You can now do epic things like this:
puts(_gc(xasprintf("%d", 123)));
The _gc() API is shorthand for _defer() which works like Go's keyword:
const char *s = xasprintf("%d", 123);
_defer(free, s);
puts(s);
Be sure to always use -fno-omit-frame-pointer which makes code fast too.
Enjoy! See also #114
- Polyfill open() w/ O_CLOEXEC on RHEL5
- Remove old workaround from rmdir() on the New Technology
- preadv() and pwritev() are now smarter about demodernization
- preadv() and pwritev() are now available on the New Technology
We can put this back the moment someone requests it. Pain-free garbage
collection for the C language is pretty cool. All it does is overwrite
the return address with a trampoline that calls free(). It's not clear
what it should be named if it's made a public API.
Cosmopolitan currently doesn't support threads and it doesn't do
anything fancy in longjmp/setjmp so this change was simple to do
- localeconv
- _setjmp (same as setjmp)
- _longjmp (same as longjmp)
- strcoll (same as strcmp)
- flockfile (does nothing)
- funlockfile (does nothing)
- ftrylockfile (does nothing)
See #61
The ucontext_t data structure XNU passes us doesn't appear to be part of
known memory. So we can't use ASAN during the trampoline, which converts
it to a Linux ucontext_t data structure. Please note that this change
doesn't impact the signal handler itself, only the trampoline.
Here's why we got those `Killed: 11` failures on MacOS after modifying
the contentns of the redbean.com executable. If you were inserting a
small file, such as a HelloWorld.html file, then InfoZIP might have
decreased the size of the executable to less than what the Mach-O
section had been expecting.
That's because when zipobj.com put things like time zone data in the
executable, it aligned each zip file entry on a 64-byte boundary, simply
for the sake of readability in binary dumps. But when InfoZIP edited the
file it would rewrite every entry using ZIP's usual 2-byte alignment.
Thus causing shrinkage.
The solution was to reconfigure the linker script so that zip file bits
that get put into the executable at link-time, such as timezone data,
aren't officially part of the executable image, i.e. we don't want the
operating system to load that part.
The original decision to put the linked zip files into the .data section
was mostly made so that when the executable was run in its .com.dbg form
it would still have the zip entries be accessible, even though there was
tons of GNU debug data following the central directory. We're not going
to be able to do that. The .com executable should be the canonical
executable. We have really good tools for automatically attaching and
configuring GDB correctly with debug symbols even when the .com is run.
We'll have to rely on those in cases where zip embedding is used.
See #53
See #54
See #68
Right now we can't call poll() on file and fifos on Windows. So we work
around that by simply blocking on keyboard input. This is OK because on
Windows we can't use /proc/*/mem for realtime monitoring, so there's no
reason not to block.
See #65
- Polyfill ucontext_t on FreeBSD/OpenBSD/NetBSD
- Add tests confirming signals can edit CPU state
- Work towards supporting ZIP filesystem on bare metal
- Add more tinymath unit tests for POSIX conformance
- Add X87 and SSE status flags to crash report
- Fix some bugs in blinkenlights
- Fix llvm build breakage
Your Actually Portable Executables now contains a simple virtual memory
that works similarly to the Linux Kernel in the sense that it maps your
physical memory to negative addresses. This is needed to support mmap()
and malloc(). This functionality has zero code size impact. For example
the MODE=tiny LIFE.COM executable is still only 12KB in size.
The APE bootloader code has also been simplified to improve readibility
and further elevate the elegance by which we're able to support so many
platforms thereby enhancing verifiability so that we may engender trust
in this bootloading process.
We're now scrubbing environment variables in compile.com since gnu make
was not behaving as expected. It also appears there was a regression in
recent revisions that caused ASAN to be turned off for most binaries in
dbg mode, which has now been fixed. Cosmopolitan is fully ASAN hardened
down to the lowest level libraries and it doesn't need any interceptors
- Reduce full build latency from ~20s to ~18s
- Bring back silent mode if `make V=0` is passed
- Demodernize utimes() polyfill so it works RHEL5
- Delete some old shell scripts that are no longer needed
- Truncate long lines when outputting builds to Emacs buffers
You can now build Cosmopolitan with Clang:
make -j8 MODE=llvm
o/llvm/examples/hello.com
The assembler and linker code is now friendly to LLVM too.
So it's not needed to configure Clang to use binutils under
the hood. If you love LLVM then you can now use pure LLVM.
It turns out adding OpenBSD msyscall() origin verification broke the
--ftrace flag. The executable needs to issue raw syscalls while it's
rewriting itself. So they need to be in the same section, and that's
just plain simpler too.
Compilers like GCC require comments on lines like `#endif rdmsr`. Since
the rdmsr macro was only being used in arch_prctl(), I've localized the
macro, and I'm considering deleting arch_prctl() too, since there isn't
any way to have mem segments unfortunately across operating systems ;_;
The remaining changed lines are due to clang-format which runs on auto.
You can now use cosmopolitan.h with an ANSI C89 compiler like MSVC. The
Cosmopolitan codebase itself won't support being compiled that way. But
you can build objects that link against Cosmopolitan using any compiler
and you can furthermore use tools like IntelliSense that can't even GNU
See also #40
- Get ASAN working on Windows.
- Deleting directories and then recreating them with the same name in a
short period of time appears to be a no-no on Windows.
- There's no reason to call FlushFileBuffers on close() for pipes, and
it's harmful since it might block indefinitely for no good reason.
- Support deterministic stacks on OpenBSD
- Support OpenBSD system call origin verification
- Fix overrun by one in chibicc string token allocator
- Get all chibicc tests passing under Address Sanitizer
We now have an integration test that runs the amalgamated sources
through a C++ compiler, to prevent the recurrence of such issues.
Fixes#38
Thanks @gbbnfhb for the report!
This change enables Address Sanitizer systemically w/ `make MODE=dbg`.
Our version of Rust's `unsafe` keyword is named `noasan` which is used
for two functions that do aligned memory chunking, like `strcpy.c` and
we need to fix the tiny DEFLATE code, but that's it everything else is
fabulous you can have all the fischer price security blankets you need
Best of all is we're now able to use the ASAN data in Blinkenlights to
colorize the memory dumps. See the screenshot below of a test program:
https://justine.lol/blinkenlights/asan.png
Which is operating on float arrays stored on the stack, with red areas
indicating poisoned memory, and the green areas indicate valid memory.
The libm code from musl wasn't being used since most of these functions
are implemented using x87 which goes faster than a library intended for
risc machines.
We always favor calling functions like openat(), fstatat(), etc. because
Linux, XNU, FreeBSD, and OpenBSD all elected to support them, while some
systems like Android love them so much, that they stopped supporting the
old interfaces.
This change ensures that when dirfd is actually a dirfd and not AT_FDCWD
we'll do the right thing on Windows NT. We use an API that's been around
since Vista to accomplish that.
This change also adds exponential backoff to chdir() on Windows since it
seems almost as flaky on Windows 7 as the rmdir() function.