We're now able to pretty print a C++ backtrace upon crashing in pretty
much any runtime execution scenario. The default pledge sandbox policy
on Linux is now to return EPERM. If you call pledge and have debugging
functions linked (e.g. GetSymbolTable) then the symbol table shall get
loaded before any security policy is put in place. This change updates
build/bootstrap/fixupobj too and fixes some other sneaky build errors.
Commit bc6c183 introduced a bunch of discrepancies between what files
look like in the repo and what clang-format says they should look like.
However, there were already a few discrepancies prior to that. Most of
these discrepancies seemed to be unintentional, but a few of them were
load-bearing (e.g., a #include that violated header ordering needing
something to have been #defined by a 'later' #include.)
I opted to take what I hope is a relatively smooth-brained approach: I
reverted the .clang-format change, ran clang-format on the whole repo,
reapplied the .clang-format change, reran clang-format again, and then
reverted the commit that contained the first run. Thus the full effect
of this PR should only be to apply the changed formatting rules to the
repo, and from skimming the results, this seems to be the case.
My work can be checked by applying the short, manual commits, and then
rerunning the command listed in the autogenerated commits (those whose
messages I have prefixed auto:) and seeing if your results agree.
It might be that the other diffs should be fixed at some point but I'm
leaving that aside for now.
fd '\.c(c|pp)?$' --print0| xargs -0 clang-format -i
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.
This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.
Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.
OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().
This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.
We no longer use hex constants to define math.h symbols like M_PI.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
This reverts commit b01282e23e. Some tests
are broken. It's not clear how it'll impact metal yet. Let's revisit the
memory optimization benefits of this change again sometime soon.
This reduces the virtual memory usage of Emacs for me by 30%. We now
have a simpler implementation that uses read(), rather mmap()ing the
whole executable.
- Every unit test now passes on Apple Silicon. The final piece of this
puzzle was porting our POSIX threads cancelation support, since that
works differently on ARM64 XNU vs. AMD64. Our semaphore support on
Apple Silicon is also superior now compared to AMD64, thanks to the
grand central dispatch library which lets *NSYNC locks go faster.
- The Cosmopolitan runtime is now more stable, particularly on Windows.
To do this, thread local storage is mandatory at all runtime levels,
and the innermost packages of the C library is no longer being built
using ASAN. TLS is being bootstrapped with a 128-byte TIB during the
process startup phase, and then later on the runtime re-allocates it
either statically or dynamically to support code using _Thread_local.
fork() and execve() now do a better job cooperating with threads. We
can now check how much stack memory is left in the process or thread
when functions like kprintf() / execve() etc. call alloca(), so that
ENOMEM can be raised, reduce a buffer size, or just print a warning.
- POSIX signal emulation is now implemented the same way kernels do it
with pthread_kill() and raise(). Any thread can interrupt any other
thread, regardless of what it's doing. If it's blocked on read/write
then the killer thread will cancel its i/o operation so that EINTR can
be returned in the mark thread immediately. If it's doing a tight CPU
bound operation, then that's also interrupted by the signal delivery.
Signal delivery works now by suspending a thread and pushing context
data structures onto its stack, and redirecting its execution to a
trampoline function, which calls SetThreadContext(GetCurrentThread())
when it's done.
- We're now doing a better job managing locks and handles. On NetBSD we
now close semaphore file descriptors in forked children. Semaphores on
Windows can now be canceled immediately, which means mutexes/condition
variables will now go faster. Apple Silicon semaphores can be canceled
too. We're now using Apple's pthread_yield() funciton. Apple _nocancel
syscalls are now used on XNU when appropriate to ensure pthread_cancel
requests aren't lost. The MbedTLS library has been updated to support
POSIX thread cancelations. See tool/build/runitd.c for an example of
how it can be used for production multi-threaded tls servers. Handles
on Windows now leak less often across processes. All i/o operations on
Windows are now overlapped, which means file pointers can no longer be
inherited across dup() and fork() for the time being.
- We now spawn a thread on Windows to deliver SIGCHLD and wakeup wait4()
which means, for example, that posix_spawn() now goes 3x faster. POSIX
spawn is also now more correct. Like Musl, it's now able to report the
failure code of execve() via a pipe although our approach favors using
shared memory to do that on systems that have a true vfork() function.
- We now spawn a thread to deliver SIGALRM to threads when setitimer()
is used. This enables the most precise wakeups the OS makes possible.
- The Cosmopolitan runtime now uses less memory. On NetBSD for example,
it turned out the kernel would actually commit the PT_GNU_STACK size
which caused RSS to be 6mb for every process. Now it's down to ~4kb.
On Apple Silicon, we reduce the mandatory upstream thread size to the
smallest possible size to reduce the memory overhead of Cosmo threads.
The examples directory has a program called greenbean which can spawn
a web server on Linux with 10,000 worker threads and have the memory
usage of the process be ~77mb. The 1024 byte overhead of POSIX-style
thread-local storage is now optional; it won't be allocated until the
pthread_setspecific/getspecific functions are called. On Windows, the
threads that get spawned which are internal to the libc implementation
use reserve rather than commit memory, which shaves a few hundred kb.
- sigaltstack() is now supported on Windows, however it's currently not
able to be used to handle stack overflows, since crash signals are
still generated by WIN32. However the crash handler will still switch
to the alt stack, which is helpful in environments with tiny threads.
- Test binaries are now smaller. Many of the mandatory dependencies of
the test runner have been removed. This ensures many programs can do a
better job only linking the the thing they're testing. This caused the
test binaries for LIBC_FMT for example, to decrease from 200kb to 50kb
- long double is no longer used in the implementation details of libc,
except in the APIs that define it. The old code that used long double
for time (instead of struct timespec) has now been thoroughly removed.
- ShowCrashReports() is now much tinier in MODE=tiny. Instead of doing
backtraces itself, it'll just print a command you can run on the shell
using our new `cosmoaddr2line` program to view the backtrace.
- Crash report signal handling now works in a much better way. Instead
of terminating the process, it now relies on SA_RESETHAND so that the
default SIG_IGN behavior can terminate the process if necessary.
- Our pledge() functionality has now been fully ported to AARCH64 Linux.
- More timspec_*() and timeval_*() APIs have been introduced.
- The copyfd() function is now simplified thanks to POSIX rules.
- More Cosmo-specific APIs have been moved behind the COSMO define.
- The setitimer() polyfill for Windows NT is now much higher quality.
- Fixed build error for MODE=aarch64 due to -mstringop-strategy=loop.
- This change introduces `make MODE=nox87 toolchain` which makes it
possible to build programs using your cosmocc toolchain that don't
have legacy fpu instructions. This is useful, for example, if you
want to have a ~22kb tinier blink virtual machine.
This change progresses our AARCH64 support:
- The AARCH64 build and tests are now passing
- Add 128-bit floating-point support to printf()
- Fix clone() so it initializes cosmo's x28 TLS register
- Fix TLS memory layout issue with aarch64 _Alignas vars
- Revamp microbenchmarking tools so they work on aarch64
- Make some subtle improvements to aarch64 crash reporting
- Make kisdangerous() memory checks more accurate on aarch64
- Remove sys_open() since it's not available on Linux AARCH64
This change makes general improvements to Cosmo and Redbean:
- Introduce GetHostIsa() function in Redbean
- You can now feature check using pledge(0, 0)
- You can now feature check using unveil("",0)
- Refactor some more x86-specific asm comments
- Refactor and write docs for some libm functions
- Make the mmap() API behave more similar to Linux
- Fix WIFSIGNALED() which wrongly returned true for zero
- Rename some obscure cosmo keywords from noFOO to dontFOO
Right now, cosmopolitan uses Linux Landlock ABI version 2 on Linux,
meaning that the polyfill for unveil() cannot restrict operations such
as truncate() (a limitation of Landlock's ABI from then). This means
that to restrict truncation operations Cosmopolitan instead has to ban
the syscall through a SECCOMP BPF filter, meaning that completely
legitimate truncate() calls are blocked
However, the newest version of the Landlock ABI (version 3) introduced
in Linux 6.2, released in February 2023, implements support for controlling truncation
operations. As such, the previous SECCOMP BPF truncate() filtering is
no longer needed when the new ABI is available
This patch implements unveil truncate support for Linux Landlock ABI
version 3
This change improves copy_file_range(), sendfile(), splice(), openpty(),
closefrom(), close_range(), fadvise() and posix_fadvise() in addition to
writing tests that confirm things like errno and seeking behavior across
platforms. We now less aggressively polyfill behavior with some of these
functions when the platform support isn't available. Please see:
https://justine.lol/cosmopolitan/functions.html
This makes breaking changes to add underscores to many non-standard
function names provided by the c library. MODE=tiny is now tinier and
we now use smaller locks that are better for tiny apps in this mode.
Some headers have been renamed to be in the same folder as the build
package, so it'll be easier to know which build dependency is needed.
Certain old misguided interfaces have been removed. Intel intrinsics
headers are now listed in libc/isystem (but not in the amalgamation)
to help further improve open source compatibility. Header complexity
has also been reduced. Lastly, more shell scripts are now available.
The earlier iterations did too much guesswork when it came to things
like stderr logging and syscall origin verification. This change will
make things more conformant to existing practices. The __pledge_mode
extension now can be configured in a better way.
There's also a new `-q` flag added to pledge.com, e.g.
o//tool/build/pledge.com -qv. ls
Is a good way to disable warnings about `tty` access attempts.
- 10.5% reduction of o//depend dependency graph
- 8.8% reduction in latency of make command
- Fix issue with temporary file cleanup
There's a new -w option in compile.com that turns off the recent
Landlock output path workaround for "good commands" which do not
unlink() the output file like GNU tooling does.
Our new GNU Make unveil sandboxing appears to have zero overhead
in the grand scheme of things. Full builds are pretty fast since
the only thing that's actually slowed us down is probably libcxx
make -j16 MODE=rel
RL: took 85,732,063µs wall time
RL: ballooned to 323,612kb in size
RL: needed 828,560,521µs cpu (11% kernel)
RL: caused 39,080,670 page faults (99% memcpy)
RL: 350,073 context switches (72% consensual)
RL: performed 0 reads and 11,494,960 write i/o operations
pledge() and unveil() no longer consider ENOSYS to be an error.
These functions have also been added to Python's cosmo module.
This change also removes some WIN32 APIs and System Five magnums
which we're not using and it's doubtful anyone else would be too
- We now kill the program on violations like OpenBSD
- We now print a message explaining which promise is needed
- This change also fixes a linkage bug with thread local storage
- Your sigaction() handlers should now be more thread safe
A new `__pledge_mode` global has been introduced to make pledge() more
customizable on Linux. For example:
__attribute__((__constructor__)) static void init(void) {
__pledge_mode = SECCOMP_RET_ERRNO | EPERM;
}
Can be used to restore our old permissive pledge() behavior.
The whole repository is now buildable with GNU Make Landlock sandboxing.
This proves that no Makefile targets exist which touch files other than
their declared prerequisites. In order to do this, we had to:
1. Stop code morphing GCC output in package.com and instead run a
newly introduced FIXUPOBJ.COM command after GCC invocations.
2. Disable all the crumby Python unit tests that do things like create
files in the current directory, or rename() files between folders.
This ended up being a lot of tests, but most of them are still ok.
3. Introduce an .UNSANDBOXED variable to GNU Make to disable Landlock.
We currently only do this for things like `make tags`.
4. This change deletes some GNU Make code that was preventing the
execve() optimization from working. This means it should no longer
be necessary in most cases for command invocations to be indirected
through the cocmd interpreter.
5. Missing dependencies had to be declared in certain places, in cases
where they couldn't be automatically determined by MKDEPS.COM
6. The libcxx header situation has finally been tamed. One of the
things that makes this difficult is MKDEPS.COM only wants to
consider the first 64kb of a file, in order to go fast. But libcxx
likes to have #include lines buried after huge documentation.
7. An .UNVEIL variable has been introduced to GNU Make just in case
we ever wish to explicitly specify additional things that need to
be whitelisted which aren't strictly prerequisites. This works in
a manner similar to the recently introduced .EXTRA_PREREQS feature.
There's now a new build/bootstrap/make.com prebuilt binary available. It
should no longer be possible to write invalid Makefile code.
This change also fixes a bug with gettid() being incorrect after fork().
We now implement the ENOENT behavior for getauxval(). The getuid() etc.
system calls are now faster too. Plus issetugid() will work on BSDs.
2022-07-24 21:51:37 -07:00
Renamed from test/libc/mem/unveil_test.c (Browse further)