cosmopolitan/libc/tinymath/expf.c

117 lines
4.6 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
vi: set noet ft=c ts=8 tw=8 fenc=utf-8 :vi
Musl Libc
Copyright © 2005-2014 Rich Felker, et al.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
2022-08-11 19:13:18 +00:00
#include "libc/intrin/likely.h"
#include "libc/math.h"
#include "libc/tinymath/exp2f_data.internal.h"
#include "libc/tinymath/internal.h"
asm(".ident\t\"\\n\\n\
Double-precision math functions (MIT License)\\n\
Copyright 2018 ARM Limited\"");
asm(".include \"libc/disclaimer.inc\"");
// clang-format off
/*
* Single-precision e^x function.
*
* Copyright (c) 2017-2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
/*
EXP2F_TABLE_BITS = 5
EXP2F_POLY_ORDER = 3
ULP error: 0.502 (nearest rounding.)
Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.)
Wrong count: 170635 (all nearest rounding wrong results with fma.)
Non-nearest ULP error: 1 (rounded ULP error)
*/
#define N (1 << EXP2F_TABLE_BITS)
#define InvLn2N __exp2f_data.invln2_scaled
#define T __exp2f_data.tab
#define C __exp2f_data.poly_scaled
static inline uint32_t top12(float x)
{
return asuint(x) >> 20;
}
/**
* Returns 𝑒^x.
*/
float expf(float x)
{
uint32_t abstop;
uint64_t ki, t;
double_t kd, xd, z, r, r2, y, s;
xd = (double_t)x;
abstop = top12(x) & 0x7ff;
if (UNLIKELY(abstop >= top12(88.0f))) {
/* |x| >= 88 or x is nan. */
if (asuint(x) == asuint(-INFINITY))
return 0.0f;
if (abstop >= top12(INFINITY))
return x + x;
if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */
return __math_oflowf(0);
if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */
return __math_uflowf(0);
}
/* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */
z = InvLn2N * xd;
/* Round and convert z to int, the result is in [-150*N, 128*N] and
ideally ties-to-even rule is used, otherwise the magnitude of r
can be bigger which gives larger approximation error. */
#if TOINT_INTRINSICS
kd = roundtoint(z);
ki = converttoint(z);
#else
# define SHIFT __exp2f_data.shift
kd = eval_as_double(z + SHIFT);
ki = asuint64(kd);
kd -= SHIFT;
#endif
r = z - kd;
/* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
t = T[ki % N];
t += ki << (52 - EXP2F_TABLE_BITS);
s = asdouble(t);
z = C[0] * r + C[1];
r2 = r * r;
y = C[2] * r + 1;
y = z * r2 + y;
y = y * s;
return eval_as_float(y);
}