating an HMAC verifiable
upload state token, registries can validate upload requests that other
instances authorized. The tokenProvider interface could also use a redis
store or other system for token handling in the future.
2015-01-05 14:27:05 -08:00
Stephen J Day
a4024b2f90 Move manifest to discrete package
Because manifests and their signatures are a discrete component of the
registry, we are moving the definitions into a separate package. This causes us
to lose some test coverage, but we can fill this in shortly. No changes have
been made to the external interfaces, but they are likely to come.

Signed-off-by: Stephen J Day <stephen.day@docker.com>
2015-01-02 13:23:11 -08:00
Olivier Gambier
67ca9d10cf Move from docker-registry to distribution 2014-12-23 17:13:02 -08:00
Stephen J Day
70ab06b864 Update storage package to use StorageDriver.Stat
This change updates the backend storage package that consumes StorageDriver to
use the new Stat call, over CurrentSize. It also makes minor updates for using
WriteStream and ReadStream.
2014-12-04 20:55:59 -08:00
Stephen J Day
6fead90736 Rich error reporting for manifest push
To provide rich error reporting during manifest pushes, the storage layers
verifyManifest stage has been modified to provide the necessary granularity.
Along with this comes with a partial shift to explicit error types, which
represents a small move in larger refactoring of error handling. Signature
methods from libtrust have been added to the various Manifest types to clean up
the verification code.

A primitive deletion implementation for manifests has been added. It only
deletes the manifest file and doesn't attempt to add some of the richer
features request, such as layer cleanup.
2014-11-26 12:57:14 -08:00
Stephen J Day
68944ea9cf Clean up layer storage layout
Previously, discussions were still ongoing about different storage layouts that
could support various access models. This changeset removes a layer of
indirection that was in place due to earlier designs. Effectively, this both
associates a layer with a named repository and ensures that content cannot be
accessed across repositories. It also moves to rely on tarsum as a true
content-addressable identifier, removing a layer of indirection during blob
resolution.
2014-11-25 09:57:43 -08:00
Stephen J Day
3f479b62b4 Refactor layerReader into fileReader
This change separates out the remote file reader functionality from layer
reprsentation data. More importantly, issues with seeking have been fixed and
thoroughly tested.
2014-11-21 15:24:14 -08:00
Stephen J Day
1a508d67d9 Move storage package to use Digest type
Mostly, we've made superficial changes to the storage package to start using
the Digest type. Many of the exported interface methods have been changed to
reflect this in addition to changes in the way layer uploads will be initiated.

Further work here is necessary but will come with a separate PR.
2014-11-19 14:39:32 -08:00
Stephen J Day
2637e29e18 Initial implementation of registry LayerService
This change contains the initial implementation of the LayerService to power
layer push and pulls on the storagedriver. The interfaces presented in this
package will be used by the http application to drive most features around
efficient pulls and resumable pushes.

The file storage/layer.go defines the interface interactions. LayerService is
the root type and supports methods to access Layer and LayerUpload objects.
Pull operations are supported with LayerService.Fetch and push operations are
supported with LayerService.Upload and LayerService.Resume. Reads and writes of
layers are split between Layer and LayerUpload, respectively.

LayerService is implemented internally with the layerStore object, which takes
a storagedriver.StorageDriver and a pathMapper instance.

LayerUploadState is currently exported and will likely continue to be as the
interaction between it and layerUploadStore are better understood. Likely, the
layerUploadStore lifecycle and implementation will be deferred to the
application.

Image pushes pulls will be implemented in a similar manner without the
discrete, persistent upload.

Much of this change is in place to get something running and working. Caveats
of this change include the following:

1. Layer upload state storage is implemented on the local filesystem, separate
   from the storage driver. This must be replaced with using the proper backend
   and other state storage. This can be removed when we implement resumable
   hashing and tarsum calculations to avoid backend roundtrips.
2. Error handling is rather bespoke at this time. The http API implementation
   should really dictate the error return structure for the future, so we
   intend to refactor this heavily to support these errors. We'd also like to
   collect production data to understand how failures happen in the system as
   a while before moving to a particular edict around error handling.
3. The layerUploadStore, which manages layer upload storage and state is not
   currently exported. This will likely end up being split, with the file
   management portion being pointed at the storagedriver and the state storage
   elsewhere.
4. Access Control provisions are nearly completely missing from this change.
   There are details around how layerindex lookup works that are related with
   access controls. As the auth portions of the new API take shape, these
   provisions will become more clear.

Please see TODOs for details and individual recommendations.
2014-11-17 17:54:07 -08:00