The WIN32 CreateProcess() function does not require an .exe or .com
suffix in order to spawn an executable. Now that we have Cosmo bash
we're no longer so dependent on the cmd.exe prompt.
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.
This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.
Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.
OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().
This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.
We no longer use hex constants to define math.h symbols like M_PI.
* third_party: Add libcxxabi
Added libcxxabi from LLVM 17.0.6
The library implements the Itanium C++ exception handling ABI.
* third_party/libcxxabi: Enable __cxa_thread_atexit
Enable `__cxa_thread_atexit` from libcxxabi.
`__cxa_thread_atexit_impl` is still implemented by the cosmo libc.
The original `__cxa_thread_atexit` has been removed.
* third_party/libcxx: Build with exceptions
Build libcxx with exceptions enabled.
- Removed `_LIBCPP_NO_EXCEPTIONS` from `__config`.
- Switched the exception implementation to `libcxxabi`. These two files
are taken from the same `libcxx` version as mentioned in `README.cosmo`.
- Removed `new_handler_fallback` in favor of `libcxxabi` implementation.
- Enable `-fexceptions` and `-frtti` for `libcxx`.
- Removed `THIRD_PARTY_LIBCXX` dependency from `libcxxabi` and
`libunwind`. These libraries do not use any runtime `libcxx` functions,
just headers.
* libc: Remove remaining redundant cxa functions
- `__cxa_pure_virtual` in `libcxxabi` is also a stub similar to the
existing one.
- `__cxa_guard_*` from `libcxxabi` is used instead of the ones from
Android.
Now there should be no more duplicate implementations.
`__cxa_thread_atexit_impl`, `__cxa_atexit`, and related supporting
functions, are still left to other libraries as in `libcxxabi`.
`libcxxabi` is also now added to `cosmopolitan.a` to make up for the
removed functions.
Affected in-tree libraries (`third_party/double-conversion`) have been
updated.
Somehow or another, I previously had missed `BUILD.mk` files.
In the process I found a few straggler cases where the modeline was
different from the file, including one very involved manual fix where a
file had been treated like it was ts=2 and ts=8 on separate occasions.
The commit history in the PR shows the gory details; the BUILD.mk was
automated, everything else was mostly manual.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
Our makefile generator now accepts badly formatted include lines. It's
now more hermetic with better error checking in the cosmo repo, and it
can be configured to not be hermetic at all.
This change fixes Cosmopolitan so it has fewer opinions about compiler
warnings. The whole repository had to be cleaned up to be buildable in
-Werror -Wall mode. This lets us benefit from things like strict const
checking. Some actual bugs might have been caught too.
This change ports APE Loader to Linux AARCH64, so that Raspberry Pi
users can run programs like redbean, without the executable needing
to modify itself. Progress has also slipped into this change on the
issue of making progress better conforming to user expectations and
industry standards regarding which symbols we're allowed to declare
This change integrates e58abc1110b335a3341e8ad5821ad8e3880d9bb2 from
https://github.com/ahgamut/musl-cross-make/ which fixes the issues we
were having with our C language extension for symbolic constants. This
change also performs some code cleanup and bug fixes to getaddrinfo().
It's now possible to compile projects like ncurses, readline and python
without needing to patch anything upstream, except maybe a line or two.
Pretty soon it should be possible to build a Linux distro on Cosmo.
This change implements a new approach to function call logging, that's
based on the GCC flag: -fpatchable-function-entry. Read the commentary
in build/config.mk to learn how it works.
The cosmopolitan command interpreter now has 13 builtin commands,
variable support, support for ; / && / || syntax, asynchronous support,
and plenty of unit tests with bug fixes.
This change fixes a bug in posix_spawn() with null envp arg. strace
logging now uses atomic writes for scatter functions. Breaking change
renaming GetCpuCount() to _getcpucount(). TurfWar is now updated to use
the new token bucket algorithm. WIN32 affinity masks now inherit across
fork() and execve().
This change also removes the futimens() call on the Landlock Make output
file workaround, since it caused problems with commands like fixupobj
which modify-in-place. It turns out if a file is opened for writing and
then no writes actually occur, then the modified time doesn't change.
- 10.5% reduction of o//depend dependency graph
- 8.8% reduction in latency of make command
- Fix issue with temporary file cleanup
There's a new -w option in compile.com that turns off the recent
Landlock output path workaround for "good commands" which do not
unlink() the output file like GNU tooling does.
Our new GNU Make unveil sandboxing appears to have zero overhead
in the grand scheme of things. Full builds are pretty fast since
the only thing that's actually slowed us down is probably libcxx
make -j16 MODE=rel
RL: took 85,732,063µs wall time
RL: ballooned to 323,612kb in size
RL: needed 828,560,521µs cpu (11% kernel)
RL: caused 39,080,670 page faults (99% memcpy)
RL: 350,073 context switches (72% consensual)
RL: performed 0 reads and 11,494,960 write i/o operations
pledge() and unveil() no longer consider ENOSYS to be an error.
These functions have also been added to Python's cosmo module.
This change also removes some WIN32 APIs and System Five magnums
which we're not using and it's doubtful anyone else would be too
I wanted a tiny scriptable meltdown proof way to run userspace programs
and visualize how program execution impacts memory. It helps to explain
how things like Actually Portable Executable works. It can show you how
the GCC generated code is going about manipulating matrices and more. I
didn't feel fully comfortable with Qemu and Bochs because I'm not smart
enough to understand them. I wanted something like gVisor but with much
stronger levels of assurances. I wanted a single binary that'll run, on
all major operating systems with an embedded GPL barrier ZIP filesystem
that is tiny enough to transpile to JavaScript and run in browsers too.
https://justine.storage.googleapis.com/emulator625.mp4