2021-08-12 07:42:14 +00:00
|
|
|
|
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
|
2021-08-13 10:20:45 +00:00
|
|
|
|
│vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│
|
2021-08-12 07:42:14 +00:00
|
|
|
|
╞══════════════════════════════════════════════════════════════════════════════╡
|
|
|
|
|
│ Copyright (c) 2008-2016 Stefan Krah. All rights reserved. │
|
|
|
|
|
│ │
|
|
|
|
|
│ Redistribution and use in source and binary forms, with or without │
|
|
|
|
|
│ modification, are permitted provided that the following conditions │
|
|
|
|
|
│ are met: │
|
|
|
|
|
│ │
|
|
|
|
|
│ 1. Redistributions of source code must retain the above copyright │
|
|
|
|
|
│ notice, this list of conditions and the following disclaimer. │
|
|
|
|
|
│ │
|
|
|
|
|
│ 2. Redistributions in binary form must reproduce the above copyright │
|
|
|
|
|
│ notice, this list of conditions and the following disclaimer in │
|
|
|
|
|
│ the documentation and/or other materials provided with the │
|
|
|
|
|
│ distribution. │
|
|
|
|
|
│ │
|
|
|
|
|
│ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND │
|
|
|
|
|
│ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │
|
|
|
|
|
│ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR │
|
|
|
|
|
│ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS │
|
|
|
|
|
│ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, │
|
|
|
|
|
│ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT │
|
|
|
|
|
│ OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR │
|
|
|
|
|
│ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, │
|
|
|
|
|
│ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE │
|
|
|
|
|
│ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, │
|
|
|
|
|
│ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │
|
|
|
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
|
|
|
#include "third_party/python/Modules/_decimal/libmpdec/bits.h"
|
|
|
|
|
#include "third_party/python/Modules/_decimal/libmpdec/difradix2.h"
|
|
|
|
|
#include "third_party/python/Modules/_decimal/libmpdec/mpdecimal.h"
|
|
|
|
|
#include "third_party/python/Modules/_decimal/libmpdec/numbertheory.h"
|
|
|
|
|
#include "third_party/python/Modules/_decimal/libmpdec/sixstep.h"
|
|
|
|
|
#include "third_party/python/Modules/_decimal/libmpdec/transpose.h"
|
|
|
|
|
#include "third_party/python/Modules/_decimal/libmpdec/umodarith.h"
|
2021-08-10 17:26:13 +00:00
|
|
|
|
/* clang-format off */
|
2021-08-08 04:08:33 +00:00
|
|
|
|
|
2021-08-12 07:42:14 +00:00
|
|
|
|
asm(".ident\t\"\\n\\n\
|
|
|
|
|
libmpdec (BSD-2)\\n\
|
|
|
|
|
Copyright 2008-2016 Stefan Krah\"");
|
|
|
|
|
asm(".include \"libc/disclaimer.inc\"");
|
2021-08-08 04:08:33 +00:00
|
|
|
|
|
2021-09-28 05:58:51 +00:00
|
|
|
|
/*
|
|
|
|
|
Cache Efficient Matrix Fourier Transform
|
|
|
|
|
for arrays of form 2ⁿ
|
2021-08-08 04:08:33 +00:00
|
|
|
|
|
|
|
|
|
|
2021-09-28 05:58:51 +00:00
|
|
|
|
The Six Step Transform
|
|
|
|
|
══════════════════════
|
|
|
|
|
|
|
|
|
|
In libmpdec, the six-step transform is the Matrix Fourier Transform in
|
|
|
|
|
disguise. It is called six-step transform after a variant that appears
|
|
|
|
|
in [1]. The algorithm requires that the input array can be viewed as an
|
|
|
|
|
R×C matrix.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Algorithm six-step (forward transform)
|
|
|
|
|
──────────────────────────────────────
|
|
|
|
|
|
|
|
|
|
1a) Transpose the matrix.
|
|
|
|
|
|
|
|
|
|
1b) Apply a length R FNT to each row.
|
|
|
|
|
|
|
|
|
|
1c) Transpose the matrix.
|
|
|
|
|
|
|
|
|
|
2) Multiply each matrix element (addressed by j×C+m) by r**(j×m).
|
|
|
|
|
|
|
|
|
|
3) Apply a length C FNT to each row.
|
|
|
|
|
|
|
|
|
|
4) Transpose the matrix.
|
|
|
|
|
|
|
|
|
|
Note that steps 1a) - 1c) are exactly equivalent to step 1) of the Matrix
|
|
|
|
|
Fourier Transform. For large R, it is faster to transpose twice and do
|
|
|
|
|
a transform on the rows than to perform a column transpose directly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Algorithm six-step (inverse transform)
|
|
|
|
|
──────────────────────────────────────
|
|
|
|
|
|
|
|
|
|
0) View the matrix as a C×R matrix.
|
|
|
|
|
|
|
|
|
|
1) Transpose the matrix, producing an R×C matrix.
|
|
|
|
|
|
|
|
|
|
2) Apply a length C FNT to each row.
|
|
|
|
|
|
|
|
|
|
3) Multiply each matrix element (addressed by i×C+n) by r**(i×n).
|
|
|
|
|
|
|
|
|
|
4a) Transpose the matrix.
|
|
|
|
|
|
|
|
|
|
4b) Apply a length R FNT to each row.
|
|
|
|
|
|
|
|
|
|
4c) Transpose the matrix.
|
|
|
|
|
|
|
|
|
|
Again, steps 4a) - 4c) are equivalent to step 4) of the Matrix Fourier
|
|
|
|
|
Transform.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
──
|
|
|
|
|
|
|
|
|
|
[1] David H. Bailey: FFTs in External or Hierarchical Memory
|
|
|
|
|
http://crd.lbl.gov/~dhbailey/dhbpapers/
|
|
|
|
|
*/
|
2021-08-08 04:08:33 +00:00
|
|
|
|
|
|
|
|
|
/* forward transform with sign = -1 */
|
|
|
|
|
int
|
|
|
|
|
six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
|
|
|
|
|
{
|
|
|
|
|
struct fnt_params *tparams;
|
|
|
|
|
mpd_size_t log2n, C, R;
|
|
|
|
|
mpd_uint_t kernel;
|
|
|
|
|
mpd_uint_t umod;
|
|
|
|
|
mpd_uint_t *x, w0, w1, wstep;
|
|
|
|
|
mpd_size_t i, k;
|
|
|
|
|
assert(ispower2(n));
|
|
|
|
|
assert(n >= 16);
|
|
|
|
|
assert(n <= MPD_MAXTRANSFORM_2N);
|
|
|
|
|
log2n = mpd_bsr(n);
|
|
|
|
|
C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
|
|
|
|
|
R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
|
|
|
|
|
/* Transpose the matrix. */
|
|
|
|
|
if (!transpose_pow2(a, R, C)) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* Length R transform on the rows. */
|
|
|
|
|
if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
for (x = a; x < a+n; x += R) {
|
|
|
|
|
fnt_dif2(x, R, tparams);
|
|
|
|
|
}
|
|
|
|
|
/* Transpose the matrix. */
|
|
|
|
|
if (!transpose_pow2(a, C, R)) {
|
|
|
|
|
mpd_free(tparams);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
|
|
|
|
|
SETMODULUS(modnum);
|
|
|
|
|
kernel = _mpd_getkernel(n, -1, modnum);
|
|
|
|
|
for (i = 1; i < R; i++) {
|
|
|
|
|
w0 = 1; /* r**(i*0): initial value for k=0 */
|
|
|
|
|
w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */
|
|
|
|
|
wstep = MULMOD(w1, w1); /* r**(2*i) */
|
|
|
|
|
for (k = 0; k < C; k += 2) {
|
|
|
|
|
mpd_uint_t x0 = a[i*C+k];
|
|
|
|
|
mpd_uint_t x1 = a[i*C+k+1];
|
|
|
|
|
MULMOD2(&x0, w0, &x1, w1);
|
|
|
|
|
MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
|
|
|
|
|
a[i*C+k] = x0;
|
|
|
|
|
a[i*C+k+1] = x1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* Length C transform on the rows. */
|
|
|
|
|
if (C != R) {
|
|
|
|
|
mpd_free(tparams);
|
|
|
|
|
if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
for (x = a; x < a+n; x += C) {
|
|
|
|
|
fnt_dif2(x, C, tparams);
|
|
|
|
|
}
|
|
|
|
|
mpd_free(tparams);
|
|
|
|
|
#if 0
|
|
|
|
|
/* An unordered transform is sufficient for convolution. */
|
|
|
|
|
/* Transpose the matrix. */
|
|
|
|
|
if (!transpose_pow2(a, R, C)) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* reverse transform, sign = 1 */
|
|
|
|
|
int
|
|
|
|
|
inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
|
|
|
|
|
{
|
|
|
|
|
struct fnt_params *tparams;
|
|
|
|
|
mpd_size_t log2n, C, R;
|
|
|
|
|
mpd_uint_t kernel;
|
|
|
|
|
mpd_uint_t umod;
|
|
|
|
|
mpd_uint_t *x, w0, w1, wstep;
|
|
|
|
|
mpd_size_t i, k;
|
|
|
|
|
assert(ispower2(n));
|
|
|
|
|
assert(n >= 16);
|
|
|
|
|
assert(n <= MPD_MAXTRANSFORM_2N);
|
|
|
|
|
log2n = mpd_bsr(n);
|
|
|
|
|
C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
|
|
|
|
|
R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
|
|
|
|
|
#if 0
|
|
|
|
|
/* An unordered transform is sufficient for convolution. */
|
|
|
|
|
/* Transpose the matrix, producing an R*C matrix. */
|
|
|
|
|
if (!transpose_pow2(a, C, R)) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
/* Length C transform on the rows. */
|
|
|
|
|
if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
for (x = a; x < a+n; x += C) {
|
|
|
|
|
fnt_dif2(x, C, tparams);
|
|
|
|
|
}
|
|
|
|
|
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
|
|
|
|
|
SETMODULUS(modnum);
|
|
|
|
|
kernel = _mpd_getkernel(n, 1, modnum);
|
|
|
|
|
for (i = 1; i < R; i++) {
|
|
|
|
|
w0 = 1;
|
|
|
|
|
w1 = POWMOD(kernel, i);
|
|
|
|
|
wstep = MULMOD(w1, w1);
|
|
|
|
|
for (k = 0; k < C; k += 2) {
|
|
|
|
|
mpd_uint_t x0 = a[i*C+k];
|
|
|
|
|
mpd_uint_t x1 = a[i*C+k+1];
|
|
|
|
|
MULMOD2(&x0, w0, &x1, w1);
|
|
|
|
|
MULMOD2C(&w0, &w1, wstep);
|
|
|
|
|
a[i*C+k] = x0;
|
|
|
|
|
a[i*C+k+1] = x1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* Transpose the matrix. */
|
|
|
|
|
if (!transpose_pow2(a, R, C)) {
|
|
|
|
|
mpd_free(tparams);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* Length R transform on the rows. */
|
|
|
|
|
if (R != C) {
|
|
|
|
|
mpd_free(tparams);
|
|
|
|
|
if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
for (x = a; x < a+n; x += R) {
|
|
|
|
|
fnt_dif2(x, R, tparams);
|
|
|
|
|
}
|
|
|
|
|
mpd_free(tparams);
|
|
|
|
|
/* Transpose the matrix. */
|
|
|
|
|
if (!transpose_pow2(a, C, R)) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
return 1;
|
|
|
|
|
}
|